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Many superconducting materials are composed of weakly coupled conducting layers. Such a layered structure
has a very strong influence on the properties of vortex matter in a magnetic field. This review focuses on the
properties of the Josephson vortex lattice generated by the magnetic field applied in the direction of the layers.
The theoretical description is based on the Lawrence—Doniach model in the London limit, which takes only the
phase degree of freedom of the superconducting order parameter into account. In spite of its simplicity, this
model leads to an amazingly rich set of phenomena. We review in detail the structure of an isolated vortex
line and various properties of the vortex lattice, in both dilute and dense limits. In particular, we extensively
discuss the influence of the layered structure and thermal fluctuations on the selection of lattice configurations

at different magnetic fields.
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1. INTRODUCTION

Layered superconductors are materials made from
a stack of alternating thin superconducting layers sep-
arated by nonsuperconducting regions. The supercon-
ducting layers are essentially two-dimensional (2D) as
long as they are so thin that there is no variation
in fields, or in the superconducting order parameter,
across each layer. Such structures frequently occur nat-
urally in anisotropic crystals. A layered superconduc-
tor can carry supercurrents along the layers, as well as
between the layers. This is due to the Josephson tun-
neling of Cooper pairs [1] across the insulating regions
that separate neighboring superconducting layers, i.e.,
each pair of neighboring layers forms one Josephson
junction. In general, the z-axis (Josephson) supercur-
rents are weaker than the supercurrents along the lay-
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ers. A mere “layeredness” of atomic structure, however,
does not automatically make a material a layered su-
perconductor. When the interlayer electrical coupling
is sufficiently strong, this discrete system of layers ap-
proximates to a continuous superconductor with uni-
axial anisotropy. Hence, we are interested in the case
where the approximation to a uniaxial continuous su-
perconductor breaks down, which happens when the
layer separation d is greater than the z-axis supercon-
ducting coherence length, d > &..

The most prominent example is the high-7, cuprate
superconductors, discovered in 1986 [2-5], which led to
a huge interest in physics of layered superconductors.
The two most studied cuprate compounds, YBayCuz Oy
(YBCO) and BiySryCaCuyO, (BSCCO), have simi-
lar transition temperatures 7, ~ 90K and represent
two important particular cases. YBCO is moderately
anisotropic, with the anisotropy factor v ~ 5-7, and
its “layeredness” becomes essential at low temperatures
when the c-axis coherence length &. drops below the

519



A. E. Koshelev, M. J. W. Dodgson

MIT®, Tom 144, Bem. 3 (9), 2013

Fig. 1. lllustration of a dilute lattice of Josephson vortices generated in a layered superconductor by a magnetic field applied
along the layer direction

layer spacing d. On the other hand, BSCCO has a
huge anisotropy factor, v ~ 400 — 1000, and behaves
as a layered superconductor practically in the whole
temperature range below 7.. Other naturally layered
superconductors include the transition metal dichalco-
genides [6, 7] and organic charge-transfer salts formed
with the molecule BEDT-TTF [8,9]. An important
new family of atomically layered superconducting ma-
terials, iron pnictides and chalcogenides, was discovered
in 2008 [10] and is being extensively explored since then
(see, e.g., reviews [11-13]). Anisotropy of most com-
pounds is actually not very high and they typically be-
have as anisotropic three-dimensional materials. There
are important exceptions, however. The most studied
compound in which the layered structure is clearly es-
sential is SmFeAsO,_,F, [14] with T, up to 55 K. For
example, the Josephson nature of the in-plane vortices
at low temperatures has been recently demonstrated in
this compound [15]. Also, several iron pnictide com-
pounds with extremely high anisotropy have been dis-
covered [16-18]. Properties of these compounds re-
main mostly unexplored due to their rather compli-
cated composition.

All layered superconductors share a very similar
general behavior of the vortex matter generated by an
external magnetic field, which is insensitive to the mi-
croscopic nature of superconductivity inside the layers.
Several excellent review articles have been published in
the past covering different aspects of the vortex mat-
ter in type-II superconductors [19-23]. Nevertheless,
we feel that further progress in the understanding of
the Josephson vortices in layered superconductors war-

rants a specialized review, providing more details and
discussing important recent results.

