
ÆÝÒÔ, 2013, òîì 144, âûï. 3 (9), ñòð. 519�551 

 2013
JOSEPHSON VORTEX LATTICEIN LAYERED SUPERCONDUCTORSA. E. Koshelev a*, M. J. W. Dodgson baMaterials S
ien
e Division, Argonne National Laboratory60439, Argonne, IllinoisbTheory of Condensed Matter Group, Cavendish Laboratory, Cambridge, CB3 0HE, UKInstitut de Physique, Université de Neu
hâtel2000, Neu
hâtel, Switzerland,Department of Physi
s and Astronomy, University College London,London WC1E 6BT, UKRe
eived April 1, 2013Dedi
ated to the memory of Professor Anatoly LarkinMany super
ondu
ting materials are 
omposed of weakly 
oupled 
ondu
ting layers. Su
h a layered stru
turehas a very strong in�uen
e on the properties of vortex matter in a magneti
 �eld. This review fo
uses on theproperties of the Josephson vortex latti
e generated by the magneti
 �eld applied in the dire
tion of the layers.The theoreti
al des
ription is based on the Lawren
e�Donia
h model in the London limit, whi
h takes only thephase degree of freedom of the super
ondu
ting order parameter into a

ount. In spite of its simpli
ity, thismodel leads to an amazingly ri
h set of phenomena. We review in detail the stru
ture of an isolated vortexline and various properties of the vortex latti
e, in both dilute and dense limits. In parti
ular, we extensivelydis
uss the in�uen
e of the layered stru
ture and thermal �u
tuations on the sele
tion of latti
e 
on�gurationsat di�erent magneti
 �elds.DOI: 10.7868/S00444510130900711. INTRODUCTIONLayered super
ondu
tors are materials made froma sta
k of alternating thin super
ondu
ting layers sep-arated by nonsuper
ondu
ting regions. The super
on-du
ting layers are essentially two-dimensional (2D) aslong as they are so thin that there is no variationin �elds, or in the super
ondu
ting order parameter,a
ross ea
h layer. Su
h stru
tures frequently o

ur nat-urally in anisotropi
 
rystals. A layered super
ondu
-tor 
an 
arry super
urrents along the layers, as well asbetween the layers. This is due to the Josephson tun-neling of Cooper pairs [1℄ a
ross the insulating regionsthat separate neighboring super
ondu
ting layers, i. e.,ea
h pair of neighboring layers forms one Josephsonjun
tion. In general, the z-axis (Josephson) super
ur-rents are weaker than the super
urrents along the lay-*E-mail: koshelev�anl.gov

ers. A mere �layeredness� of atomi
 stru
ture, however,does not automati
ally make a material a layered su-per
ondu
tor. When the interlayer ele
tri
al 
ouplingis su�
iently strong, this dis
rete system of layers ap-proximates to a 
ontinuous super
ondu
tor with uni-axial anisotropy. Hen
e, we are interested in the 
asewhere the approximation to a uniaxial 
ontinuous su-per
ondu
tor breaks down, whi
h happens when thelayer separation d is greater than the z-axis super
on-du
ting 
oheren
e length, d� �
.The most prominent example is the high-T
 
upratesuper
ondu
tors, dis
overed in 1986 [2�5℄, whi
h led toa huge interest in physi
s of layered super
ondu
tors.The two most studied 
uprate 
ompounds, YBa2Cu3O7(YBCO) and Bi2Sr2CaCu2Ox (BSCCO), have simi-lar transition temperatures T
 � 90K and representtwo important parti
ular 
ases. YBCO is moderatelyanisotropi
, with the anisotropy fa
tor 
 � 5�7, andits �layeredness� be
omes essential at low temperatureswhen the 
-axis 
oheren
e length �
 drops below the519
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azFig. 1. Illustration of a dilute latti
e of Josephson vorti
es generated in a layered super
ondu
tor by a magneti
 �eld appliedalong the layer dire
tionlayer spa
ing d. On the other hand, BSCCO has ahuge anisotropy fa
tor, 
 � 400 � 1000, and behavesas a layered super
ondu
tor pra
ti
ally in the wholetemperature range below T
. Other naturally layeredsuper
ondu
tors in
lude the transition metal di
hal
o-genides [6; 7℄ and organi
 
harge-transfer salts formedwith the mole
ule BEDT-TTF [8; 9℄. An importantnew family of atomi
ally layered super
ondu
ting ma-terials, iron pni
tides and 
hal
ogenides, was dis
overedin 2008 [10℄ and is being extensively explored sin
e then(see, e. g., reviews [11�13℄). Anisotropy of most 
om-pounds is a
tually not very high and they typi
ally be-have as anisotropi
 three-dimensional materials. Thereare important ex
eptions, however. The most studied
ompound in whi
h the layered stru
ture is 
learly es-sential is SmFeAsO1�xFx [14℄ with T
 up to 55 K. Forexample, the Josephson nature of the in-plane vorti
esat low temperatures has been re
ently demonstrated inthis 
ompound [15℄. Also, several iron pni
tide 
om-pounds with extremely high anisotropy have been dis-
overed [16�18℄. Properties of these 
ompounds re-main mostly unexplored due to their rather 
ompli-
ated 
omposition.All layered super
ondu
tors share a very similargeneral behavior of the vortex matter generated by anexternal magneti
 �eld, whi
h is insensitive to the mi-
ros
opi
 nature of super
ondu
tivity inside the layers.Several ex
ellent review arti
les have been published inthe past 
overing di�erent aspe
ts of the vortex mat-ter in type-II super
ondu
tors [19�23℄. Nevertheless,we feel that further progress in the understanding ofthe Josephson vorti
es in layered super
ondu
tors war-

rants a spe
ialized review, providing more details anddis
ussing important re
ent results.This short review narrowly fo
uses on the vortexlatti
e that appears at magneti
 �elds applied alongthe layers. In this 
ase, the �ux line winds its phasearound an area between two neighboring layers and is
alled a Josephson vortex in analogy with a vortex ina super
ondu
ting tunneling jun
tion. The Josephsonvortex 
ontains out-of-plane 
urrents that tunnel viathe Josephson e�e
t from layer to layer. The 
urrentdistribution around a vortex is anisotropi
. As a 
on-sequen
e, the vortex latti
e is also anisotropi
: it isa triangular latti
e strongly stret
hed along the lay-ers (see Fig. 1). In addition, the restri
tion to lie be-tween the layers leads to 
ommensurability e�e
ts andan energy barrier to tilting the �eld away from thelayers. There are two very di�erent regimes depend-ing on the magneti
 �eld strength Bx. The 
rossover�eld s
ale B
r separating these two regimes is set bythe anisotropy fa
tor 
 and the layer periodi
ity d asB
r = �0=(2�
d2), where �0 = h
=2e is the �ux quan-tum. In the 
ase of BSCCO, this �eld s
ale is around0.5 tesla. In the dilute latti
e regime, Bx < B
r, thenonlinear 
ores of Josephson vorti
es are well separatedand the distribution of 
urrents and �elds is very sim-ilar to that in 
ontinuous anisotropi
 super
ondu
tors[24℄. The dense latti
e regime is realized at high �eldsBx > B
r, where the 
ores of Josephson vorti
es over-lap. In this regime, the Josephson vorti
es �ll all lay-ers homogeneously [25℄. This state is 
hara
terized byrapid os
illations of the Josephson 
urrent and by veryweak modulation of the in-plane 
urrent. In this re-520
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e in layered super
ondu
torsview, we 
hara
terize these two latti
e regimes in moredetail.We do not 
onsider the properties of vorti
es gen-erated by a magneti
 �eld applied perpendi
ular to thelayers, along the 
 axis1). The stru
ture of a 
-axis vor-tex is very di�erent from the stru
ture of an in-planevortex. In layered super
ondu
tors, a 
-axis vortex 
anbe viewed as a sta
k of weakly 
oupled pointlike pan-
ake vorti
es. Properties of the pan
ake vortex latti
ewere also extensively explored, see, e. g., reviews [23℄and [26℄ and the referen
es therein.Several experimental te
hniques have been em-ployed to explore the Josephson vortex latti
es. Thedilute stret
hed latti
e at small �elds (< 100 G) hasbeen dire
tly observed in YBCO with Bitter de
ora-tion in [27℄, where the ellipti
al distribution of the �uxaround ea
h Josephson vortex was also seen. At high�elds (> 1 tesla), the 
ommensurability between the
-axis parameter of the Josephson vortex latti
e andthe interlayer separation leads to magneti
 �eld os
illa-tions, whi
h have been observed experimentally in un-derdoped YBCO in irreversible magnetization [28; 29℄and nonlinear resistivity [30℄.In mu
h more anisotropi
 BSCCO, dire
t observa-tion of Josephson vorti
es is not possible. However,when the magneti
 �eld is tilted at small angles withrespe
t to the layers, the 
-axis �eld 
omponent gen-erates the pan
ake-vortex sta
ks that preferably enterthe super
ondu
tor along the Josephson vorti
es form-ing 
hains. Visualizing the �ux of these 
hains, it ispossible to �nd lo
ations of verti
al rows of the Joseph-son vorti
es and measure the in-plane latti
e parame-ter ay. This was done using a variety of visualizationte
hniques, su
h as Bitter de
orations [31; 32℄, s
anningHall probes [33℄, Lorentz mi
ros
opy [34; 35℄ and mag-netoopti
al imaging [36; 37℄. These observations havebeen summarized in review [38℄.Most extensively, properties of the Josephson vor-tex latti
e were explored in BSCCO using 
-axis trans-port in small-size mesas [39�43℄. These studies revealeda very ri
h dynami
al behavior of the latti
e, whi
his beyond the s
ope of this review. The very impor-tant feature is that, due to low dissipation, the Joseph-son vortex latti
e 
an be a

elerated up to very highvelo
ities. It is 
lear that understanding dynami
s isnot possible without good understanding of stati
 lat-ti
e properties. The dynami
 phenomenon 
losely re-lated to stati
 latti
e 
on�gurations is magneti
-�eldos
illations of resistan
e for very slow latti
e motion,1) In the literature the layer plane and the axis perpendi
ularto the layers are frequently 
alled �ab plane� and �
 axis�.

whi
h have been dis
overed and explored in small-sizeBSCCO mesas [44�48℄. The os
illation period 
an 
or-respond to either the �ux quantum or half the �uxquantum per jun
tion depending on the magneti
 �eldand the lateral size of the mesa. An interplay betweenthe bulk shearing intera
tion and the intera
tion withedges leads to very nontrivial evolution of latti
e stru
-tures, whi
h we 
onsider in this review.This review is organized as follows. We start inSe
. 2, where we present the energy fun
tional and equi-librium equations for the phase and ve
tor potential.In Se
. 3, we des
ribe the stru
ture and energeti
s ofa single �ux line. In Se
. 4, we dis
uss the dilute JVLand 
onsider in detail the role of layered stru
ture insele
ting latti
e 
on�gurations. The properties of thedense JVL at high �elds are 
onsidered in Se
. 5. Inthis regime, the stru
ture and energy of the latti
e 
anbe evaluated analyti
ally using an expansion with re-spe
t to the Josephson 
oupling. In that se
tion, wealso review the magneti
 �eld dependen
e of latti
e
on�gurations and os
illations of the 
riti
al 
urrentin �nite-size samples. Elasti
 properties of both diluteand dense latti
es are dis
ussed in the 
orrespondingse
tions. In Se
. 6, based on the elasti
 energies, wereview e�e
ts 
aused by thermal �u
tuations.2. ENERGY FUNCTIONAL AND EQUATIONSFOR THE SUPERCONDUCTING PHASESAND VECTOR POTENTIALTheoreti
al analysis of the Josephson vortex matterin layered super
ondu
tors is based on a phenomeno-logi
al model in whi
h only the phase degree of freedomof the super
ondu
ting order parameters is taken intoa

ount and its amplitude variations are negle
ted,FLLD ��n(rk);A(r)� = Z d3rB28� ++Xn Z d2rk(E02 �rk�n + 2��0Ak;n�2 ++ EJd2 [1� 
os(�n+1 � �n + �n;n+1)℄� ; (1)where E0 = �20d=(16�3�2ab) de�nes the in-plane phasesti�ness and EJ = E0=
2 = �20d=(16�3�2
) is the phasesti�ness for smooth inter-layer phase variations, �aband �
 are the 
omponents of the London penetrationdepth, and 
 = �
=�ab is the anisotropy fa
tor. Thez 
omponent of the ve
tor potential enters the tunnel-521
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) R (n+1)dnd dz Az .Near the transition temperature, the above phasemodel 
an be obtained from the 
elebrated Lawren
e�Donia
h model [49℄ by �xing the order-parameter am-plitude (London approximation). However, the modelis a
tually more general and des
ribes Josephson prop-erties of a layered material in the whole temperaturerange. Starting from the phase model, a ri
h variety oflatti
e properties 
an be derived, whi
h we review inthis arti
le.Subje
t to some given boundary 
onditions, the
on�guration of f�n;Ag is determined by minimiz-ing the free energy. This leads to a set of di�erentialequations; for example, minimizing with respe
t to thephase gives the 
urrent-
onservation 
onditionr 2k �n + 2��0rk �Ak;n == 1(
d)2 (sin'n�1;n � sin'n;n+1) ; (2)with the gauge-invariant phase di�eren
e de�ned as'n;n+1 = �n+1 � �n + �n;n+1. In this equation, theJosephson length �J = 
d appears for the �rst time.This length plays a very important role in layeredsuper
ondu
tors be
ause it determines the s
ale overwhi
h the phase 
an relax to minimize the Josephson
oupling energy without 
osting too mu
h energy in thegradient term. Three more equations result from min-imizing with respe
t to the three 
omponents of theve
tor potential. We 
an write these in terms of theele
tri
 
urrent density by using the Maxwell equationj = (
=4�)r� (r�A), whi
h givesJk;n = �2�
E0�0 �rk�n + 2��0Ak;n� ; (3)Jn;n+1 = �jJ sin'n;n+1; (4)where Jk;n is the 2D 
urrent density in the nth layerand Jn;n+1 is the 
urrent density in the ẑ dire
tionbetween the nth and (n + 1)th layers, whi
h has themaximum value jJ = 2�
E0�0(
d)2 : (5)The four equations (2)�(4) are the starting point for�nding the stru
ture of vorti
es in layered super
ondu
-tors. In fa
t, we 
an make the job of solving this setof equations slightly 
learer by 
ombining them into a2) Here e is 
hosen to be positive, e > 0, i. e., the 
harge of anele
tron is �e.