This short review narrowly focuses on the vortex
lattice that appears at magnetic fields applied along
the layers. In this case, the flux line winds its phase
around an area between two neighboring layers and is
called a Josephson vortex in analogy with a vortex in
a superconducting tunneling junction. The Josephson
vortex contains out-of-plane currents that tunnel via
the Josephson effect from layer to layer. The current
distribution around a vortex is anisotropic. As a con-
sequence, the vortex lattice is also anisotropic: it is
a triangular lattice strongly stretched along the lay-
ers (see Fig. 1). In addition, the restriction to lie be-
tween the layers leads to commensurability effects and
an energy barrier to tilting the field away from the
layers. There are two very different regimes depend-
ing on the magnetic field strength B,. The crossover
field scale B, separating these two regimes is set by
the anisotropy factor v and the layer periodicity d as
Ber = ®¢/(27vd?), where ® = he/2e is the flux quan-
tum. In the case of BSCCO, this field scale is around
0.5 tesla. In the dilute lattice regime, B, < B, the
nonlinear cores of Josephson vortices are well separated
and the distribution of currents and fields is very sim-
ilar to that in continuous anisotropic superconductors
[24]. The dense lattice regime is realized at high fields
B, > B.,, where the cores of Josephson vortices over-
lap. In this regime, the Josephson vortices fill all lay-
ers homogeneously [25]. This state is characterized by
rapid oscillations of the Josephson current and by very
weak modulation of the in-plane current. In this re-
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view, we characterize these two lattice regimes in more
detail.

We do not consider the properties of vortices gen-
erated by a magnetic field applied perpendicular to the
layers, along the ¢ axis'). The structure of a c-axis vor-
tex is very different from the structure of an in-plane
vortex. In layered superconductors, a c-axis vortex can
be viewed as a stack of weakly coupled pointlike pan-
cake vortices. Properties of the pancake vortex lattice
were also extensively explored, see, e.g., reviews [23]
and [26] and the references therein.

Several experimental techniques have been em-
ployed to explore the Josephson vortex lattices. The
dilute stretched lattice at small fields (< 100 G) has
been directly observed in YBCO with Bitter decora-
tion in [27], where the elliptical distribution of the flux
around each Josephson vortex was also seen. At high
fields (> 1 tesla), the commensurability between the
c-axis parameter of the Josephson vortex lattice and
the interlayer separation leads to magnetic field oscilla-
tions, which have been observed experimentally in un-
derdoped YBCO in irreversible magnetization [28,29]
and nonlinear resistivity [30].

In much more anisotropic BSCCO, direct observa-
tion of Josephson vortices is not possible. However,
when the magnetic field is tilted at small angles with
respect to the layers, the c-axis field component gen-
erates the pancake-vortex stacks that preferably enter
the superconductor along the Josephson vortices form-
ing chains. Visualizing the flux of these chains, it is
possible to find locations of vertical rows of the Joseph-
son vortices and measure the in-plane lattice parame-
ter a,. This was done using a variety of visualization
techniques, such as Bitter decorations [31, 32], scanning
Hall probes [33], Lorentz microscopy [34,35] and mag-
netooptical imaging [36,37]. These observations have
been summarized in review [38].

Most extensively, properties of the Josephson vor-
tex lattice were explored in BSCCO using c-axis trans-
port in small-size mesas [39-43]. These studies revealed
a very rich dynamical behavior of the lattice, which
is beyond the scope of this review. The very impor-
tant feature is that, due to low dissipation, the Joseph-
son vortex lattice can be accelerated up to very high
velocities. It is clear that understanding dynamics is
not possible without good understanding of static lat-
tice properties. The dynamic phenomenon closely re-
lated to static lattice configurations is magnetic-field
oscillations of resistance for very slow lattice motion,

D In the literature the layer plane and the axis perpendicular
to the layers are frequently called “ab plane” and “c axis”.
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which have been discovered and explored in small-size
BSCCO mesas [44-48]. The oscillation period can cor-
respond to either the flux quantum or half the flux
quantum per junction depending on the magnetic field
and the lateral size of the mesa. An interplay between
the bulk shearing interaction and the interaction with
edges leads to very nontrivial evolution of lattice struc-
tures, which we consider in this review.

This review is organized as follows. We start in
Sec. 2, where we present the energy functional and equi-
librium equations for the phase and vector potential.
In Sec. 3, we describe the structure and energetics of
a single flux line. In Sec. 4, we discuss the dilute JVL
and consider in detail the role of layered structure in
selecting lattice configurations. The properties of the
dense JVL at high fields are considered in Sec. 5. In
this regime, the structure and energy of the lattice can
be evaluated analytically using an expansion with re-
spect to the Josephson coupling. In that section, we
also review the magnetic field dependence of lattice
configurations and oscillations of the critical current
in finite-size samples. Elastic properties of both dilute
and dense lattices are discussed in the corresponding
sections. In Sec. 6, based on the elastic energies, we
review effects caused by thermal fluctuations.

2. ENERGY FUNCTIONAL AND EQUATIONS
FOR THE SUPERCONDUCTING PHASES
AND VECTOR POTENTIAL

Theoretical analysis of the Josephson vortex matter
in layered superconductors is based on a phenomeno-
logical model in which only the phase degree of freedom
of the superconducting order parameters is taken into
account and its amplitude variations are neglected,

Frip [6n(r)), A(r)]

27 >
—A
T, |,n> +

B 11~ cos(@nsn — 6n + xmm]} L

iy

where Ey = ®3d/(1673)2,) defines the in-plane phase
stiffness and E; = Ep/v* = ®3d/(16m3)\2) is the phase
stiffness for smooth inter-layer phase variations, Ag
and \. are the components of the London penetration
depth, and v = A./\,p is the anisotropy factor. The
z component of the vector potential enters the tunnel-
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ing term in the form? Y, 41 = (2¢/hic) fégﬂ)d dz A,.
Near the transition temperature, the above phase
model can be obtained from the celebrated Lawrence—
Doniach model [49] by fixing the order-parameter am-
plitude (London approximation). However, the model
is actually more general and describes Josephson prop-
erties of a layered material in the whole temperature
range. Starting from the phase model, a rich variety of
lattice properties can be derived, which we review in
this article.

Subject to some given boundary conditions, the
configuration of {¢,,A} is determined by minimiz-
ing the free energy. This leads to a set of differential
equations; for example, minimizing with respect to the
phase gives the current-conservation condition

27
Viién + B, VAl =
1
)2

(2)

B (Sin @p—1,n — SiN Ypnt1) s
with the gauge-invariant phase difference defined as
Onntl = Ont1 — On + Xn,nt1. In this equation, the
Josephson length A; = ~d appears for the first time.
This length plays a very important role in layered
superconductors because it determines the scale over
which the phase can relax to minimize the Josephson
coupling energy without costing too much energy in the
gradient term. Three more equations result from min-
imizing with respect to the three components of the
vector potential. We can write these in terms of the
electric current density by using the Maxwell equation
Jj=(c/4m)V x (V x A), which gives

2me k) 2T
Jjn = ——5— (V|¢n + (}TOAIJL> SENC)
Jnnt1 = —J7sinQp i, (4)

where J| ,, is the 2D current density in the nth layer
and J, 41 is the current density in the z direction
between the nth and (n + 1)th layers, which has the
maximum value

27TCEO

Do (yd)?

The four equations (2)—(4) are the starting point for
finding the structure of vortices in layered superconduc-
tors. In fact, we can make the job of solving this set
of equations slightly clearer by combining them into a

(5)

JJ

2) Here e is chosen to be positive, e > 0, i.e., the charge of an
electron is —e.
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differential equation for the gauge-invariant phase dif-
ferences alone. This is done by using the general result

tnd (n+1)d
L Tt = / dz [V x (V x A)]. =
nd
v @0 2
=V (Ajnsr —Ayn) — o ViXnn+L, (6)

and combining this with (2) and (4) to arrive at

L X
AZ vd)?