di�erential equation for the gauge-invariant phase dif-feren
es alone. This is done by using the general result4�d
 Jn;n+1 = (n+1)dZnd dz [r� (r�A)℄z == rk � (Ak;n+1 �Ak;n)� �02�r2k�n;n+1; (6)and 
ombining this with (2) and (4) to arrive atr2k'n;n+1 + 1�2
 sin'n;n+1 + 1(
d)2 �� [sin'n+1;n+2 � 2 sin'n;n+1 + sin'n�1;n℄ = 0: (7)Solving this equation then gives the entire solution for
urrents by using (4) to �nd Jn;n+1, and the 
onserva-tion law rk � Jk;n = Jn;n+1 � Jn�1;n (8)to �nd Jk;n.3. STRUCTURE OF A JOSEPHSON VORTEXIN A LAYERED SUPERCONDUCTORIf we pla
e a �ux line dire
ted along the layers,the singularity asso
iated with the vortex 
ore 
an beavoided by pla
ing the 
enter in the insulating layerbetween two super
ondu
ting layers (�rst noti
ed byBulaevskii [50℄). The stru
ture of the �
ore� is similarto the stru
ture of the phase drop a
ross a �ux line ina two-dimensional Josephson jun
tion [51℄. This well-studied problem has a solution where the phase di�er-en
e a
ross the two layers drops by 2� over a distan
eof the Josephson length �J3). For the 3D layered su-per
ondu
tor, this length is given by �J = 
d, andwe 
an think of a 
entral region 
d wide and d highas the 
ore of an in-plane vortex. Beyond this 
ore,the �ux density and 
urrents are quite similar to thosefor a 
ontinuous anisotropi
 super
ondu
tor [24℄. Thes
reening by z-axis 
urrents is mu
h weaker than thatby in-plane 
urrents, and the �ux line is stret
hed intoan ellipsoidal shape with a large width � �
 along thelayers. Even though only the �
ore� resembles the vor-tex in a 2D Josephson jun
tion, it has be
ome 
ommonin the literature to label the entire �ux line with thisorientation a Josephson vortex.We now 
onsider now a �ux line dire
ted along thex axis. The general stru
ture of this Josephson vor-tex was �rst des
ribed by Bulaevskii [50℄. The 
enter3) This 
hara
teristi
 length was noted soon after the dis
overyof the Josephson e�e
t [82℄.522
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e in layered super
ondu
torsof the vortex lies between two layers, su
h that thereis no 
ore with suppressed amplitude of the order pa-rameter, while the stru
ture at large distan
es from the
enter is similar to a 
onventional �ux line. The phasearound the vortex is not given trivially by symmetry,but is a solution of nonlinear equations (2). The most
onvenient path to a quantitative solution is to separatethe problem into two di�erent s
ales: At large s
ales,we 
an ignore the nonlinearity, and there is an ana-lyti
 solution. At small s
ales, the numeri
al solution issimpli�ed by ignoring the s
reening 
ontribution of theve
tor potential. Fortunately, for �ab=d� 1, there is alarge region of intermediate s
ales where both approxi-mations work well, allowing us to mat
h the small-s
aleand long-s
ale solutions.We 
onsider a vortex 
entered between layers 0 and1, and y = 0, whi
h is de�ned by the limiting values�n(y) = 0; for y ! +1;�n(y) = ( ��; n � 1;�; n � 0; for y ! �1: (9)This 
orresponds to the following 
onditions for the in-terlayer phase di�eren
e:'n;n+1 = 0; for y ! �1 and n 6= 0;'0;1 = ( 0; y ! +1;�2�; y ! �1: (10)To obtain the 
urrent and �eld distributions, we�rst derive a useful exa
t equation for the magneti
�eld. The 
urrent 
omponents in (3) and (4) 
an berepresented asJn;n+1 = � 
4�ryBn;n+1x == � 
�08�2�2
d sin'n;n+1; (11)Jy;n = 
4�rnBn�1;nx == 
�0d8�2�2ab�ry�n + 2��0Ay� ; (12)where Bn;n+1x is the average magneti
 �eld betweenthe layers n and n + 1 and rn is a di�eren
e opera-tor rnAn � An+1 � An. Colle
ting the 
ombination(4�=
) ���2
ryJn;n+1 + (�2ab=d)rnJy;n�, we obtain�1� �2
r2y � (�2ab=d2)r2n�Bn;n+1x == �02�dry ('n+1;n � sin'n+1;n) (13)

with r2nAn � An+1 + An�1 � 2An. The di�eren
e of'n+1;n and sin'n+1;n de
ays outside the nonlinear 
oreand satis�es the relationXn 1Z�1 dyry ('n+1;n � sin'n+1;n) ==Xn 'n+1;n���1�1 = 2�: (14)In the 
ontinuum limit, the right-hand side of (13)therefore 
onverts into �0Æ(y)Æ(z) and (13) transformsinto the usual equation for the vortex magneti
 �eld [52℄Bx � �2
r2yBx � �2abr2zBx = �0Æ(y)Æ(z); (15)whi
h givesBx = �02��
�abK00�s� y�
�2 +� z�ab�21A : (16)The 
urrent densities outside the 
ore region are alsogiven by standard formulas for anisotropi
 super
on-du
torsjy = � 
�08�2�
�2ab z=�abpy2=�2
 + z2=�2ab ��K1 sy2�2
 + z2�2ab !; (17)jz = 
�08�2�2
�ab y=�
py2=�2
 + z2=�2ab ��K1 sy2�2
 + z2�2ab !: (18)These results should be valid as long as the linear ap-proximation for the sine of the phase di�eren
e is good.To �nd the range of appli
ability for this approxima-tion, we 
ompare the last equation to (4), whi
h nearthe vortex 
enter, givessin'n;n+1 = � y=
d(y=
d)2 + n2 fory2=�2
 + z2=�2ab � 1; (19)indi
ating that the linear theory breaks down at(y=
d)2 + n2 � 1. This 
ondition therefore sets theboundary of the nonlinear 
ore.The above analysis shows that the Josephson vor-tex is 
hara
terized by two sets of length s
ales. A523
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e is large de-�nes the nonlinear 
ore of the vortex. In the z di-re
tion, this region is essentially lo
alized within the
entral jun
tion and in the y dire
tion, it spreads overthe Josephson length 
d. At s
ales jzj ; jyj =
 � d, thevortex stru
ture is des
ribed by the anisotropi
 Lon-don theory. In addition, we 
an negle
t s
reening ef-fe
ts in a wide region where the 
urrents around thevortex de
ay as 1=r (although the 
urrent pattern isstrongly stret
hed along the layers). S
reening of the
urrents and magneti
 �eld be
omes important at thelength s
ales jzj � �ab and jyj � �
, whi
h are mu
hlarger than the 
orresponding boundaries of the non-linear 
ore.Due to this vortex stru
ture, a quantitative analy-sis 
an be obtained with more ease by introdu
ing anintermediate s
ale Rint, with d < Rint < �ab, su
hthat at the distan
e pz2 + (y=
)2 = Rint from thevortex 
enter, both nonlinearity and s
reening may beignored. We then 
onsider the small-distan
e regionpz2 + (y=
)2 < Rint (
ontaining the nonlinear 
ore)and the large-distan
e region pz2 + (y=
)2 > Rint(where s
reening will be
ome important) separately.At small distan
es, we 
an negle
t s
reening. In theLondon gauge r � A = 0, this means that the ve
torpotential A 
an be dropped and the vortex is des
ribedin terms of in- plane phases �n(y) only, whi
h satisfythe equation (from (2))(
d)2 d2�ndy2 + sin (�n+1 � �n)�� sin (�n � �n�1) = 0 (20)and boundary 
onditions (9). These 
onditions are sat-is�ed by our knowledge that outside the nonlinear 
ore,where (n� 1=2)2 + (y=
d)2 � 1, the phase has to ap-proa
h the s
aled version of the usual form relating tothe angle around a vortex,�Jvn (y) = � ar
tg�
d(n� 1=2)y � : (21)Multiplying (20) by d�n=dy, summing over n, and per-forming an inde�nite integral over y, we derive the fol-lowing exa
t relation for all y:Xn "(
d)2 �d�ndy �2�2 (1� 
os (�n+1��n))# == 
onst; (22)whi
h is analogous to the �rst integral of a se
ond-orderdi�erential equation with one variable. For an isolated

−3 −2 −1 0 1 2 3

Fig. 2. Visualization of the numeri
ally 
omputedstru
ture of an isolated Josephson vortex. The arrowsrepresent the 
urrent distribution (half the interlayerdistan
e 
orresponds to maximum Josephson 
urrent).The greylevel 
odes for the 
osine of the interlayerphase di�eren
e. The s
ale in the y-dire
tion is in unitsof the Josephson length �J = 
dJosephson vortex, the 
onstant is zero. In 
ontrast tothe single-variable 
ase, this relation does not help us to�nd the exa
t solution of 
oupled nonlinear equations(20), and we have either to use some approximate so-lution or to solve it numeri
ally. Relation (22) 
an,however, be used to test the a

ura
y of the approxi-mate and numeri
al solutions.A simple approximate solution has been proposedby Clem and Co�ey [52℄ (the CC solution), who usedthe ansatzBx � �02��
�abK0 py2 + 
2z2 + y2

�
 ! (23)for the magneti
 �eld and found that the best approx-imation for the 
ore stru
ture is a
hieved by sele
tingthe 
ut o� y

 = 
d=2. This �eld distribution allowsobtaining the distribution of the phase di�eren
e'n;n+1 � � sin�1� d�ab yRn(y)K1�Rn(y)�
 �� ; (24)where Rn(y) = py2 + (
dn)2 + y2

. In parti
ular,at 
d � y � �
, this 
orresponds to �1(y) �� � tg�1(
d=2y).The a

urate numeri
al stru
ture for the 
ore wasobtained in Ref. [52℄. Figure 2 presents a visualizationof this numeri
al solution, and we 
ompare the phasedi�eren
e in the 
entral jun
tion to that from the CCsolution in Fig. 3. The numeri
al solution is 
hara
-terized by the following properties. The maximum in-plane phase gradient is given by
d d�1dy ����y=0 = 1:10 (25)524
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ondu
tors
0 2 4−4 −2

y/γd

−1.0

−0.5

0.5

1.0

0

Numerical
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Fig. 3. Sine of the phase di�eren
e between the 
en-tral layers of the Josephson vortex. For 
omparison,the approximate solution of Clem and Co�ey [52℄ isalso shown(the CC solution gives 
d (d�1=dy)y=0 = 2) andthe maximum Josephson 
urrent �ows at the distan
eymax = 0:84
d from the vortex 
enter (the CC solutiongives ymax = y

 = 0:5
d). The maximum magneti
�eld in the vortex 
ore is given byB0;1x (y = 0) � �02��
�ab �ln��abd �+ 1:03� : (26)The asymptoti
 limits for the phase di�eren
e in the
entral jun
tion are'0;1 =8>>>>>>>>><>>>>>>>>>:
�� + 2:20y
d ; jyj � 
d;�
dy ; 
d� y � �
;� d�abs��
2y e�y=�
 ; �
 � y: (27)Outside the 
ore, we 
an 
al
ulate the 
orre
tionÆ�n(y) to the 
ontinuum-limit phase asymptoti
s (21)by treating the dis
reteness and nonlinearity of theJosephson 
urrent perturbatively (see Appendix B).This givesÆ�n(y) = sin[2�Jvn (y)℄16R2 (lnR+ CÆ�) ++ 5 sin[4�Jvn (y)℄96R2 ; (28)where R = p(n� 1=2)2 + (y=
d)2, and the 
onstantCÆ� � 4:362 is found from 
omparison with the numer-i
al solution.We 
an �nd the energy per unit length of theJosephson vortex by inserting this solution into (1).

The simplest method [53℄ is again to split the energyinto two 
ontributions: one from the region at largedistan
es where the linear approximation is valid, andone from small distan
es where we need the numeri-
al solution, but 
an ignore the 
ontributions of A tothe 
urrent (i. e., ignore s
reening). The �rst is foundanalyti
ally, while the se
ond needs a numeri
al inte-gration. The �nal result is (see also [54℄),"Jv = "0
 �ln��abd �+ 1:55� (29)with "0 = �20=(4��ab)2. This energy determines thelower 
riti
al �eld H
1;x above whi
h Josephson vor-ti
es are generated:H
1;x = 4�"Jv=�0 = �04��
�ab ln�0:44�abd � : (30)To summarize, the solution for a Josephson vortexpresented here is very similar to the usual �ux linesin isotropi
 super
ondu
tors, but stret
hed by the fa
-tor 
 in the y-dire
tion. The reason for this similarityis that the linear approximation to the Josephson re-lation works well away from the vortex 
enter. Theimportant feature, however, is that at the 
enter of thevortex there is no normal 
ore, but rather a phase dropof nearly 2� a
ross the 
entral jun
tion over a distan
eof 
d.3.1. Line-tension energy of Josephson vortexIn this se
tion, we 
onsider the line-tension energyof a distorted Josephson vortex, an important param-eter that determines thermal wandering of the vortexline and its response to pinning 
enters. We 
onsidera kink-free vortex lo
ated in between the layers 0 and1 and de�ned by the planar displa
ement �eld u(x).Be
ause the energy of the straight vortex does not de-pend on its orientation inside the layer plane, for verysmooth distortions with the wavelength larger that �
,the line-tension energy is simply determined by the lineenergy in (29),ÆF = Z dx"Jv2 �dudx�2 for ����dudx ���� < ���� u�
 ���� :This simple result, however, is of limited interest, be-
ause most properties of the vortex are determined bydeformations with smaller wavelengths, jdu=dxj=juj �� jkxj � 1=�
. In this range, the line-tension en-ergy a
quires nonlo
ality, a typi
al feature of vortexlines. An a

urate 
al
ulation of the line tension for525
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dkxu2 (31)with "J � E0=
d and Ct � 2:86. The important fea-ture is the logarithmi
 dependen
e of the e�e
tive linetension on the deformation wave ve
tor, whi
h is a 
on-sequen
e of nonlo
ality.4. DILUTE LATTICE, Bx < �0=2�
d2When the Josephson vorti
es are well separated, thelinear and 
ontinuous approximation 
an be applied toenergy fun
tional (1) everywhere ex
ept in the 
ore re-gions, whi
h redu
es it to the anisotropi
 London modelFL [�(r);A(r)℄ � Z d3r(B2x8� + E02 �� "�rk�+ 2��0Ak�2 ++ 1
2 �rz�+ 2��0Az�2#) : (32)This means that the latti
e solution is just a linear addi-tion of single �ux-line solutions and the latti
e energyis determined by this London model. To understandthe nature of the ground state, it is useful to apply theres
aling tri
k [55; 56℄~r = (y; 
z) and ~A = (Ay; Az=
); (33)whi
h in the 
ase of zero z-
omponent of the mag-neti
 �eld pre
isely redu
es the system to the isotropi
state [24℄. Therefore, the ground state 
on�guration ins
aled 
oordinates is given by a regular triangular lat-ti
e. In real 
oordinates, this state 
orresponds to thetriangular latti
e strongly stret
hed along the dire
tionof the layers.Within the anisotropi
 London model, the latti
eis degenerate with respe
t to rotation in s
aled 
oor-dinates. In real 
oordinates, this 
orresponds to an�ellipti
 rotation� illustrated in Fig. 4. In parti
ular,there are two aligned 
on�gurations, in whi
h Joseph-son vorti
es form verti
al sta
ks along the z axis (seeFig. 5). For these 
on�gurations, the verti
al distan
ebetween the Josephson vorti
es in the sta
ks, az, andthe separation between the sta
ks, ay, are given byaz =p��0=(
Bx); ay =p
�0=(�Bx); (34)

a b

z̃

ỹ

z

yFig. 4. Ground-state latti
e 
on�guration for an in-plane �eld and its rotational degenera
y within theanisotropi
 London model in (a) s
aled 
oordinates and(b) real 
oordinates. The ellipse aspe
t ratio 
orre-sponds to the anisotropy fa
tor � 3, mu
h smaller,e. g., than the anisotropy of BSCCO
Scaled coordinates Real coordinates