X [SIN pt1 g2 — 28I @p pt1 + SiDpp_1,n] = 0.

vﬁ‘ﬁmn-ﬁ-l + 5 sinpppp1 + (

(7)
Solving this equation then gives the entire solution for
currents by using (4) to find J, 41, and the conserva-
tion law

v|| . JH,n = Jn,n+l — Jn—l,n (8)

to find JHm.

3. STRUCTURE OF A JOSEPHSON VORTEX
IN A LAYERED SUPERCONDUCTOR

If we place a flux line directed along the layers,
the singularity associated with the vortex core can be
avoided by placing the center in the insulating layer
between two superconducting layers (first noticed by
Bulaevskii [50]). The structure of the “core” is similar
to the structure of the phase drop across a flux line in
a two-dimensional Josephson junction [51]. This well-
studied problem has a solution where the phase differ-
ence across the two layers drops by 27 over a distance
of the Josephson length A;3). For the 3D layered su-
perconductor, this length is given by Ay = ~d, and
we can think of a central region yd wide and d high
as the core of an in-plane vortex. Beyond this core,
the flux density and currents are quite similar to those
for a continuous anisotropic superconductor [24]. The
screening by z-axis currents is much weaker than that
by in-plane currents, and the flux line is stretched into
an ellipsoidal shape with a large width ~ A, along the
layers. Even though only the “core” resembles the vor-
tex in a 2D Josephson junction, it has become common
in the literature to label the entire flux line with this
orientation a Josephson vortex.

We now consider now a flux line directed along the
x axis. The general structure of this Josephson vor-
tex was first described by Bulaevskii [50]. The center

3) This characteristic length was noted soon after the discovery
of the Josephson effect [82].
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of the vortex lies between two layers, such that there
is no core with suppressed amplitude of the order pa-
rameter, while the structure at large distances from the
center is similar to a conventional flux line. The phase
around the vortex is not given trivially by symmetry,
but is a solution of nonlinear equations (2). The most
convenient path to a quantitative solution is to separate
the problem into two different scales: At large scales,
we can ignore the nonlinearity, and there is an ana-
lytic solution. At small scales, the numerical solution is
simplified by ignoring the screening contribution of the
vector potential. Fortunately, for A\,p/d > 1, there is a
large region of intermediate scales where both approxi-
mations work well, allowing us to match the small-scale
and long-scale solutions.

We consider a vortex centered between layers 0 and
1, and y = 0, which is defined by the limiting values

On(y) =0, for y — +oo,

{

This corresponds to the following conditions for the in-
terlayer phase difference:

—m, n>1, 9)

n <0,

for y — —o0.
ﬂ-’

On.nt1 =0, for y — +oo and n # 0,

0,
$o,1 =

—2m,
To obtain the current and field distributions, we

Yy = +o0, (10)

Yy = —00.

first derive a useful exact equation for the magnetic
field. The current components in (3) and (4) can be
represented as

C
o - Bn,n+1 _
J ,n+1 47rvy x
cPy
= _87T2A2d sin 9077,77’1-‘1‘17 (11)
c n—1i,n
Jym = EVHB’” b=
cPod 27
= A 12
871'2)\?”) <vy¢n + d, y) ’ ( )

where Bt is the average magnetic field between
the layers n and n + 1 and V,, is a difference opera-
tor VoA, = App1 — A,. Collecting the combination
(Am/c) (=N2VyJnnt1 + (A2, /d)V n Ty, ), we obtain

120293 - 03, ) V3) B2 =
0

=50 (13)

Vy (Pnt1,n — S0 Pny1n)
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with V2A,, = A,41 + A1 — 24,,. The difference of
©nt1,n and sin ¢, 41, decays outside the nonlinear core
and satisfies the relation

Z /dyvy (@nJrl,n —sin @nJrl,n) =
n _x

= Z Pn+1,n
n

In the continuum limit, the right-hand side of (13)
therefore converts into ®4d(y)d(z) and (13) transforms
into the usual equation for the vortex magnetic field [52]

= 2m.

(14)

o0

By — )‘zszx - Aibvin = ®g0(y)d(2), (15)
which gives
Py . Y 2 2\ 2
B, = ——— Z = 1
2T A Aap V/<AC> * (Aab> (16)

The current densities outside the core region are also
given by standard formulas for anisotropic supercon-
ductors

c®y z/ Aab

L )
TR, R ¥ 2,

: y2 22
XIX1< )\—%4‘/\—2’)), (17)
o = c®q y/)\c %
TSN PN+ 2202,
-y 2
K =+ (1
: ( A3+Aib> "

These results should be valid as long as the linear ap-
proximation for the sine of the phase difference is good.
To find the range of applicability for this approxima-
tion, we compare the last equation to (4), which near
the vortex center, gives

y/vd
(y/vd)” +n?
YN+ 22N, < 1,

Sin @, pt1 = — for

(19)

indicating that the linear theory breaks down at
(y/7d)”> + n® ~ 1. This condition therefore sets the
boundary of the nonlinear core.

The above analysis shows that the Josephson vor-
tex is characterized by two sets of length scales. A
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region where the interlayer phase difference is large de-
fines the nonlinear core of the vortex. In the z di-
rection, this region is essentially localized within the
central junction and in the y direction, it spreads over
the Josephson length vd. At scales |z|, |y| /v > d, the
vortex structure is described by the anisotropic Lon-
don theory. In addition, we can neglect screening ef-
fects in a wide region where the currents around the
vortex decay as 1/r (although the current pattern is
strongly stretched along the layers). Screening of the
currents and magnetic field becomes important at the
length scales |z| & A\ and |y| = A, which are much
larger than the corresponding boundaries of the non-
linear core.

Due to this vortex structure, a quantitative analy-
sis can be obtained with more ease by introducing an
intermediate scale Rj,:, with d < Rjn: < Aap, such
that at the distance /22 + (y/7)? = Rint from the
vortex center, both nonlinearity and screening may be
ignored. We then consider the small-distance region

22+ (y/7)? < Rint (containing the nonlinear core)
and the large-distance region /22 + (y/7)? > Rim

(where screening will become important) separately.
At small distances, we can neglect screening. In the
London gauge V - A = 0, this means that the vector
potential A can be dropped and the vortex is described
in terms of in- plane phases ¢,(y) only, which satisfy
the equation (from (2))

& én

(’yd)2W + sin (¢n+1 - ¢n) -

—sin (¢p, — dn—1) =0 (20)

and boundary conditions (9). These conditions are sat-
isfied by our knowledge that outside the nonlinear core,
where (n — 1/2)? + (y/vd)? > 1, the phase has to ap-
proach the scaled version of the usual form relating to
the angle around a vortex,

Multiplying (20) by d¢,,/dy, summing over n, and per-
forming an indefinite integral over y, we derive the fol-
lowing exact relation for all y:

) [wd)? (

n
which is analogous to the first integral of a second-order
differential equation with one variable. For an isolated

vd(n —1/2)
y

Jv
n

() = —aret (21)

dn

20 ) ~2(1-cos <¢n+1—¢n>>] -

= const, (22)
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Fig.2. Visualization of the numerically computed

structure of an isolated Josephson vortex. The arrows

represent the current distribution (half the interlayer

distance corresponds to maximum Josephson current).

The greylevel codes for the cosine of the interlayer

phase difference. The scale in the y-direction is in units
of the Josephson length A; = ~vd

Josephson vortex, the constant is zero. In contrast to
the single-variable case, this relation does not help us to
find the exact solution of coupled nonlinear equations
(20), and we have either to use some approximate so-
lution or to solve it numerically. Relation (22) can,
however, be used to test the accuracy of the approxi-
mate and numerical solutions.