z~

cy

z

y~
y

cy

cz

cz

Fig. 5. The two alternative latti
e 
on�gurations that arealigned with the layers, in s
aled and real 
oordinateswhere the 
onstant � is respe
tively equal to 2p3 and2=p3 for the upper and lower 
on�guration in Fig. 5.The intera
tion energy of the Josephson vortex lat-ti
e 
an be redu
ed to the intera
tion energy of anAbrikosov vortex latti
e using the s
aling tri
k. Thisenergy must be added to the self energy of ea
h Joseph-son vortex (29), whi
h, in the intermediate �eld regimeH
1;x � Bx � B
d2 , gives the resultfJl � B2x8� + Bx�0 "02
 ln�1:23�0
d2Bx� : (35)The �ellipti
 rotation� degenera
y is eliminated bythe layered stru
ture of the super
ondu
tor. There areseveral di�erent me
hanisms of this elimination. First,due to the strong intrinsi
 pinning, the vortex 
entersmust be lo
ated in between the layers. This limitsthe possible latti
e orientations. A se
ond, less triv-ial, me
hanism is from the 
orre
tions due to the dis-
rete latti
e stru
ture to the vortex intera
tions. Thedegenera
y is also eliminated by thermal �u
tuations,526
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Fig. 6. (a) General Josephson vortex latti
e and itsparameters. (b ) Orientation of a layered stru
turewith respe
t to the ideal latti
e (in s
aled 
oordinates).The layered stru
ture �ts the ideal latti
e only if it isoriented along one of the 
rystallographi
 dire
tions,whi
h is 
hara
terized by two numbers (m;n), 
orre-sponding to the expansion of the dire
tion ve
tor overthe two basi
 latti
e ve
tors e1 and e2. Several possi-ble dire
tions are shown with the 
orresponding indi
es(m;n). The layers, together with the latti
e parametersa, b, and q, are drawn here for the (3; 1) orientationbe
ause Josephson vorti
es mostly �u
tuate along thelayer dire
tions and this sele
ts preferential latti
e ori-entations. All these me
hanisms are 
onsidered in de-tail below.4.1. Sele
tion of ground-state 
on�gurations bythe layered stru
tureAs the 
enters of the Josephson vorti
es must be lo-
ated between the layers, the layered stru
ture plays a
ru
ial role in the sele
tion of the ground-state latti
e
on�gurations. The Josephson-vortex latti
e is 
om-mensurate with the layered stru
ture only at a dis
reteset of magneti
 �elds. Due to the �ellipti
 rotation� de-genera
y of the latti
e within the London approxima-tion, the family of 
ommensurate latti
es in
ludes lat-ti
es aligned with the layers (see Fig. 5), as well as mis-aligned ones. To make a full 
lassi�
ation of 
ommen-surate latti
es, we 
onsider a general latti
e shown inFig. 6a [57; 58℄. The latti
e is 
hara
terized by three pa-rameters: the in-plane period a, the distan
e betweenvortex rows in the z dire
tion b = Nd, and the rel-

ative shift between the neighboring vortex rows in qa.The latti
e shape is 
hara
terized by two dimensionlessparameters, q and the ratio r = b=a. The latti
e pa-rameters are related to the in-plane magneti
 �eld Bxas Bx = �0=(ab). The two aligned stru
tures in Fig. 5
orrespond to q = 1=2. As the repla
ement q ! 1� q
orresponds to a mirror re�e
tion with respe
t to thexz plane, every stru
ture with q 6= 1=2 is doubly degen-erate. In addition to giving the general ground states,these latti
es des
ribe multiple metastable states withunique properties studied in Refs. [57; 58℄, whi
h wereview below.We now 
lassify the exa
tly 
ommensurate latti
esto give the set of 
ommensurate �elds. An equiva-lent geometri
al analysis has been done in Ref. [59℄following a somewhat di�erent line of reasoning, butwith the same �nal result for the 
ommensurate �elds.The analysis of 
ommensurability 
onditions 
an bedone most 
onveniently in s
aled 
oordinates (33). Inthese 
oordinates, the ground-state 
on�guration 
or-responds to a regular triangular latti
e with the pe-riod ~a� = q2
�0=p3Bx. It is 
onvenient to 
onsiderthe orientation of the layered stru
ture with respe
t tothis latti
e rather than vi
e versa. The layered stru
-ture �ts this latti
e only if it runs along one of the
rystallographi
 dire
tions (see Fig. 6b ). This dire
-tion (m;n) is de�ned by the latti
e ve
tor em;n, whi
h
an be expanded over the two basi
 latti
e ve
tors:e(m;n) = me1 + ne2. For nonequivalent dire
tions, mand n must be relatively prime numbers (i. e., thereis no integer other than one that divides both m andn). Any su
h dire
tion 
orresponds to a set of mat
hing�elds, denoted byB(m;n)(N). We also let a(m;n), b(m;n),and q(m;n) denote the latti
e parameters 
orrespondingto su
h an orientation. Immediately, we obtaina(m;n) = e(m;n) = ~a�pm2 +mn+ n2: (36)It is useful to write the unit ve
tor ẑ perpendi
ularto the layers in terms of e(m;n). This ve
tor is labelleds(m;n) in Fig. 6b and is given bys(m;n) � ẑ = e(m;n) � x̂e(m;n) : (37)Commensurability means that the proje
tions of thetwo basi
 latti
e ve
tors on s(m;n) must be integer mul-tiples of the number of layers, i. e.,e1 � s(m;n) = ~n
d; e2 � s(m;n) = ~m
d; (38)527
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aled 
oordinates, the interlayer distan
e is 
d).Using (36) and (37), we rewrite these 
onditions asp32 ~a� npm2 +mn+ n2 = ~n
d; (39)p32 ~a� mpm2 +mn+ n2 = ~m
d: (40)These equations mean that ~m=~n = m=n. Be
ause mand n are by de�nition relatively prime, the set ofallowed ~m and ~n is simply given by ~m = Nm and~n = Nn. Therefore, we 
an represent the 
ommensu-rability 
ondition asp32 ~a� = Npm2 +mn+ n2
d; (41)whi
h gives the following set of 
ommensurate �elds,distan
es between neighboring rows b = Nd, and ra-tios r(m;n):B(m;n)(N) = p32 �0N2
d2(m2 +mn+ n2) ; (42)b(m;n) = p32 ~a�pm2 +mn+ n2 ; (43)r(m;n) = p3=2m2 +mn+ n2 : (44)Finding the parameter q(m;n) for a general orien-tation is a more 
ompli
ated problem. De�ning thedire
tion to the nearest-row site (m1; n1) (see Fig. 6),we haveq(m;n) = e(m;n) �e(m1;n1)je(m;n)j2 == jmm1 + (m1n+mn1)=2 + nn1jm2 +mn+ n2 : (45)Expressing the neighboring-row separation via(m1; n1),b(m;n) = j[e(m;n) � e(m1;n1)℄je(m;n) = p32 ~a�jm1n�mn1jpm2 +mn+ n2and 
omparing it with Eq. (43), we 
an see that thepair (m1; n1) must satisfy the 
onditionjm1n�mn1j = 1: (46)

It is well known from the theory of numbers that forany relatively prime pair (m;n), there exists a 
om-plementary pair (m1; n1) satisfying this 
ondition, andthere is a general re
ipe to �nd 
omplementary pairsbased on the Eu
lid algorithm (see, e. g., Ref. [60℄).Moreover, be
ause the 
ombination m1n � mn1 doesnot 
hange under the substitution m1 ! m1 + m,n1 ! n1+n, there is an in�nite set of pairs that satisfy
ondition (46) (physi
ally, this 
orresponds to di�erentlatti
e sites in the neighboring row). Therefore, theproblem to �nd q(m;n) 
an be formulated as follows:among all pairs (m1; n1) satisfying 
ondition (46), �ndthe pair that minimizes jmm1+(m1n+mn1)=2+nn1jand use this pair in Eq. (45). (Pra
ti
ally, we neednot sear
h to very high-order dire
tions.) In the 
asen = 1 and arbitrary m, the 
hoi
e of (m1; n1) is obvi-ous, (m1; n1) = (�1; 0), and we obtainq(m;1) = m+ 1=2m2 +m+ 1 : (47)We stress that these results essentially rely onthe linear London approximation, whi
h implies avery strong inequality ~a� � 
d, or equivalently,Npm2 +mn+ n2 � 1. The number of vortex-freelayers per unit 
ell is given by N � 1. The 
ase N = 1represents a spe
ial situation where all the layers are�lled with vorti
es and are equivalent. It is interest-ing to note that even for a dilute latti
e, we 
an haveJosephson vorti
es in every layer (N = 1) in the 
ase ofhigh-order 
ommensurability (m;n � 1). In an idealsituation, the latti
e transfers with 
hanging the mag-neti
 �eld between di�erent 
ommensurate 
on�gura-tions via a series of �rst-order phase transitions. Thenumber of 
ompeting states rapidly in
reases as the�eld de
reases.A full analysis of the stru
tural evolution requires
onsideration of the energy. In the London limit, a veryuseful expression for the energy of the general latti
e inFig. 6a has been derived in Ref. [60℄. We outline thisderivation and present the �nal result in a somewhatdi�erent form. For the latti
e in Fig. 6a, the intera
tionenergy in the London limit is given byf intJl = B2x8� �� 24Xl;k (1+�2ab "
2a2 (2�l)2+ �2�b2 (k�ql)�2#)�1 �� Z dy dz(1 + �2ab "
2a2 (2�z)2 + (2�y)2b2 #)�135 :528
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e in layered super
ondu
torsUsing the formula1Xk=�1 1(k + v)2 + u2 = �u sh (2�u)
h (2�u)� 
os (2�v)we 
an sum over k and integrate over y, leading tof intJl = B2x8� b22��2ab ���abb sh (b=�ab)
h (b=�ab)� 1 ++ 1Xl=1 1gb(l) sh [2�gb(l)℄
h [2�gb(l)℄� 
os (2�ql) � 1Z0 dz 1gb(z)35with gb(z) = q(b=2��ab)2 + r2z2 and r = b
=a. Thisexpression signi�
antly simpli�es in the intermediateregion b� 2��ab, where we 
an use the expansion��abb sh (b=�ab)
h (b=�ab)� 1 � 2��2abb2 + �6and drop b2= (2��ab)2 in gb(z) meaning that gb(z) !! rz. This allows us to represent the intera
tion en-ergy in this regime as [57℄f intJl = B2x8� + Bx�0(4�)2 �ab�
 �� �12 ln� �02��ab�
Bx�+ 
E � ln 2 +GL(r; q)� (48)with 
E = 0:5772 being the Euler 
onstant andGL(r; q) = �r6 + 1Xl=1 
os (2�ql)� exp (�2�rl)l[
h (2�rl)� 
os (2�ql)℄ �� 12 ln(2�r): (49)The dimensionless fun
tion GL(r; q) depends only onthe latti
e shape. Its absolute minimum 
orrespondingto the triangular latti
e is given by GL(p3=2; 1=2) == �0:4022. A pe
uliar property of GL(r; q), follo-wing from the rotational degenera
y, is that this fun
-tion also has this value for the whole set of pairs(r; q) = (r(m;n); q(m;n)) 
orresponding to the di�erentlatti
e orientations. In parti
ular, for (m;n) = (m; 1),we haveGL p3=2m2 +m+ 1 ; m+ 1=2m2 +m+ 1! = GL �p3=2; 1=2� :This fun
tion also has very pe
uliar behavior at smallr, whi
h is important for the statisti
s of metastablestates [58℄: at r ! 0 it a
quires peaks at all rationalvalues of q = k=l. Large-order peaks with the denomi-nator l develop as r drops below 1=(2�l).

For layered super
ondu
tors, we haveb = Nd; a = �0BxdN ; r = N2 BxB
d2with B
d2 = �0=(
d2) and, adding the energy of iso-lated Josephson vorti
es, we 
an write the total energyof the latti
e asfJl(N; q; h) = B2x8� ++ Bx�0(4�)2�ab�
 �12 ln� 1h�+ 1:432 +GL(r; q)� (50)with h � 2�Bx=B
d2 and r = N2h=2�. For a givenh, the ground state 
on�guration is determined by theminimum of GL(N2h=2�; q) with respe
t to dis
rete Nand 
ontinuous q. As follows from Eq. (42), perfe
t �tswhere GL rea
hes its absolute minimum o

ur at theset of redu
ed �elds h = h(m;n)(N), whereh(m;n)(N) = p3�N2(m2 +mn+ n2) : (51)At these �elds, this energy reprodu
es the result in (35).The �eld dependen
e of GL for the ground stateis shown in Fig. 7. The 
ontinuous London modeldoes not not a

urately des
ribe layered super
on-du
tors at high �elds. To obtain latti
e stru
turesin this region, one has to 
onsider the more generalLawren
e�Donia
h model. The transition between thealigned latti
es have been studied within this model byI
hioka [61℄. However, our analysis in the next se
tionshows that at many �elds, the true ground state is notgiven by an aligned latti
e.4.2. Evolution of ground-state 
on�gurationswithin the Lawren
e�Donia
h modelThe a

urate analysis of latti
e 
on�gurationswithin the Lawren
e�Donia
h model whi
h we reportin this se
tion was only published in short pro
eed-ing [62℄. Independently, su
h numeri
al analysis wasdone by Nonomura and Hu [63℄, with fully 
onsistentresults.At high in-plane magneti
 �elds, the spatial varia-tions of the �eld are very small and 
an be negle
ted inthe �rst approximation. In this limit, the only relevantdegrees of freedom are the super
ondu
ting phases and6 ÆÝÒÔ, âûï. 3 (9) 529
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hFig. 7. Upper panel: The �eld dependen
e of the re-du
ed energy fun
tions for the London model (GL,upper 
urve) and the full Lawren
e�Donia
h model(G � Gfit, lower 
urve). For 
learer 
omparison,we subtra
ted from G(h) its �t at small h given byEq. (58). Values of 
ommensurate �elds h(m;n)(N)are shown in the top axis and the 
orresponding indi
esfor several of them are written in the format (m;n)N .As expe
ted, GL rea
hes its absolute minimum for ev-ery h(m;n)(N). The lower panel shows the �eld de-penden
e of N for the ground state for both mod-els (stripes for the London model and 
ir
les for theLawren
e�Donia
h model). The same grey level 
odesthe value of N in the upper panel and the London-model plot in the lower panelthe relevant part of LLD energy (1) per unit volume,f� � FLLD=(LxLyLz)�B2x=(8�), 
an be written asf�[�n(r)℄ = E0LyLz Xn Z dy "12 (ry�n)2 ++ 1(
d)2 �1� 
os��n+1 � �n + 2�dBxy�0 ��# : (52)To simplify the analysis, we introdu
e the redu
ed in-plane length �y � y=
d and the redu
ed magneti
 �eldh � 2�
d2Bx=�0, whi
h yieldsf�[�n(r)℄ = "JLyLz Xn Z d�y �12 (r�y�n)2 ++ 1� 
os (�n+1 � �n + h�y)℄ (53)with "J � E0=
d. Varying this energy with respe
t tothe phases �n(�y), we obtain an equation for the equi-