A simple approximate solution has been proposed
by Clem and Coffey [52] (the CC solution), who used

the ansatz
2o VY2422 +ue
B, ~ = 23
SRRIDYS U5 Wi ( e (23)

for the magnetic field and found that the best approx-
imation for the core structure is achieved by selecting
the cut off y.. = vd/2. This field distribution allows
obtaining the distribution of the phase difference

Y

v (B2)) e

Ae
where R,(y) = \/y2+ (ydn)? +y2.. In particular,
at vd <« y < M\ this corresponds to ¢1(y)
~ —tg~ " (vd/2y).

The accurate numerical structure for the core was
obtained in Ref. [52]. Figure 2 presents a visualization
of this numerical solution, and we compare the phase
difference in the central junction to that from the CC
solution in Fig. 3. The numerical solution is charac-
terized by the following properties. The maximum in-
plane phase gradient is given by

d¢n
d =

P+l R — sin™! {

~

=1.10 (25)

y=0
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Fig.3. Sine of the phase difference between the cen-

tral layers of the Josephson vortex. For comparison,

the approximate solution of Clem and Coffey [52] is
also shown

(the CC solution gives vd (d¢i/dy)y=0 = 2) and
the maximum Josephson current flows at the distance
Ymaz = 0.847d from the vortex center (the CC solution
gives Ymaz = Yee = 0.57d). The maximum magnetic
field in the vortex core is given by

d

The asymptotic limits for the phase difference in the
central junction are

~_ %0
2T A Aab

Aab

=0) -

) + 1.03} . (26)

( 2.20y
- ) |y| < 7d7
~vd
~vd
1= Ty YA (an)

d A

Y B 72T )
)\ab 2y ‘ ' e <Y

Outside the core, we can calculate the correction
d¢n(y) to the continuum-limit phase asymptotics (21)
by treating the discreteness and nonlinearity of the
Josephson current perturbatively (see Appendix B).
This gives

sin[2¢," (y)]

ddn(y) = 16 R2

(In R+ Cs¢) +

5sin[4ey" (y)]

w6z 0 28

where R = /(n —1/2)2 + (y/~vd)?, and the constant
Cs¢ ~ 4.362 is found from comparison with the numer-
ical solution.

We can find the energy per unit length of the
Josephson vortex by inserting this solution into (1).
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The simplest method [53] is again to split the energy
into two contributions: one from the region at large
distances where the linear approximation is valid, and
one from small distances where we need the numeri-
cal solution, but can ignore the contributions of A to
the current (i.e., ignore screening). The first is found
analytically, while the second needs a numerical inte-
gration. The final result is (see also [54]),

S [m < ) + 1.55}
y d

with g9 = ®2/(47A\sp)%. This energy determines the
lower critical field H., above which Josephson vor-

tices are generated:
In ( ) . (30)

To summarize, the solution for a Josephson vortex
presented here is very similar to the usual flux lines
in isotropic superconductors, but stretched by the fac-
tor v in the y-direction. The reason for this similarity
is that the linear approximation to the Josephson re-
lation works well away from the vortex center. The
important feature, however, is that at the center of the
vortex there is no normal core, but rather a phase drop
of nearly 27 across the central junction over a distance
of ~d.

Ao (20)

dq
4N Nap

0.44)\yp
d

Hch = 471—5J1)/(I)0 =

3.1. Line-tension energy of Josephson vortex

In this section, we consider the line-tension energy
of a distorted Josephson vortex, an important param-
eter that determines thermal wandering of the vortex
line and its response to pinning centers. We consider
a kink-free vortex located in between the layers 0 and
1 and defined by the planar displacement field wu(z).
Because the energy of the straight vortex does not de-
pend on its orientation inside the layer plane, for very
smooth distortions with the wavelength larger that A,
the line-tension energy is simply determined by the line

energy in (29),
2
< ) for

5F:/dac

This simple result, however, is of limited interest, be-
cause most properties of the vortex are determined by
deformations with smaller wavelengths, |du/dx|/|u| ~
~ |kz| > 1/X.. In this range, the line-tension en-
ergy acquires nonlocality, a typical feature of vortex
lines. An accurate calculation of the line tension for

du

dx

du

dx

EJv
2

<

i
Ac
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this regime presented in Appendix A leads to the re-

sult

with £; = Eo/vd and C; ~ 2.86. The important fea-
ture is the logarithmic dependence of the effective line
tension on the deformation wave vector, which is a con-
sequence of nonlocality.