librium phase distribution (equivalent to (2) when weignore the spatial dependen
e in Bx):r2�y�n + sin (�n+1 � �n + h�y)�� sin (�n � �n�1 + h�y) = 0: (54)We again 
onsider a general latti
e shown in Fig. 6awith the in-plane period a, with N layers betweenneighboring rows, and with the relative shift qa be-tween relative rows, where a and N are related to theredu
ed �eld as h = 2�
d=Na. It is su�
ient to �ndthe solution for the phase in one unit 
ell, 0 < y < a,1 � n � N , using appropriate quasiperiodi
ity 
ondi-tions for the phase. The total latti
e energy per unitvolume 
an be represented asf� = Bx�0(4�)2�ab�
u(N; q; h); (55)where the redu
ed energy u(N; q; h) per unit 
ell isgiven byu(N; q; h) = 1� NXn=1 aZ0 d�y �� "12 �d�nd�y �2 + 1� 
os (�n+1 � �n + h�y)# : (56)Using a relaxation method to solve (54) numeri
allywithin one unit 
ell, we 
an �nd the energy u for anygiven values of N , q and h. To mat
h London repre-sentation (48), we write u(N; q; h) in the formu(N; q; h) = 12 ln 1h + 1:4323+G(N; q; h) (57)where the fun
tion G(N; q; h) de�ned by this equationapproa
hes the London limit GL(r = N2h=2�; q) ash! 0.We �rst 
onsider the in�uen
e of the layered stru
-ture at small �elds. As shown in Appendix B, inthe lowest order with respe
t to h, the layered stru
-ture gives an orientation-independent 
orre
tion to en-ergy, G � (h=32) ln(Ch=h). In the higher (quadrati
)order, the layered stru
ture generates an orientation-dependent 
orre
tion to the latti
e energy, leading to abreakdown of the �ellipti
-rotation� degenera
y of thelatti
e. To study this e�e
t quantitatively, in Fig. 8,we plot the 
omputed �eld dependen
es of G(N; q; h)for several latti
e orientations at the 
orresponding re-du
ed 
ommensurate �elds h(m;n)(N) given by (51). Atsmall h, h < 0:05, negle
ting a very weak dependen
e530
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Gfit = −0.4022 + (h/32)ln(110/h) − 0.075h2Fig. 8. Left panel: Field dependen
e of the redu
ed-energy fun
tion G(N; h; q) for several latti
e orientations (m;n) at the
ommensurate �eld h(m;n)(N). In the right panel, to enlarge small di�eren
es, we plot the di�eren
e between G and its �tobtained using all data for h < 0:05on orientation, we 
an a

urately �t the 
orre
tion fromthe layeredness asG(h) �GL � h32 ln 110h � 0:075h2: (58)It follows that among the two aligned stru
tures shownin Fig. 5, the layers favor the lower stru
ture with in-di
es (1; 1). However, for h < 0:1, the energy di�eren
ebetween the two stru
tures is tiny and external fa
torsmay sele
t the latti
e orientation in real samples. Onthe other hand, we 
an expe
t that at su�
iently large�elds, the ground-state 
on�guration is sele
ted by thelayered stru
ture even in real samples.Energy 
orre
tions due to the layered stru
ture fa-vor latti
e stret
hing along the layer dire
tion and shiftdown the mat
hing �elds. This e�e
t is strongest forthe aligned latti
e (1,0) and is illustrated in Fig. 9.In this �gure, we show the �eld dependen
es ofG(N; h; 0:5) for di�erent N . When a smooth fun
-tion is subtra
ted from these dependen
es, lo
al min-ima are realized at �elds ~h(1;0)(N) that are smallerthan the London mat
hing �eld h(1;0)(N). The shift~h(1;0)(N)� h(1;0)(N) rapidly de
reases with in
reasingthe magneti
 �eld. We found that this shift is des
ribedby the equation~h(1;0)(N) � h(1;0)(N)1 + (0:63=N2) ln(19=~h(1;0)(N)) :For other latti
e orientations, the shift is smaller butstill noti
eable. To quantify the energy di�eren
e be-tween the aligned latti
es due to the layered stru
ture,
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Fig. 9. Upper panel: The �eld dependen
es of theredu
ed-energy fun
tion G = G(N; h; 0:5) for thealigned latti
e (1; 0) and di�erent N . Verti
al barsmark lo
ations of the London-model 
ommensurate�elds h(1;0)(N). Lower panel shows the di�eren
e be-tween G(N; h; 0:5) and a smooth 
urve through thepoints (h(1;0)(N), G(N; h(1;0)(N); 0:5)) (dashed linein the upper panel). We 
an see that the mat
hing�elds are systemati
ally displa
ed to the lower values~h(1;0)(N), as illustrated for N = 4. The inset in theupper panel shows the latti
e stru
ture at the displa
edmat
hing �eld for N = 3 (solid symbols) in 
ompari-son with the regular-hexagon stru
ture at the Londonmat
hing �eld531 6*
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hing �eld forh < 0:1 to smooth 
urves and subtra
t these 
urves.This pro
edure gives G(1;1) �G(1;0) � �0:011h2.We 
an now explore the evolution of the ground-state 
on�guration by dire
t minimization of the en-ergy with respe
t to the latti
e parameters N andq de�ned in Fig. 6. For this, we have 
omputedthe redu
ed ground-state energy de�ned as G(h) �� minN;q[G(N; q; h)℄. We 
he
ked that if we 
onsideronly aligned latti
es, the results of I
hioka [64℄ are re-produ
ed for the transition �elds between latti
es withdi�erent periods N in the 
ase of large anisotropy. For
omparison, we also made a similar 
al
ulation for theLondon model and 
omputed the �eld dependen
e ofthe fun
tion GL(h) = minN;q[GL(r = N2h=(2�); q)℄where GL(r; q) is de�ned in Eqs. (48) and (49). InFig. 7, we 
ompare �eld evolutions of these ground-state redu
ed energies and the 
orresponding 
-axis pe-riod N . For 
learer 
omparison, we subtra
ted fromG(h) its �tted 
orre
tion from GL(p3=2; 1=2) at smallh given in (58). Values of the London 
ommensurate�elds h(m;n)(N) are shown on the top axis with sev-eral low-order �elds marked by 
orresponding indi
esusing the format (m;n)N . As expe
ted, GL(h) rea
hesits absolute minimum for every h(m;n)(N). We 
an ob-serve several interesting properties. Be
ause the latti
eorientation with indi
es (m;n) = (1; 0) is not favoredby the layered stru
ture, several low-N 
on�gurations,3 � N � 6, expe
ted at h = h(1;0)(N) are skipped.However, as 
an be seen from the inset in Fig. 10, forN = 5 and 6, the ground-state energy is smaller thanthe energies of these states at h = h(1;0)(N) only bya tiny value. For h < 0:2, the a
tual evolution of thelatti
e stru
ture starts to roughly follow the Londonroute (ex
ept for skipped state (1; 0)6 near h = 0:16)but with a small negative o�set, i. e., we again see thatthe mat
hing �elds are systemati
ally shifted down in
omparison with their London values.The �eld dependen
e of the energy fun
tionG(N; q; h) in an extended �eld range is shown inFig. 10 for the ground state and 
ompeting states.Ea
h 
urve 
orresponds to the minimum of G(N; q; h)with respe
t to q at �xed h and N and is markedby its value of N . We also show the �rst six latti
e
on�gurations that are realized with de
reasing the�eld. The inset in the �gure blows up the low-�eldregion. We 
an see that many latti
e 
on�gurations
ompete for the ground state at small �elds and atseveral �elds (e. g., at h �; 0:19; 0:137; 0:105 : : :), oneor more latti
e 
on�gurations have energies very 
loseto the ground-state energy. We also note that thereare several extended �eld ranges where in the ground

state all layers are homogeneously �lled with vorti
es(N = 1) even in the region of the dilute vortex latti
e,e. g., 0:115 < h < 0:17 and 0:21 < h < 0:38.We see that an a

urate 
onsideration within bothLondon and Lawren
e�Donia
h models shows that theground state of the Josephson vortex latti
e at lowtemperatures does not give any preferen
e to the lat-ti
es aligned with the layers. Therefore, for equilib-rium �eld dependen
es we 
annot expe
t to observeany strong features at the mat
hing �elds of these lat-ti
es, B(1;0)(N) and B(1;1)(N) given by Eq. (43). Nev-ertheless, 
lear 
ommensurability os
illations have beenobserved experimentally in underdoped YBCO in irre-versible magnetization [28; 29℄ and nonlinear resistiv-ity [30℄. The period of these os
illations 
orresponds tothe �elds B(1;0)(N), indi
ating that in this material, thealigned latti
e (1; 0) o

urs to be preferable for somereason. We note that in real materials, due to smalldi�eren
es between the energies of di�erent 
on�gura-tions, aligned latti
es 
an be sele
ted by external fa
-tors, su
h as intera
tion with 
orrelated disorder (twinboundaries or dislo
ations) or the sample surfa
e. Wealso see in what follows that the aligned latti
e with in-di
es (1; 0) is favored by thermal �u
tuations. Finally,we mention the work of Ikeda and Isotani [64℄, whoperformed similar analysis of the ground-state 
on�gu-rations for the �eld applied along the layers within thelowest Landau level approximation.4.3. Properties of metastable states in theLondon modelJosephson vorti
es 
an slide easily along the layers,but there is a huge barrier for the motion a
ross the lay-ers. This property makes it di�
ult to equilibrate thelatti
e. It also leads to the appearan
e of a very largenumber of metastable states. The properties of thesestates have been 
onsidered in Refs. [57; 58℄. Systema-ti
ally, metastable states at a �xed 
-axis period 
an besampled by �rst slowly 
ooling down the super
ondu
-tor at a �xed magneti
 �eld and then in a se
ond stepde
reasing the magneti
 �eld at a low temperature [58℄.We assume that the prepared starting 
on�guration isthe aligned latti
e. As the 
-axis period N is lo
kedby the layers, the latti
e stret
hes along the layers withlowering the �eld, i. e., the ratio r = b=a de
reases.During stret
hing, these �xed-N metastable states gothrough a sequen
e of nontrivial stru
tural transforma-tions. In the London regime, the aligned 
on�gurationbe
omes unstable at r0 � 1:51=(2�) � 0:24 [57℄. Thisinstability is driven by the repulsion between neighbor-ing vorti
es in the verti
al sta
k. At low r < r0, the pa-532
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Fig. 10. Field dependen
e of the energy fun
tion G(N; q; h) for the ground state and 
ompeting states. Ea
h 
urve 
orre-sponds to the minimum of G(N; q; h) with respe
t to q at �xed h and N . The 
urves are marked by the value of N . Latti
e
on�gurations in s
aled 
oordinates are shown at six marked �elds. The inset illustrates 
ompetition between di�erent
on�guration at smaller �eldsrameter q 
ontinuously de
reases starting from 1=2 tolower values. We found that the layeredness stabilizesthe aligned stru
tures: the 
riti
al ratio de
reases to0:231 at N = 3 and to 0:224 at N = 2. It is importantto note that the shear instability o

urs in the groundstate only for N = 1 (we 
onsider this stru
tural phasetransition in detail below). At higher values of N , thisinstability only o

urs when the state for this given Nis metastable with respe
t to other values of N . Thisinstability is 
onsidered in detail below.The statisti
s of metastable states has been ex-plored in detail in Ref. [58℄, where the similarity tothe phyllotaxis phenomenon in biologi
al systems hasbeen pointed out. For every r, we 
an �nd all lo
alminima qi(r) of the energy fun
tion G(r; q) with re-spe
t to q and plot all these minima in the qr plane

(see Fig. 11). The obtained pattern is quite pe
uliar.At r > r0, the only minimum is at q0(r) = 1=2. Be-low r = r0, this traje
tory symmetri
ally splits intotwo. As r de
reases further, many more minima ap-pear forming a 
omplex hierar
hi
al stru
ture. Thepattern 
an be viewed as a series of �quasibifur
ations�o

urring near rational values of q. �Quasibifur
ation�
orresponds to the appearan
e of a new bran
h belowa 
ertain value of r in the vi
inity of the old bran
h.The bran
hes turn at the points (q(m;n); r(m;n)) 
orre-sponding to ground states. The evolution of the initialstate is des
ribed by the two main traje
tories sym-metri
ally split from q = 1=2. The traje
tory withq > 1=2 �quasi-bifur
ates� at q = Fj=Fj+1 where Fjare the Fibona

i numbers and approa
hes the �goldenratio� (p5 � 1)=2 � 0:618 as r ! 0. It goes through533
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Fig. 11. Levitov's hierar
hi
al plot of metastable statesin the qr plane [58℄ (in this plot, q is sele
ted within theinterval [0:5; 1℄). Ea
h dotted 
urve is obtained fromthe lo
al minima of the fun
tion GL(r; q) with respe
tto q at a �xed r. New bran
hes appear as a result of�quasibifur
ations�. Ea
h �quasibifur
ation� is asso
i-ated with a rational number. The bran
hes turn at thepoints (q(m;n); r(m;n)) 
orresponding to ground states(marked by squares and labelled by the indi
es mn inthe plot)ground states with the indi
es also des
ribed by the Fi-bona

i sequen
e, (m;n) = (Fj+1; Fj). Unfortunately,these ex
iting predi
tions have never been veri�ed ex-perimentally be
ause there is no dire
t way to probethe stru
ture of the Josephson vortex latti
e.4.4. Elasti
ity of a dilute Josephson vortexlatti
eJosephson vorti
es easily slide along the layers butmotion a
ross the layers is strongly suppressed by in-trinsi
 pinning from the layers. Due to the intrinsi
pinning, z-axis �u
tuations of the vortex lines o

urvia kink formation. In moderately anisotropi
 layeredsuper
ondu
tors, su
h as YBCO, in whi
h the 
-axis 
o-heren
e length is larger than or 
omparable with the in-terlayer spa
ing d, the intrinsi
 pinning potential V (uz)
an be des
ribed as a 
osine fun
tion of the z-axis vor-tex displa
ements V (uz) = �V0 
os(2�uz(x)=d). Butsu
h des
ription be
omes inadequate in strongly lay-ered materials, where the stru
ture of kinks is verysimilar to the stru
ture of a pan
ake vortex.In strongly layered materials at low temperatures,we 
an negle
t kink formation and take only in-planelatti
e deformations u(r) � uy(r) into a

ount (planar-

�u
tuations model). In this 
ase, we 
an derive thenonlo
al elasti
 energy in the k-spa
e asFel = 12 Z d3k(2�)3 �� �
11(k)k2y + 
44(k)k2x + 
66k2z� ju(k)j2 (59)with the elasti
 moduli
66 = Bx�0(8�)2�2

 ; (60)
11(k) = B2x=4�1+�2abk2z+�2
 �k2y+k2x�� Bx�0(8�)2�ab�
 ; (61)
44(k) = B2x=4�1 + �2abk2z + �2
 �k2y + k2x� ++ Bx�0(4�)2�ab�
 ln 1dqa�2z + (
kx=�)2 : (62)While the tilt [
44(k)℄ and 
ompression [
11(k)℄ mod-uli are not sensitive to the exa
t latti
e stru
ture, theformula for the shear modulus 
66 is valid only for per-fe
t mat
hing between the Josephson vortex latti
e andlayered stru
ture, whi
h is a
hieved at mat
hing �elds(42). For a general latti
e shown in Fig. 6a we 
anderive a more general expression for 
66 using repre-sentation (48)�(49) for the latti
e energy [57℄ and therelation between latti
e deformation and 
hange of theparameter q, Æq = r du=dz,
66 = Bx�0(8�)2 �2

 g66(r; q) (63)withg66(r; q) = 4r2 �2�q2GL(r; q) = �(4�)2 r2 �� 1Xl=1 
os(2�ql) 
h(2�rl)� sin2(2�ql)� 1(
h(2�rl)� 
os(2�ql))3 l sh(2�rl):This formula reprodu
es the result in (60) for the 
om-mensurate 
on�gurations (r; q) = (r(n;m); q(n;m)). Italso des
ribes instability of the aligned 
on�guration(q = 1=2) at r � 0:24 [57℄.The softest mode in the planar model 
orre-sponds to shearing between neighboring planar arraysof Josephson vorti
es. The harmoni
 approximationbreaks for this mode �rst. The simplest extension ofthe linear elasti
 energy that des
ribes strong interpla-nar �u
tuations amounts repla
ing the 
ontinuous dis-pla
ement �eld u(r) by the displa
ement of the planar534
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e in layered super
ondu
torsarrays uj(x; y) � u(x; y; jb) and repla
ing the shearterm in the energy by the nonlinear intera
tion termZ d3r
662 �dudz�2 !! Z d2r a2
66(2�)2 bXj �1� 
os�2�uj+1 � uja �� :Su
h an extension has been used to study the strong-�u
tuation region [65℄.5. DENSE LATTICE, Bx > �0=2�
d2The distan
e between Josephson vorti
es de
reasesas the magneti
 �eld in
reases, and at the �eld B �� B
r = �0=2�
d2 = B
d2=2� be
omes of the order ofthe vortex-
ore size. In 
ontrast to the Abrikosov vor-tex latti
e, for whi
h overlap of the vortex 
ores marksthe disappearan
e of super
ondu
tivity, for the Joseph-son vortex latti
e this �eld just marks a 
rossover to anew regime, the dense Josephson vortex latti
e. Theexisten
e of this regime was pointed out by Bulaevskiiand Clem [25℄. In the dense Josephson vortex latti
e,the gauge-invariant phase di�eren
e is a smoothly in-
reasing fun
tion of distan
e and the Josephson 
ou-pling energy 
an be treated as a small perturbation.This allows for the following quantitative des
ription.5.1. Very high �elds: Quantitative des
riptionusing an expansion in the Josephson 
ouplingAt high �elds Bx > B
r, vorti
es homogeneously �llall the layers. This means that all layers are equivalentand the in-plane latti
e period is ~a = 2�=h (see Fig. 12).When the strong inequality Bx � B
r (h � 1) is sa-tis�ed, Eq. (54) for the phases 
an be solved using anexpansion with respe
t to the Josephson 
urrents. In
z y a d
Fig. 12. S
hemati
 distribution of 
urrents in the denseJosephson vortex latti
e. The 
ir
les mark the 
entersof the Josephson vorti
es

the zeroth order, we 
an 
onstru
t a regular latti
e withan arbitrary translation from layer to layer by using theform �(0)n = �n(n� 1)2 :This 
orresponds to the gauge-invariant phase di�er-en
e '(0)n;n+1 = �n+ h�y;i. e., the planar latti
es in the neighboring layers areshifted by the fra
tion q = �=2� of the in-plane latti
espa
ing ~a. In the �rst order, we obtainr2�y�(1)n + sin (�n+ h�y)� sin (�(n� 1) + h�y) = 0whi
h gives�(1)n (�y) = 1h2 [sin (�n+ h�y)� sin (�(n� 1) + h�y)℄ :Substituting this solution in (53), we obtain the energyper unit volume up to the se
ond order with respe
t tothe Josephson 
oupling,f�(�; h) = "J
d2 �1� 1� 
os�2h2 � : (64)We 
an immediately see that the minimum energyfmin(h) = ("J=
d2)(1�1=h2) is a
hieved at � = �, 
or-responding to the triangular latti
e shown in Fig. 12.The phase distribution in the ground state is given by�n(�y) � �n(n� 1)2 + 2(�1)nh2 sin (h�y) : (65)From this solution, we 
an re
over the distributions ofthe in-plane and Josephson 
urrentsjy;n(y) � �2(�1)nh 
jJ 
os�2�dBxy�0 � ;jz;n(y) � �(�1)njJ �� sin��4(�1)nh2 sin�2�dBxy�0 �+ 2�dBxy�0 � ;and a weak modulation of the in-plane �eldBx(y) � Bx � (�1)n�20Bx(2�d�
)2 
os�2�dBxy�0 � :A s
hemati
 distribution of the 
urrents is shown inFig. 12.535
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e 
lose to the 
rossover region.Stru
tural phase transitionWhen the magneti
 �eld approa
hes the 
rossover�eld �0=(2�
d2), the perturbative approa
h of the pre-vious se
tion be
omes insu�
ient and we have to obtaina full solution of nonlinear equation (54). The generalsolution for the latti
e with an arbitrary phase shift �
an be written as�n(�y) = �n(n� 1)2 + g ��y + �nh � ; (66)where g(�y) is a periodi
 fun
tion, g (�y + 2�=h) = g(�y),that obeys the equationd2gd�y2 + sin�g ��y + �h�� g (�y) + h�y��� sin�g (�y)� g ��y � �h�+ h�y � �� = 0: (67)The redu
ed energy �f � f�
d2="J 
an also be writtenin terms of g(�y):�f = 2�=hZ0 hd�y2� (12 �dgd�y�2 ++ 1� 
os hg ��y + �h�� g (�y) + h�yi) : (68)Equation (67) does not have an analyti
 solutionand has to be solved numeri
ally. Latti
e 
on�gura-tions of the dense latti
e have also been investigatedusing the 
ode developed for the latti
e with a generalperiod N . Both approa
hes give identi
al results. Nu-meri
al investigation shows that the triangular latti
ewith � = � gives the ground state for h > 1:332. Ath � 1:332, the system has a se
ond-order phase tran-sition to a lower-symmetry latti
e (see latti
e stru
-tures for h = 1:35 (a) and h = 1:2 (b ) in Fig. 10).The �eld dependen
e of � and the 
orresponding lat-ti
e shift q are shown in Fig. 13. Ikeda and Isotani [64℄found that within the lowest Landau level approxima-tion, this stru
tural phase transition o

urs at a some-what higher value, h � 1:4.In Fig. 14, to study the validity range of the high-h approximation in the previous se
tion, we plot the
omputed �eld dependen
e of the redu
ed energy to-gether with its high-�eld asymptoti
s, derived in theprevious se
tion. It 
an be seen that the perturbativeapproa
h gives a good approximation for the energydown to h � 2.
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Fig. 13. Field dependen
e of the phase shift � and the
orresponding latti
e shift q for the dense Josephsonvortex latti
e. At h � 1:332, the latti
e experien
es a
ontinuous stru
tural phase transition
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Fig. 14. Field dependen
e of the redu
ed energy forthe dense Josephson vortex latti
e. The dashed lineshows the high-�eld asymptoti
 behavior. The arrowmarks the position of the stru
tural phase transition ath � 1:3325.3. Elasti
ity of the dense latti
eIn this se
tion, we 
onsider the deformation en-ergy of the dense Josephson vortex latti
e in the limith = 2�
d2Bx=�0 � 1. In parti
ular, this energy servesas a starting point for the analysis of �u
tuations. Wefollow the approa
h used by Korshunov and Larkin [66℄.The starting point of the analysis is again the redu
edLLD energy in the phase approximation (53), whi
h wenow rewrite for the general 
ase of the phase dependingon both redu
ed 
oordinates �r � (�x; �y) = r=
d:F� = E0Xn Z d2�r�� "12 �d�nd�r �2 � 
os (�n+1 � �n + h�y)#: (69)536
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e in layered super
ondu
torsThe ground-state phase distribution is given byEq. (65). We now 
onsider small deformations of thelatti
e and split the total phase into a smooth part vnand the part ~�n rapidly os
illating in the y dire
tion:�n(�r) = �n(n+ 1)2 + vn(�r) + ~�n(�r); (70)where we assume that dvn=d�y � vn and ~�n � 1. Be-
ause the smooth part of the gauge-invariant phase dif-feren
e is given by h(�y+(vn+1 � vn) =h)+�n, the quan-tity un = � (vn+1 � vn) =h represents a lo
al latti
edispla
ement. Substituting representation (70) in theenergy (69), expanding with respe
t to ~�n, and drop-ping rapidly os
illating terms, we obtainF� � E0Xn Z d�r2412  d~�nd�y !2 + 12 �dvnd�r �2 ++ �~�n+1 � ~�n� sin (vn+1 � vn + h�y + �n)35 : (71)As ~�n rapidly os
illates only in y dire
tion, we keeponly its �y derivative. Minimizing this energy with re-spe
t to ~�n gives~�n � (�1)n sin (vn+1�vn+h�y)+ sin (vn�vn�1+h�y)h2 :Substituting this solution in Eq. (71) and averagingwith respe
t to �y, we �nally obtain the 
oarse-grainedenergy of the deformed dense Josephson vortex lat-ti
e [69℄, whi
h we write in real units:F� � E02 Xn Z dr�� "�dvndr �2 � 
os (vn�1 + vn+1 � 2vn) + 1(�Jh)2 # : (72)This energy des
ribes the phase �u
tuations in a largein-plane magneti
 �eld. The �rst term is just theusual in-plane phase sti�ness energy. In the elasti
itytheory language, this term represents the 
ompression(dvn=dy) and tilt (dvn=dx) 
ontributions. The se
ondterm represents the shearing intera
tions between theJosephson vortex arrays in neighboring jun
tions. Itoriginates from the Josephson 
oupling energy and 
anbe viewed as the e�e
tive Josephson 
oupling renormal-ized by the in-plane magneti
 �eld. Roughly, we 
anstate that as the magneti
 �eld in
reases, the e�e
tiveJosephson energy de
reases as 1=h2 and the e�e
tiveJosephson length �Jh in
reases linearly with h,�Jh = �Jh = 2�
2d3Bx�0 : (73)

For the deformation slowly 
hanging from layer tolayer, we 
an expand the 
osine in Eq. (72) and obtainthe harmoni
 elasti
 energy of the dense Josephson vor-tex latti
e in terms of smooth phase deformations:F��el� E02 Xn Z dr�� "�dvndr �2 + (vn�1 + vn+1 � 2vn)22(�Jh)2 # == E02d Z d2kk(2�)2 �=dZ��=d dkz2� �� "k2k + 2 (1� 
os kzd)2(�Jh)2 #jvkj2: (74)Using the relation between the phase perturbationand latti
e displa
ementsvk = � huk�J (exp(ikzd)� 1) ; (75)we 
an rewrite the elasti
 energy in a more traditionalway, via latti
e deformationsF��el = 12 Z d2kk(2�)2 �=dZ��=d dkz2� �� h
11(kz)k2k + 
66~k2zi jukj2 (76)with the elasti
 
onstants
11(kz) = B2x4� 1~k2z�2ab ; 
66 = �2032�3d2
4�2ab ;where we use the notation ~kz � 2 sin (kzd=2) =d. Wenote that in our 
ase, the nonlo
al tilt modulus 
44(kz)is identi
al to the 
ompression modulus 
11(kz) andthey 
oin
ide with elasti
 moduli within the anisotropi
London model (61) and (62) in the limit ~kz�ab �� 1; kx�
. These elasti
 energies (74) and (76) 
anbe used to study weak �u
tuations and weak pinningof the dense Josephson vortex latti
e. The shear mod-ulus is �eld independent in the dense-latti
e regime. It
an be veri�ed to mat
h the dilute-latti
e result (60)at the 
rossover �eld.5.4. Latti
e 
on�gurations and magneti
os
illations in �nite-size samplesIn this se
tion, we 
onsider dense-latti
e 
on�gu-rations in �nite-size samples. This study is a
tually537
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os
illations in small-size BSCCO mesas with lateralsizes 2�20 �m [44�48℄. Su
h small-size mesas behaveas sta
ks of intrinsi
 Josephson jun
tions with strongindu
tive 
oupling between the neighboring jun
tions.The detailed analyti
 theory des
ribing the magneti
�eld dependen
es of latti
e 
on�gurations and the 
rit-i
al 
urrent has been developed in Ref. [67℄. Latti
estru
tures also have been extensively explored numeri-
ally in [45; 47; 68; 69℄, and both approa
hes give iden-ti
al results. In a small-size sample, the latti
e stru
-ture is determined by two 
ompeting intera
tions: theintera
tion with boundaries, whi
h favors an alignedre
tangular 
on�guration, and the bulk shearing inter-a
tion between neighboring layers, whi
h favors a tri-angular 
on�guration. Depending on the mesa width Land the magneti
 �eld, two very di�erent regimes 
anbe realized. In the large-size regime, the vortex lat-ti
e is triangular and is only deformed near the edges.In the small-size regime, the latti
e stru
ture expe-rien
es a periodi
 series of phase transitions betweenre
tangular and triangular 
on�gurations. The trian-gular 
on�gurations in this regime are realized only innarrow regions near magneti
 �eld values 
orrespond-ing to an integer number of �ux quanta per jun
tionwhere the intera
tion with edges vanishes. The typi-
al width of the mesa that separates these two regimesis given by the length �Jh in Eq. (73), whi
h is pro-portional to the applied magneti
 �eld. Hen
e, the
rossover from one regime to another is driven by themagneti
 �eld and the 
orresponding 
rossover �elds
ale is BL = B
rL=�J = L�0=(2�
2d3); for Bx > BLthe small-size regime is realized. The size��eld phasediagram is shown in Fig. 15. The regimes are 
har-a
terized by distin
tly di�erent os
illating behavior ofthe 
riti
al 
urrent as a fun
tion of the magneti
 �eld.In the small-size regime, the 
riti
al 
urrent os
illateswith the period of one �ux quantum per jun
tion, sim-ilar to a single jun
tion. In the large-size regime, dueto the triangular latti
e ground state, the os
illationperiod is half the �ux quantum per jun
tion.The quantitative study of the des
ribed behavior isbased on redu
ed energy (69), whi
h has to be rewrit-ten for the �nite-size 
ase 0 < �y < �L � �Ly and alsoassuming that the system is uniform along the �elddire
tion, i. e., R d�r ! �Lx R �L0 d�y. This energy has tobe supplemented with the boundary 
onditions at theedges, d�n=d�y = 0 for �y = 0; �L. The important pa-rameter in the 
ase of a �nite-size sample is the totalmagneti
 �ux through one jun
tion, � = BxdL, whi
his 
onne
ted with the redu
ed magneti
 �eld by therelation h�L = 2��=�0. In the dense-latti
e limit, we