dk,
2T

Ct
vk,

Vs
s ="
2%/

2

2
~1n u

(31)

4. DILUTE LATTICE, B, < ®,/27~vd?

When the Josephson vortices are well separated, the
linear and continuous approximation can be applied to
energy functional (1) everywhere except in the core re-
gions, which reduces it to the anisotropic London model

2
Fr[6(r), A(r)] ~ /d%{% + % X
2
X <V||¢+(}TA|> +
1 o \?
+ . <vz¢+q)—oAz> } (32)

This means that the lattice solution is just a linear addi-
tion of single flux-line solutions and the lattice energy
is determined by this London model. To understand
the nature of the ground state, it is useful to apply the
rescaling trick [55, 56]

r= (yaﬂyz) and A = (AyaAz/7)7 (33)
which in the case of zero z-component of the mag-
netic field precisely reduces the system to the isotropic
state [24]. Therefore, the ground state configuration in
scaled coordinates is given by a regular triangular lat-
tice. In real coordinates, this state corresponds to the
triangular lattice strongly stretched along the direction
of the layers.

Within the anisotropic London model, the lattice
is degenerate with respect to rotation in scaled coor-
dinates. In real coordinates, this corresponds to an
“elliptic rotation” illustrated in Fig. 4. In particular,
there are two aligned configurations, in which Joseph-
son vortices form vertical stacks along the z axis (see
Fig. 5). For these configurations, the vertical distance
between the Josephson vortices in the stacks, a., and
the separation between the stacks, a,, are given by

Ay =/ BQO/(WBm)v Ay =V 7¢0/(6B$)7

(34)
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Fig.4. Ground-state lattice configuration for an in-

plane field and its rotational degeneracy within the

anisotropic London model in (a) scaled coordinates and

(b) real coordinates. The ellipse aspect ratio corre-

sponds to the anisotropy factor ~ 3, much smaller,
e.g., than the anisotropy of BSCCO

Scaled coordinates Real coordinates

Fig.5. The two alternative lattice configurations that are
aligned with the layers, in scaled and real coordinates

where the constant 3 is respectively equal to 2v/3 and
2/4/3 for the upper and lower configuration in Fig. 5.

The interaction energy of the Josephson vortex lat-
tice can be reduced to the interaction energy of an
Abrikosov vortex lattice using the scaling trick. This
energy must be added to the self energy of each Joseph-
son vortex (29), which, in the intermediate field regime
Hei . < By < B2, gives the result

d

The “elliptic rotation” degeneracy is eliminated by
the layered structure of the superconductor. There are
several different mechanisms of this elimination. First,

—=2
BI
fnmgr By 27

1.239,

Ez €0 1
vd?B,

(35)

due to the strong intrinsic pinning, the vortex centers
must be located in between the layers. This limits
the possible lattice orientations. A second, less triv-
ial, mechanism is from the corrections due to the dis-
crete lattice structure to the vortex interactions. The
degeneracy is also eliminated by thermal fluctuations,
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Fig.6. (a) General Josephson vortex lattice and its
parameters. (b) Orientation of a layered structure
with respect to the ideal lattice (in scaled coordinates).
The layered structure fits the ideal lattice only if it is
oriented along one of the crystallographic directions,
which is characterized by two numbers (m,n), corre-
sponding to the expansion of the direction vector over
the two basic lattice vectors e; and es. Several possi-
ble directions are shown with the corresponding indices
(m,n). Thelayers, together with the lattice parameters
a, b, and ¢, are drawn here for the (3, 1) orientation

because Josephson vortices mostly fluctuate along the
layer directions and this selects preferential lattice ori-
entations. All these mechanisms are considered in de-
tail below.