again use the representation in Eq. (70) 
ontaining thesmooth phase vn, and the rapidly os
illating 
ompo-nent ~�n. It is natural to assume that the intera
tionswith the boundaries preserve the alternating nature ofthe vortex latti
e. In this 
ase, symmetry allows takingthe smooth phase in the formvn(�y) = �n+ (�1)nv(�y); (77)where � des
ribes the translational displa
ement of thelatti
e and v des
ribes latti
e deformations with re-spe
t to the triangular latti
e. In parti
ular, it 
an beshown that the maximum value of v(�y), vmax = �=4,des
ribes the re
tangular latti
e, i. e., identi
al �n inall layers up to a 2� phase shift. The rapid phase 
or-responding to the smooth phase (77) be
omes ~�n(�y) �� (�1)n2 
os(2v) sin (�+ h�y) =h2. Averaging with re-spe
t to the rapid os
illations for su
h vn(�y) gives theredu
ed energy f� = F��J=(NLxE0) per layer and perunit length along x:f� � � 1h �sin (2v0) 
os�� sin (2vL) 
os �h�L+���++ 12 �LZ0 d�y "�dvd�y�2 � 1 + 
os(4v)h2 # ; (78)where the bulk part dire
tly follows from Eq. (72) forgeneral vn(�y). Varying this energy with respe
t to v(�y),we obtain that it obeys the stati
 sine-Gordon equationd2vd�y2 � 2h2 sin (4v) = 0 (79)with the boundary 
onditionsdvd�y (0) = � 2h 
os(2v0) 
os�;dvd�y (L) = � 2h 
os(2vL) 
os �h�L+ �� : (80)Substituting the solution of these equations in energyfun
tional (78) gives the energy as a fun
tion of the lat-ti
e shift �, f�(�). The minimum of the energy withrespe
t to � gives the ground state for given h and �L.Higher-energy states at other values of � typi
ally 
arrya �nite 
urrent. The total Josephson 
urrent �owingthrough the sta
k is proportional to df�=d�. Takingderivative of fun
tional (72) with respe
t to � and as-suming that at every � it is minimized with respe
t tov(u), we obtain the total 
urrent in units of jJ�JLx:J(�) = 1h �� �sin (2v0) sin�� sin (2vL) sin �h�L+ ��� : (81)538
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Fig. 15. Size�magneti
 �eld phase diagram of the 
on�ned Josephson-jun
tion sta
k. The dashed line separates the large-size and small-size regimes. Bla
k lines 
orrespond to integer �ux quanta per jun
tion. Shaded areas mark regions of there
tangular-latti
e ground state. Representative latti
e 
on�gurations in two points are illustrated by plots of os
illatingJosephson 
urrents in two neighboring layers. Small ellipses mark the 
enters of the Josephson vorti
esAn important 
onsequen
e of this equation is that anonzero 
urrent exists only if the surfa
e deformationsv0 and vL are �nite.The general solution of Eqs. (79) and (80) 
an bewritten in terms of the ellipti
 integrals, and an elab-orate analyti
 analysis is possible [67℄. Here, we sum-marize the most important results of this analysis fortwo limit 
ases.In the large-size regime, L � �Jh or Bx � BL,the smooth alternating deformation v(�y) has a solutionin the form of two isolated surfa
e solitons [67℄. Forexample, near the edge �y = 0, su
h a soliton solutionde
aying from the surfa
e into the balk is given by thewell-known formula for the sine-Gordon kinktg v = tg v0 exp��2p2�y=h� ; (82)where the boundary value v0 
an be found fromthe boundary 
ondition (80), leading to tg (2v0) == p2 
os�. Using this solution, we 
an �nd the surfa
eenergy and surfa
e 
urrent for the edge �y = 0 as fun
-tions of the latti
e displa
ement �:fs(�) = 1p2h �1�p2 + 
os 2� � ; (83)js(�) = � 1p2h sin 2�p2 + 
os 2�: (84)The 2� periodi
ity of these results is a 
onsequen
e ofthe triangular latti
e stru
ture: the 
hange of � by �


orresponds to the verti
al latti
e displa
ement by onelayer. A similar solution is realized at the opposite edge�y = �L. Its energy and 
urrent 
an be obtained from theabove results using the substitution �! �+h�L. For awide sta
k, we 
an negle
t the intera
tion between thesolitons, and the total Josephson 
urrent is then givenby the sum of two independent surfa
e 
urrents,J(�) = js(�) + js(�+ h�L):The 
riti
al 
urrent J
 
an be found as a maximum ofJ(�) with respe
t to �, whi
h gives the following resultin real units:J
(B) = JJ �02�dLBxF �2�dLBx�0 � ; (85)where JJ = jJLLx is the maximum Josephson 
ur-rent through the sample at zero �eld, and the os-
illating fun
tion F(�) has the period � and in therange 0 < � < �=2 
an be approximated by F(�) �� 0:128+0:888 
os(�)+0:021 
os(3�) . We 
an see thatin this regime, the produ
t BxJ
 has the periodi
ity ofhalf the �ux quantum per jun
tion and rea
hes max-ima at the points � = dLBx = j�0=2 with BxJ
;max �� 1:035JJ�0=(2�dL). This 
orresponds to the low-�eld part of the plot in Fig. 16. All other propertiesof the sample should also os
illate with the period ofhalf the �ux quantum. Su
h os
illations of the �ux-�owresistivity in BSCCO mi
ro-mesas were �rst dete
ted539
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Fig. 16. Illustration of the os
illating magneti
 �eld de-penden
e of the 
riti
al 
urrent for L = 4�J . Crossoverbetween the �0=2 and �0 periodi
ities is seen ath�L = Bx=BL � 1. Shaded areas show the regionsof stable re
tangular latti
eexperimentally in Ref. [44℄ and later 
on�rmed by sev-eral experimental groups.In the small-size regime L < �Jh or Bx > BL, theintera
tion with edges dominates. As a 
onsequen
e,extended regions of the re
tangular latti
e appear inthe phase diagram (see Fig. 15). The energy of there
tangular latti
e, v = ��=4, 
oin
ides with the well-known result for a single jun
tionfre
t(�) = � 2h sin�hL2 � sin��+ hL2 � (86)and has the minimum fre
t = �2 jsin (hL=2)j =h at � == �hL=2 + Æ�=2 with Æ = sign [sin (hL=2)℄. An a
-
urate analysis [67℄ shows that the re
tangular latti
eis stable with respe
t to small deformations at � == �h�L=2+�=2 in the regions jh�L=2��(k+1=2)j < 1=4only if the inequality��sin �h�L=2��� < tg�p2�L=h� =p2 (87)is satis�ed. These regions are plotted in the phase di-agram in Fig. 15. This means that the re
tangularlatti
es �rst appear in the ground state at the pointsh�L = (k + 1=2)2� for �L=h � l1 = ar
tan �p2� =p2 �� 0:675. This 
orresponds to the dashed line shown inthe phase diagram in Fig. 15. But if L=h is only slightlysmaller than this value, the re
tangular latti
e be
omesunstable as the 
urrent in
reases and the 
on�gurationat the 
riti
al 
urrent still 
orresponds to the deformedlatti
e. The a

urate analysis shows that there is an-other typi
al value of the ratio L=h, L=h = l2 � 0:484,below whi
h the re
tangular latti
e remains stable upto the 
riti
al 
urrent.

In the region h� �L, the re
tangular latti
e is real-ized in the most part of the phase diagram ex
ept nar-row regions in the vi
inity of the integer-�ux quantalines h�L=2� = �=�0 = k, where the intera
tion withthe edges vanishes. Swit
hing between the re
tangularand triangular latti
es in the ground state o

urs via a�rst-order phase transition [67℄ at the transition �eldsdetermined by the equation����sin�ht �L2 ����� = 32 �Lht : (88)At high �elds, the 
riti
al 
urrent approa
hes the 
las-si
al Fraunhofer dependen
e for a single small jun
tion,JF (�) = JJ j sin(��=�0)j=j��=�0j. Two important de-viations persist at all �elds and sizes: (i) Near thepoints � = k�0, due the phase transitions to the tri-angular latti
e, the 
riti
al 
urrent never drops to zeroand a
tually always has small lo
al maxima; (ii) Awayfrom the points � = k�0, the 
riti
al 
urrent is rea
hedat the instability point of the re
tangular vortex latti
eand it is always somewhat smaller than the �Fraun-hofer� value JF (�).In the region B � BL, the 
rossover between thetwo des
ribed regimes takes pla
e. In the os
illationsof the 
riti
al 
urrent, this 
rossover manifests itself bybreaking the �0=2 periodi
ity: the maxima at the half-integer �ux-quantum points � = (k + 1=2)�0 progres-sively be
ome larger while the maxima at the integer�ux-quantum points � = k�0 be
ome smaller. This
rossover behavior of the 
riti
al 
urrent is illustratedin Fig. 16. Su
h behavior was indeed observed experi-mentally in very narrow BSCCO mesas [45; 47; 48℄.6. THERMAL FLUCTUATIONSIn this se
tion, we 
onsider thermal �u
tuations ef-fe
ts for the Josephson vortex latti
e. Con�nement ofthe vortex 
ores in between the layers leads to strongsuppression of the vortex motion a
ross the layers,whi
h 
an only o

ur via formation of kinks. There-fore, as a �rst step, we 
an negle
t these energy-
ostlydispla
ements and 
onsider only planar �u
tuationsof vorti
es along the layers. This simple model de-s
ribes �u
tuation behavior in the most part of the�eld�temperature phase diagram, but it o

urs to beinsu�
ient for des
ribing the melting transition of thelatti
e. In general, thermal e�e
ts for Josephson vor-ti
es are mu
h weaker than for a pan
ake-vortex lat-ti
e, and phase transformations are expe
ted only inthe vi
inity of the transition temperature. On the other540
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e in layered super
ondu
torshand, due to the intrinsi
 pinning potential and involve-ment of kink ex
itations, the overall behavior near themelting line is rather 
ompli
ated and, in spite of quiteextensive theoreti
al e�ort [65; 66; 70�74℄ and numeri-
al simulations [75; 76℄, there is no 
lear 
onsensus onthe nature of the melting transition and stru
ture ofthe phase diagram for the magneti
 �eld aligned withthe dire
tion of the layers.6.1. Thermal e�e
ts for the dilute Josephsonvortex latti
e: the intermediate phase problemA standard �rst step to study thermal �u
tuatione�e
ts is to evaluate the mean-squared lo
al �u
tuationdispla
ement from elasti
 energy (59)4):
u2� = Z d3k(2�)3 T
11(k)k2y + 
44(k)k2x + 
66k2z : (89)Introdu
ing the redu
ed wave ve
tor ~k askx = kBZ~kx=p
; ky = kBZ~ky=p
;kz = kBZp
~kz ; (90)where kBZ =p4�Bx=�0 is the average wave ve
tor ofthe Brillouin zone, we rewrite this integral in a moreexpli
it form
u2� = (4�)2 kBZ�2
Tp
�0Bx Z d3~k(2�)3 24� 1~k2 � 14� ~k2y ++ 0� 1~k2 + ln b0=dq1 + �2~k2x1A ~k2x + ~k2z4 35�1with � � 1. Evaluating this integral yields
u2�a20 = 0:12Tb0pln (b0=d)"0 ; (91)where a0 = p
�0=Bx and b0 = p�0=
Bx are thetypi
al latti
e 
onstant in the y and z dire
tions. Fromthis result, we 
an obtain an estimate for the typi
altemperature at whi
h �u
tuations be
ome strong [65℄:Tf � b0pln (b0=d)"0(Tf ): (92)Unfortunately, this temperature is lo
ated very 
loseto T
, where we 
annot use the approximations un-derlying Eq. (59), e. g., negle
t thermal a
tivation of4) As in most theoreti
al papers, the temperature is measuredin energy units.

kinks and antikinks. We 
an 
on
lude that the modelof planar �u
tuations given by elasti
 energy (59) is notsu�
ient to des
ribe the melting of the Josephson vor-tex latti
e [65℄. The temperature s
ale in (92) is mu
hhigher than the 
orresponding temperature s
ale forthe pan
ake vortex latti
e [19℄, meaning that thermal-�u
tuation e�e
ts for the Josephson vortex latti
e aremu
h weaker than for the pan
ake vortex latti
e.We 
an estimate the typi
al temperature abovewhi
h kink formation strongly in�uen
es the �u
tua-tion displa
ements of the vortex lines. In an isolatedline, the typi
al distan
e between thermally ex
itedkinks is given byLkink = �kink exp(Ekink=T ); (93)where Ekink � d"0 ln(
d=�ab) is the kink energy. Usu-ally, it is assumed that the preexponential fa
tor �kinkis of the order of the in-plane 
oheren
e length �ab [72℄.Analysis of �u
tuations of the order parameter nearthe 
ore [77℄ gives a somewhat more a

urate estimate�kink � �abpT=d"0. Typi
al kx 
ontributing to �u
tu-ation displa
ement (89) 
an be estimated as kx � �=b0.Therefore, the kinks start to 
ontribute to thermal wan-dering if Lkink < b0. This gives an estimate for thetypi
al temperatureTkink = Ekink= ln(b0=�kink): (94)In the limit 
 > �ab=d, we obtainTkink = d"0(Tkink) ln(
d=�ab)ln(b0=�kink) : (95)It follows that even though this temperature is smallerthen Tf in (92), it is also lo
ated 
lose to the �u
tu-ation region near T
 and very slowly de
reases within
reasing the magneti
 �eld.The model of planar �u
tuation belongs to the uni-versality 
lass of the three-dimensional XY model, andhen
e the phase transition des
ribed by this model hasto be 
ontinuous. In spite of the insu�
ien
y of thismodel, this suggests that the melting transition for themagneti
 �eld applied along the layers may be
ome
ontinuous for su�
iently high anisotropy. It was in-deed observed experimentally in [78℄ and in [30℄ thatthe melting transition in YBCO be
omes 
ontinuouswhen the magneti
 �eld is aligned with the layers. Con-tinuous melting of the Josephson vortex latti
e also hasbeen observed in numeri
al simulations in [75℄. Thesimulation parameters in this work, however, 
orre-spond to the regime of dense latti
e, whi
h is 
onsideredbelow.541
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Crystal Smectic Liquid

Fig. 17. Possible phases for the �eld applied along thelayers. Grey level illustrates the average vortex den-sity. In the intermediate sme
ti
 phase suggested inRef. [72℄, density is modulated only in the dire
tionperpendi
ular to the layersA des
ription of the �u
tuating Josephson vorti
estaking kink�antikink formation into a

ount is mu
hmore 
ompli
ated problem and possibilities for ana-lyti
 progress are quite limited. General s
enarios ofJosephson-vortex-latti
e melting have been dis
ussedin [72℄. It was argued there that an aligned latti
e maymelt via an intermediate sme
ti
 phase, in whi
h theaverage vortex density is modulated only in the dire
-tion perpendi
ular to the layers but no order is pre-served in the dire
tion of the layers, as illustrated inFig. 17. The density modulation period has to be equalto the integer number of layers. The developed Landautheory of the liquid-to-sme
ti
 transition suggests thatthis transition has to be of the se
ond order. Stati
 anddynami
 properties of the intermediate sme
ti
 phasehave been des
ribed in detail. In parti
ular, it was ar-gued in [75℄ that this phase is 
hara
terized by a �nitebut very large tilt modulus, 
orresponding to a verysmall transversal sus
eptibility �z = Bz=Hz, and byvery small in-plane resistivity. Both these propertiesappear due to the thermally a
tivated �superkink� ex-
itations, in whi
h one vortex is moved a
ross the layersby one sme
ti
 period. While the density modulationremains stati
 and oriented parallel to the layers, theseex
itations may fa
ilitate tilting of the magneti
 indu
-tion with respe
t to the layers and �ux motion in thez-axis dire
tion. In spite of its physi
al appeal, thetheory in [72℄ is not quantitative. It does not predi
tlo
ations of the transitions in the �eld�temperatureplane, their thermodynami
 signatures, and the widthof the intermediate-phase region. The very existen
e ofthe intermediate sme
ti
 phase has been not rigorouslyproven. Alternatively, the 
rystal may melt dire
tlyinto the liquid via a �rst-order phase transition.A more quantitative study based on the density-fun
tional theory was performed in [74℄. The intrinsi
pinning potential in this study was modeled by the 
o-sine fun
tion and its strength was used as an adjustingparameter. It was found that the sme
ti
 phase ex-ists for a su�
iently strong periodi
 potential only for

one type of aligned latti
e, whi
h in our notation 
or-responds to (m;n) = (1; 0), and with one empty layerbetween the layers �lled with Josephson vorti
es, i. e.,with N = 2. A

ording to the analysis in Se
. 4.2, su
ha latti
e is realized in the ground state within the �eldinterval [0:8 � 0:98℄�0=(2�
d2). The melting s
enariovia the intermediate sme
ti
 phase is most probable inthis �eld range.6.2. Elimination of the latti
e rotationaldegenera
y by thermal �u
tuationsThe dilute latti
e at small �elds is approximatelydegenerate with respe
t to ellipti
 rotations, as was dis-
ussed in Se
. 4. This degenera
y is partially eliminatedby the intrinsi
 pinning potential and by the 
orre
tionsto the intervortex intera
tions due to the dis
retenessof the layered stru
ture. The latter e�e
t be
omes no-ti
eable only at high magneti
 �elds approa
hing the
rossover �eld. Be
ause the Josephson vorti
es mainly�u
tuate along the layer dire
tion, the �u
tuation 
or-re
tion to the free energy depends on the latti
e ori-entation with respe
t to the layers and also eliminatesthe ellipti
 degenera
y. Therefore, the Josephson vor-tex latti
e at small �elds gives a physi
al realization ofa system in whi
h the ground state is highly degenerateat zero temperature and this degenera
y is eliminatedby thermal �u
tuations. Similar behavior is realized insome frustrated magneti
s and is known as �order as ane�e
t of disorder� [79℄. As a natural way to prepare theground state is to 
ool system in �xed �eld, it is impor-tant to understand how the ground-state 
on�gurationevolves with the temperature.In this se
tion, we 
onsider the orientation-depen-dent entropy 
orre
tion to the free energy. This allowsus to tra
e evolution of the ground-state 
on�gurationswith in
reasing �eld at �nite temperature. Qualita-tively, �u
tuations favor soft latti
es, with smaller elas-ti
 
onstants. We 
an then expe
t that the entropy 
or-re
tion favors the aligned latti
e (1; 0), be
ause for thislatti
e the shear deformations o

ur along the 
losed-pa
ked dire
tion.The orientation-dependent entropy 
orre
tion is de-termined by the short-wavelength latti
e deformations,and the long-wavelength elasti
 approximation in theprevious se
tion is not su�
ient. The elasti
 energyfor planar deformations in the whole Brillouin zone isgiven by Fel = Z d3k(2�)3 �JV L(k)2 ju(k)j2 (96)with542
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ondu
tors�JV L(k) = B2x4� ��XQ  (ky �Qy)2 + k2x1+�2ab(kz�Qz)2+�2
(ky�Qy)2 + �2
k2x �� Q2y1 + �2abQ2z + �2
Q2y! ; (97)where Q = (Qy; Qz) are the re
ipro
al-latti
e ve
tors.The �u
tuation 
orre
tion to the free energy is givenby ÆfT = �T2 1Z�1 dkx2� ZBZ dkydkz(2�)2 ln C�JV L(k) : (98)Cal
ulation of this 
orre
tion is des
ribed in detail inAppendix C. Combining the result of this 
al
ulationwith the London-limit presentation of the latti
e in-tera
tion energy (48), we represent the orientation-dependent part of the total free energy at �nite tem-perature in the formÆfa = Bx�0 "0
  GL � T"0r
Bx��0 ga! : (99)The numeri
ally 
omputed orientation-dependent 
or-re
tion ga(�; h) in the range 0:001 < h < 0:1 is welldes
ribed by ga(�; h) � g6(h) 
os(6�)withg6(h) � 0:01pln(514=h) : (100)The �u
tuations give the largest negative 
ontributionat � = 0, meaning that they indeed favor the alignedlatti
e (1,0).We 
ompare the orientation-dependent entropy 
or-re
tion with the 
orre
tion due to the layered stru
ture
onsidered in Se
. 4.2. We 
an see that these 
orre
-tions 
ompete: the �rst one favors the (1; 0) orientationwhile the se
ond one favors the (1,1) orientation. Theentropy 
orre
tion de
ays with de
reasing �elds aspBxand at small �elds always ex
eeds the �layeredness� 
or-re
tion, whi
h de
ays as B2x. We estimate that the �lay-eredness� 
orre
tion ex
eeds the �u
tuation 
orre
tionwhen Bx ex
eeds the temperature-dependent �eld s
aleBx;T = �02�
d2 " T=d"0pln(CT d"0=T )#2=3with CT � 2:6 � 104.

6.3. Flu
tuations and melting of the denseJosephson vortex latti
eUsing elasti
 energy (74), we 
an evaluate the mean-squared �u
tuation of the in-plane phase
�2n� � 
v2n� = dTE0 Z d2kk(2�)2 �=dZ��=d dkz2� 1k2k+ 8(�Jh)2 s4zwith sz(kz) = sin(kzd=2) and the latti
e displa
ementun = ��J (vn+1 � vn) =h:
u2� = dT�2JE0 Z d2kk(2�)2 �=dZ��=d dkz2� 4s2zk2k + 8(�Jh)2 s4z :Renormalization of the e�e
tive 
oupling is determinedby the averageD(vn�1 + vn+1 � 2vn)2E == dTE0 Z d2kk(2�)2 �=dZ��=d dkz2� 16s4zk2k + 8(�Jh)2 s4z :All above integrals diverge logarithmi
ally at large kk.This divergen
e has to be 
ut o� at kk � 1=�ab. Asusual for quasi-two-dimensional systems, the weak in-terlayer 
oupling 
uts o� the logarithmi
 divergen
e atsmall kk. Evaluating the integrals, we obtain
�2n� � T2�E0 ln��Jh�ab � ; 
u2� � T�2J�h2E0 ln��Jh�ab � ;D(vn�1 + vn+1 � 2vn)2E � 6 
�2n� � 3T�E0 ln��Jh�ab � :Flu
tuations be
ome strong and the harmoni
 approx-imation breaks down when D(vn�1 + vn+1 � 2vn)2E �� 1, 
orresponding to 
�2n� � 1=6 and 
u2� � a2=3with a = �J=h being the in-plane latti
e 
onstant. Thisgives the temperature s
aleTf = E0(Tf )ln (�Jh=�ab) = "0(Tf )d� ln (�Jh=�ab) : (101)As E0(0) � T
 (typi
ally, for BSCCO, E0(0) �� 250�300K), this temperature s
ale usually 
orre-sponds to temperatures 
lose to T
. It is somewhatlower than the 
orresponding temperature s
ale (92)for the dilute latti
e and even smaller than tempera-ture s
ale (95) for kink formation in the dilute latti
e.543
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uss the melting transition of the denselatti
e based on the energy (72) des
ribing weakly 
ou-pled two-dimensional systems. Behavior of su
h asystem has to be similar to that of the layered XYmodel [80℄ and a layered super
ondu
tor in zero mag-neti
 �eld [81℄. In the ordered phase of su
h systems,below the Berezinskii�Kosterlitz�Thouless temperaturefor a single layer, a weak interlayer 
oupling is alwaysrelevant, 
annot be treated as a small perturbation,and restores three-dimensional long-range order. Thetransition in su
h systems is expe
ted to be 
ontinuousand to o

ur slightly above the Berezinskii�Kosterlitz�Thouless transition of an isolated layer that o

urs atthe temperature TKT = �E0(TKT )=2. This is in spiteof the fa
t that the interplane �u
tuations a
tually be-
ome strong at the temperature (101), whi
h is signi�-
antly smaller than the transition temperature TKT inan isolated layer.The melting transition of the dense latti
e wasstudied numeri
ally in [75℄ using the frustrated XYmodel. The authors 
laimed that the melting tran-sition is 
ontinuous at high �eld and 
hanges to a�rst-order transitions when the �eld drops below B == �0=2p3
d2 � 1:8�0=2�
d2. It is not 
lear how uni-versal this �eld is. In prin
iple, it may be sensitive tothe kink energy, whi
h depends on the ratio 
d=�ab.Experimentally, an indi
ation of the melting tran-sition in the dense-latti
e regime was found in small-size BSCCO mesas in [46℄, where the temperature de-penden
e of magneti
 os
illations dis
ussed in Se
. 5.4was explored. It was found that in the �eld range0.6�0.8 tesla, the magneti
 os
illations of the �ux-�owvoltage rapidly de
rease with in
reasing temperatureand are 
ompletely suppressed by thermal �u
tuationsat temperatures � 4 K below the transition tempera-ture. 7. SUMMARYIn this review, we 
onsidered in detail the stati
properties of the Josephson vortex latti
e followingfrom the Lawren
e�Donia
h model in the Londonapproximation, whi
h mostly des
ribes properties ofsuper
ondu
tors in terms of the distribution of theorder-parameter phase. We reviewed the propertiesof an isolated vortex as well as the stru
ture andenergeti
s of the vortex latti
e in both dilute anddense regimes. In addition to standard properties, our
onsideration in
ludes quite subtle nontrivial e�e
ts,su
h as the in�uen
e of thermal �u
tuations on theorientation of the vortex latti
e. We did not tou
h on

dynami
 properties of the latti
e, whi
h have be
amea separate large �eld.A. E. K would like to thank L. N. Bulaevskii,M. Ta
hiki, and X. Hu for many useful dis
ussionsof theoreti
al issues and Yu. I. Latyshev, I. Kakeya,T. Hatano, S. Bending, V. K. Vlasko-Vlasov, A. Tono-mura, and A. A. Zhukov for the dis
ussions of rel-evant experimental data. A. E. K. is supported byUChi
ago Argonne, LLC, operator of Argonne NationalLaboratory, a U.S. Department of Energy O�
e of S
i-en
e laboratory, operated under 
ontra
t �DE-AC02-06CH11357. APPENDIX ACal
ulation of the nonlo
al line-tension energyof a single lineFor deformations with wave ve
tors jkxj � 1=�
,s
reening e�e
ts 
an be negle
ted and the energyvariation is determined by the phase part of en-ergy, whi
h we write using s
aled in-plane 
oordinates(�x; �y) = (x=
d; y=
d) asÆF � E0Xn Z d�x Z d�y �� �12 �rk�n�2 � 
os (�n+1 � �n) �� 12 �r�y�(0)n �2 + 
os��(0)n+1 � �(0)n �� ; (A.1)where �(0)n (�y) is the straight-vortex solution. The phaseof the deformed vortex obeys the equationr2k�n + sin (�n+1 � �n)� sin (�n � �n�1) = 0 (A.2)with the 
ondition �1(�x; �u(�x))� �0(�x; �u(�x)) = � de�n-ing the vortex 
ore and �u(�x) = u(x)=
d. In the elasti
limit jdu=dxj � 1, at distan
es smaller than the typi
alwavelength of deformation, the phase 
an be approxi-mately represented as�n(�x; �y) � �(0)n [�y � �u(�x)℄ :On the other hand, at large distan
es, we 
an use theLondon approximation in Eq. (A.2) and �nd the phaseusing the Fourier transformation. This gives the phaseperturbation �(1)(�k) = �(�k)� �(0)(�k) in the form�(1)(�k) � 2�i�kz�u(�kx)�k2 ; (A.3)544
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ondu
torswhere (�kx; �ky; �kz) = (
dkx; 
dky; dkz) and �k2 = �k2x ++ �k2y + �k2z . We use this result in a mixed (�kx; �y; �z)-re-presentation, whi
h is obtained by the inverse Fouriertransform of the above equations with respe
t to �yand �z, �(1)(�r; �kx) � �u(�kx)r�zK0(�kx�r) (A.4)with �r = (�y; �z).We split the total energy loss given by Eq. (A.1) intothe x-gradient and transverse parts, ÆF = Fx + Fzy .The x-gradient part,Fx = E02 Xn Z d�x Z d�y (r�x�n)2 ;
an be 
omputed by introdu
ing an intermediate s
ale1� R� 1=�kx that splits the integral into the two 
on-tributions, from small and large distan
es. The 
ontri-bution from �r = p�y2 + �z2 < R with �z = n � 1=2 isgiven byFx;< � E02 Z d�x�dud�x�2Xn ynZ�yn d�y �r�y�(0)n �2 ;where yn =pR2 � (n� 1=2)2. The quantityXn ynZ�yn d�y �r�y�(0)n �2 � �2 (lnR + Cy)is determined by the exa
t phase distribution in the
ore. Using the a

urate numeri
al solution, we esti-mate Cy � 0:93. The 
ontribution from the regionr > R is 
omputed using Eq. (A.4),Fx;> � E02 Z d�x Z�r>R d2�r (r�x�n)2 == E02 Z d�kx2� �k2xj�u(�kx)j2 Z�r>R d2�r �r�zK0(�kx�r)�2 :Computing the integralZ�r>R d2�r �r�zK0(�kx�r)�2 � ��ln 2�kx �R � 
E � 12� ;where 
E � 0:5772 is the Euler 
onstant, we obtainFx;> � �2E0 Z d�kx2� �k2x�ln 2�kx �R � 
E � 12� j�u(�kx)j2:Combining the parts Fx;< and Fx;>, we obtainFx = �2E0 Z d�kx2� �k2x�ln 2�kx � 
E � 12 + Cy��� j�u(�kx)j2: (A.5)

In the transverse partFxy � E0Xn Z d�x Z d�y �� �12 (r�y�n)2 � 
os (�n+1 � �n) �� 12 �r�y�(0)n �2 + 
os��(0)n+1 � �(0)n �� ;we repla
e �(0)n (�y; �z) with �(0)n (�y � �u(�x); �z) and repre-sent �n(�x; �y) as �n(�x; �y) = �(0)n (�y � �u(�x)) + ~�n(�x; �y),where the Fourier transform of ~�n(�x; �y) at small waveve
tors is given by~�(�k) = 2�i 1�k2 � 1�k2y + �k2z! �kz�u(�kx) == � 2�i�k2x��k2y + �k2z� �k2 �kz�u(�kx):We see in what follows that the main 
ontribution toFxy 
omes from the distan
es of the order of a typi-
al wavelength of deformations far away from the 
ore.Therefore, we 
an expand with respe
t to ~�n and 
anuse the linear and 
ontinuous approximationFyz � E02 Z d3�k(2�)3 ��k2y + �k2z� j~�(�k)j2:Substituting ~�(�k) and 
omputing the integral with re-spe
t to �ky and �kz , whi
h 
onverges at �ky, �kz � �kx, weobtain Fyz � �4E0 Z d�kx2� �k2xj�u(�kx)j2: (A.6)Finally, 
ombining (A.5) and (A.6), we obtain the line-tension energy of the Josephson vortex in (31), pre-sented already in the real 
oordinates with the numer-i
al 
onstant Ct = 2 exp(�
E + Cy).APPENDIX BDis
rete and nonlinear 
orre
tions to theJosephson vortex phase and energy at largedistan
es from the 
oreThe phase distribution �n(y) in the Josephson vor-tex 
ore obeys Eq. (20). We measure the in-plane 
o-ordinate y in units of the Josephson length �J = 
dde�ning the dimensionless 
oordinate �y = y=
d andrewrite (20) in the formd2�nd�y2 + sin [�n+1 (�y)� �n (�y)℄ ++ sin [�n�1 (�y)� �n (�y)℄ = 0:7 ÆÝÒÔ, âûï. 3 (9) 545
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es from the 
ore, n2 + �y2 � 1, thisequation transforms into the isotropi
 London equationr2� = 0. In this region, �n (�y) 
an be approximatedby a 
ontinuous fun
tion � (�y; �z) with n! �z. Using theTaylor series for the di�eren
e � (�y; �z + 1)�� (�y; �z), weobtainsin [� (�y; �z + 1)� � (�y; �z)℄ ++ sin [� (�y; �z � 1)� � (�y; �z)℄ �� �2���z2 + 112 �4���z4 � 12 �����z�2 �2���z2 + : : :Therefore, the phase equation to 4th order in the gra-dient (whi
h is small at large distan
es) is given by�2���y2 + �2���z2 + 112 �4���z4 � 12 �����z�2 �2���z2 = 0: (B.1)This equation 
an be solved iteratively. For the Joseph-son vortex lo
ated at �y = 0 in between the layers0 and 1, the zeroth-order solution �0 (
orre
t to these
ond order in the gradients) is given by �0(�y; �z) == � ar
tg[(�z � 1=2)=�y℄ (we note that for �z = n, wehave �0(y=
d; n) = �Jvn (y) in (21)). The �rst-order
orre
tion Æ�1(�y; �z) obeys the equationr2Æ�1 = � 112 �4�0��z4 + 12 ���0��z �2 �2�0��z2 == 2 sin(2�0) + 5 sin(4�0)8 �r4 ;where �r2 = �y2 + (�z � 1=2)2. Using the solutions of theinhomogeneous Lapla
e equationsr2� = sin 2�0�r4 ! � = � sin 2�04�r2 ln �r;r2� = sin 4�0�r4 ! � = � sin 4�012�r2 ;we build the solution for Æ�1 ��r; �0� and arrive at the
orre
tionÆ� (�y; �z) = sin(2�0)16 �r2 (ln �r + CÆ�) ++ 5 sin(4�0)96 �r2 +O(1=�r4): (B.2)Here, we have added the solution sin(2�0)=�r2 of thehomogeneous Lapla
e equation with an unknown nu-meri
al 
onstant CÆ�. Comparison of these asymp-toti
 expressions with the full numeri
al solution givesCÆ� � 4:362. The result in (B.2) is given in uns
aled
oordinates in (28).

In a similar way, we 
an derive a nonlinear/dis
rete
orre
tion to the energy far away from the 
ore. Theredu
ed energy 
ontribution to the Josephson vortexfrom the region �r < �ab=d is given by"Jv = Z d�yXn "12 �d�nd�y �2 + 1� 
os (�n+1 � �n)# :In the region �r � 1, we 
an again use the expansionwith respe
t to a small gradient along the z axis, whi
hleads to the result"Jv � Z1��r��ab=d d2�r"12 �d�d�y�2 + 12 �����z�2 �� 124 ��2���z2�2 � 124 �����z�4# :In the lowest order with respe
t to small gradients, thisgives the 
orre
tion to the energy due to the layeredstru
tureÆ"Jv = � 124 �� Z1��r��ab=d d2�r"��2�0��z2 �2 +���0��z �4# : (B.3)In the 
ase of a single Josephson vortex, this formulais not very useful be
ause the integral is formally di-vergent at small distan
es and is determined by thesmall-distan
e 
ut-o�. In the 
ase of a �nite vortex den-sity, however, a generalization of this equation allowsobtaining a nontrivial 
orre
tion to the vortex-latti
eenergy.In the vortex-latti
e 
ase at a �nite in-plane �eld,following the same reasoning, we obtain the 
orre
tionto the redu
ed energy per unit 
ell in (56):Æu = 1� Zu:
: d2�r�� "� 124 ��2�0��z2 �2 � 124 ���0��z + h�y�4# ; (B.4)where integration is performed over the unit 
ell and�0(�r) is the vortex-latti
e phase within the London ap-proximation. To estimate the dominating 
ontribution,we use the 
ir
ular-
ell approximation for the latti
ephase. In this approximation, super
urrents �ow radi-ally within the 
ell �r < a
 = p2=h and vanish at itsboundary, and hen
e the gauge-invariant phase gradi-ent is given by1�r ��

�� = �1�r + �ra2
 for 0 < r < a
;546
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ondu
torswhere � = tg�1(�z=�y) is the polar angle, when
e��0=��z + h�y ! � 
os(�)(1=r � r=a2
). The integralformally diverges at small distan
es. This divergen
e,however, is due to the vortex-
ore energy. To �nd thenontrivial 
orre
tion to the latti
e energy, we subtra
tthe diverging single-vortex term. The dominating 
on-tribution to the rest part 
omes from the se
ond (non-linear) termÆu � � 124� 2�Z0 d��� a
Z0 �r d�r 
os4(�)"�1�r � �ra2
�4 � 1�r4 # ; (B.5)and 
al
ulation gives the resultÆu = h32 ln Chh : (B.6)From the �t of the numeri
ally 
omputed energy to thisformula, we obtain the numeri
al 
onstant Ch � 110.We note that this 
orre
tion does not depend on the lat-ti
e orientation with respe
t to the layers. Intera
tionwith the layers also eliminates the �ellipti
� rotation de-genera
y of the latti
e des
ribed in Se
. 4. Expansion(B.5), however, is not su�
ient to �nd the orientation-dependent 
orre
tion to the energy. To obtain that
orre
tion, one has to obtain the next-order expansionwith respe
t to the gradients (6-th order terms).APPENDIX CCal
ulation of the orientation-dependent�u
tuation 
orre
tion to the free energyIn this appendix, we present the 
al
ulation of theentropy 
orre
tion to free energy (98) based on the pla-nar elasti
 energy (96). To fa
ilitate 
al
ulations, weagain introdu
e the redu
ed wave ve
tors ~k de�ned inEq. (90) and the 
orresponding re
ipro
al-latti
e ve
-tors ~Q = ( ~Qy; ~Qz). In this presentation, the re
ipro
allatti
e be
omes a regular triangular latti
e with theunit ve
tor Q0 =q2�=p3 and the area of the Bravais
ell is equal to �. Using the new variables, we represent�JV L(k) in the 
ompa
t redu
ed form as�JV L(k) = B2x4��2
 �JV L(~k); (C.1)�JV L(~k) ==X~Q 264 �~ky � ~Qy�2 + ~k2xb�1x + �~kyz � ~Q�2 + ~k2x � ~Q2yb�1x + ~Q2375 ; (C.2)

a0 b � b
L2

L1 G2Q0k2 k1 n� kz kyG1aa
Fig. 18. a) Josephson vortex latti
e in redu
ed 
oor-dinates rotated at a �nite angle � with respe
t to thelayers in real spa
e su
h that the layers align with the
rystallographi
 dire
tion (3; 1). b ) The 
orrespondingre
ipro
al latti
e and illustration of two sele
tions forthe basis used in the 
al
ulation of the entropy 
or-re
tion: the basi
 wave ve
tors G1;2 aligned with thelatti
e, and the basi
 wave ve
tors L1;2 aligned withthe layerswhere bx = 4��ab�
Bx=�0 = 2 (�ab=d)2 h � 1 and~kyz = (0; ~ky;~kz).We assume that the latti
e is rotated at a �niteangle � with respe
t to the layers sele
ted in su
h away that the layers are aligned with one of the 
rys-tallographi
 dire
tions, as sket
hed in Fig. 18. Thismeans that the latti
e, in general, has the form of amisaligned latti
e sket
hed in Fig. 6a and is 
hara
ter-ized by the aspe
t ratio r = 
b=a and the shift param-eter, q. To 
ompute the sum over the re
ipro
al-latti
eve
tors, we use two equivalent parameterizations illus-trated in Fig. 18. The �rst parameterization uses anexpansion over the two basi
 ve
tor of the tilted latti
e,~Q = nG1 + mG2 with m;n = 0;�1;�2 : : : For su
han expansion, we 
an simply represent the 
omponentof ~Q along the two main dire
tions of the tilted latti
e,(k1, k2), shown in Fig. 18,~Q1 = p32 mQ0; ~Q2 = �n+ m2 �Q0: (C.3)This gives ~Q2 = �n2 + nm+m2�Q20. The (y; z) 
om-ponents of the wave ve
tors are related to the (1; 2)
omponents by axis rotation. For example, for the 
om-ponent ~ky in Eq. (C.2), we have ~ky = 
os �~k1 + sin �~k2.This parameterization allows us to naturally tra
e thedependen
e on the rotation angle �. The se
ond pa-rameterization utilizes the basi
 wave ve
tors alignedwith the layers,~Q = nL1 +mL2;L1 = �0;r�r � ; L2 = �p�r;�qr�r � : (C.4)547 7*
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ing the dependen
e on thelatti
e-stru
ture parameters r and q. It also allows re-du
ing �JV L(~k) to a simpler form. Substituting pre- sentation (C.4) in Eq. (C.2) and taking the sum overn, we obtain
�JV L(~k) = p�r 1Xm=�10B��~ky �mp�r�2 + ~k2x�(~ky �mp�r; ~kx) �� sh h2p�r�(~ky�mp�r; ~kx)i
h h2p�r�(~ky�mp�r; ~kx)i� 
os h2� �qm+~kzp r��i �� �rm2�(mp�r; 0) sh [2p�r�(mp�r; 0)℄
h [2p�r�(mp�r; 0)℄� 
os(2�qm)�with �(ky; kx) � qb�1x + k2y + k2x. This formula 
on-tains only one summation, whi
h makes it 
onvenientfor numeri
al evaluations. On the other hand, the de-penden
e on the rotation angle here is not obvious andis hidden in the dependen
e on the parameters r and q.The sums over the re
ipro
al-latti
e ve
tors inEqs. (97) and (C.2) formally diverge logarithmi
allyat large Q ( ~Q). Correspondingly, the sum over m inEq. (C.5) also logarithmi
ally diverges. This divergen
eis due to the single-vortex tilt energy and has to be 
utat the 
ore size, Qy � 1=
d. This energy was 
onsid-ered in details in Se
. 3.1. We split the redu
ed elasti
matrix �JV L(~k) into the single-vortex, �sv(~kx), and in-tera
tion, �i(~k), terms,�JV L(~k) = �sv(~kx) + �i(~k):The single-vortex term �sv(~kx) 
an be obtained fromEq. (C.2) by repla
ing the summation over ~Q with in-tegration,

�sv(~kx) = Z d2 ~Q� " ~Q2y + ~k2xb�1x + ~Q2 + ~k2x � ~Q2yb�1x + ~Q2# :Using Eq. (31), we obtain the line-tension term inreal units, �sv(kx) = �(Bx=�0)"Jk2x ln(Ct=
dkx) with"J � E0=
d and Ct � 2:86. This 
orresponds tothe following result for the redu
ed line-tension term�sv(~kx) = �4��2
=B2x��sv(kx):�sv(~kx) � ~k2x2 ln 4:09h~k2x (C.5)for ~k2x � 4=h. In the intera
tion term �i(~k) == �JV L(~k) � �sv(~kx), the logarithmi
 divergen
e is
ompensated and the sum over ~Q 
onverges roughly at~Q � 1. In parti
ular, using the presentation in (C.5),the intera
tion term 
an be represented as a 
onvergingsum,
�i(k) = p�r 1Xm=�10B��~ky �mp�r�2 + ~k2x�(~ky �mp�r; ~kx) sh h2p�r�(~ky �mp�r; ~kx)i
hh2p�r�(~ky �mp�r; ~kx)i� 
osh2� �qm+ ~kzp r��i �� XÆ=�1 Æ U h~kx; (m+ Æ=2)p�r � ~kyi �� �rm2�(mp�r; 0) sh [2p�r�(mp�r; 0)℄
h[2p�r�(mp�r; 0)℄� 
os(2�qm) + XÆ=�1 Æ U�0; (m+ Æ=2)p�r�!with 548
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e in layered super
ondu
torsU [kx; ky℄ � 12 �kyqb�1x + k2x + k2y ++ ��b�1x + k2x� ln�ky +qb�1x + k2x + k2y �� :Here, the terms with U [: : : ; : : : ℄ originate from thesingle-vortex 
ontribution �sv(~kx), whi
h is properlyde
omposed to 
ompensate the summation divergen
e.In spite of its s
ary look, this formula is the most suit-able one for numeri
al 
al
ulations.From Eq. (98), we obtain the entropy 
orre
tion tothe free energy in redu
ed formÆfT = � T2p
 �4�Bx�0 �3=2 �� 1Z�1 d~kx2� ZBZ d~kyd~kz(2�)2 ln ~C�JV L(~k) ; (C.6)where RBZ : : : denotes the integral over the Brillouinzone and ~C is a dimensionless 
onstant. The inte-gral over kx is formally diverging. This divergen
eis due to short-wavelength ex
itations in the vortex
ores and does not 
ontribute to the angular-dependent
orre
tion. To separate the regular anisotropi
 
orre
-tion, we subtra
t the isotropi
 single-vortex 
ontribu-tion from the total free energy and represent the result-ing anisotropi
 
orre
tion asÆfT;a(�) = � Tp�
 �Bx�0�3=2 ga (C.7)withga = ZBZ d2~kyz� 1Z0 dkx ln �sv(~kx)�sv(~kx) + �i(~k) : (C.8)This presentation is used in Eq. (99).The large logarithmi
 fa
tor in �sv(~kx) in Eq. (C.5)allows obtaining a useful approximate formula for ga.As �i(~k) � 1, the integral over ~kx 
onverges at~kx � 1=pln(1=h)� 1, meaning that for a log-a

ura
yestimate, we 
an negle
t the ~kx-dependen
e of �i(~k).Evaluating the integral over kx, we obtainga � � p2pln(A=h) ZBZ d2~kyzq�i(~kyz) (C.9)with A � 1. If we negle
t the small parameter b�1xin �i(~kyz), then the integral in this formula be
omes�eld independent and the only �eld dependen
e of gafor h! 0 is given by the fa
tor [ln(A=h)℄�1=2.

�0:9637++0:00302 
os(6�)h = 0:0067(1; 0)(5; 1)(4; 1)(3; 1)(2; 1) (1; 1)0 0:1 0:2 0:3 0:4 0:5��0:966�0:964�0:962�0:960ga

0:01 0:1h�-presentation(r; q)-presentation0:00290:00300:00310:00320:00330:00340:0035g6

Fig. 19. The inset shows an example of the numeri
ally
omputed angular dependen
e of the redu
ed entropy
orre
tion ga(�) de�ned by Eq. (C.8) for h = 0:0067.Solid squares show results obtained using the represen-tation for �xed latti
e parameters r and q in Eq. (C.6).This 
omputation is done for layers oriented along the
rystal dire
tions (m;n), whi
h are also shown in theplot. Open symbols are obtained using the representa-tion with the expli
it dependen
e on the latti
e rotationangle � using expansion (C.3). The dashed line is the�t to the formula g0+g6 
os(6�). The main plot showsthe �eld dependen
e of the 
oe�
ient g6 and the 
or-responding �t in Eq. (100)We numeri
ally 
omputed the redu
ed entropy 
or-re
tion ga for di�erent latti
e orientations and redu
ed�elds h. An example of the angular dependen
e ofga for h = 0:0067 is shown in the inset of Fig. 19.We found that in the range 0:001 < h < 0:1, theorientation-dependent part of ga 
an be well �tted byformula (100). The dependen
e g6(h) is plotted inFig. 19. The positive sign of g6(h) means that the �u
-tuations give the largest negative 
ontribution at � = 0,i. e., they indeed favor the aligned latti
e (1,0). We also
an see that the e�e
t o

urs to be quantitatively rathersmall, at least in the 
onsidered Gaussian-�u
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