4.1. Selection of ground-state configurations by
the layered structure

As the centers of the Josephson vortices must be lo-
cated between the layers, the layered structure plays a
crucial role in the selection of the ground-state lattice
configurations. The Josephson-vortex lattice is com-
mensurate with the layered structure only at a discrete
set of magnetic fields. Due to the “elliptic rotation” de-
generacy of the lattice within the London approxima-
tion, the family of commensurate lattices includes lat-
tices aligned with the layers (see Fig. 5), as well as mis-
aligned ones. To make a full classification of commen-
surate lattices, we consider a general lattice shown in
Fig. 6a[57,58]. The lattice is characterized by three pa-
rameters: the in-plane period a, the distance between
vortex rows in the z direction b = Nd, and the rel-

ative shift between the neighboring vortex rows in qa.
The lattice shape is characterized by two dimensionless
parameters, ¢ and the ratio r = b/a. The lattice pa-
rameters are related to the in-plane magnetic field B,
as B, = ®g/(ab). The two aligned structures in Fig. 5
correspond to ¢ = 1/2. As the replacement ¢ — 1 — ¢
corresponds to a mirror reflection with respect to the
xz plane, every structure with ¢ # 1/2 is doubly degen-
erate. In addition to giving the general ground states,
these lattices describe multiple metastable states with
unique properties studied in Refs. [57,58], which we
review below.

We now classify the exactly commensurate lattices
to give the set of commensurate fields. An equiva-
lent geometrical analysis has been done in Ref. [59]
following a somewhat different line of reasoning, but
with the same final result for the commensurate fields.
The analysis of commensurability conditions can be
done most conveniently in scaled coordinates (33). In
these coordinates, the ground-state configuration cor-
responds to a regular triangular lattice with the pe-

riod Ga = 1/27®¢/V/3B,. Tt is convenient to consider

the orientation of the layered structure with respect to
this lattice rather than vice versa. The layered struc-
ture fits this lattice only if it runs along one of the
crystallographic directions (see Fig. 6b). This direc-
tion (m,n) is defined by the lattice vector ey, ,, which
can be expanded over the two basic lattice vectors:
€(m,n) = mer + ney. For nonequivalent directions, m
and n must be relatively prime numbers (i.e., there
is no integer other than one that divides both m and
n). Any such direction corresponds to a set of matching
fields, denoted by By, ) (N). We also let a(y,. n)s O(m,n)»
and q(,,,n) denote the lattice parameters corresponding
to such an orientation. Immediately, we obtain

A(m,n) = €(m,n) = GaVm? +mn +n?. (36)

It is useful to write the unit vector z perpendicular
to the layers in terms of e, ,). This vector is labelled
S(m,n) in Fig. 6b and is given by

€(m,n) X X

(37)

S(mn) =2 =
(m,n) emm)

Commensurability means that the projections of the
two basic lattice vectors on s(,,,,) must be integer mul-
tiples of the number of layers, i.e.,

€1 " S(m,n) = ﬁ7d7 €2 " S(m,n) = m7d7 (38)
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(in scaled coordinates, the interlayer distance is vyd).
Using (36) and (37), we rewrite these conditions as

ER

n

AAF Y L' ] 39
2 "4 vVm?2 + mn + n? 7 (39)
V3, n = . (40)

Vo a——
2 T Vm?+mn+n?

These equations mean that m/n = m/n. Because m
and n are by definition relatively prime, the set of
allowed m and 7 is simply given by m = Nm and
n = Nn. Therefore, we can represent the commensu-
rability condition as

V3

5 an = Nvm?2 + mn + n?vd,
which gives the following set of commensurate fields,
distances between neighboring rows b = Nd, and ra-
108 (1)

(41)

V3 Dy
B Ny =Y2 42
(m.m) (N) 2 N2vyd?2(m?2 +mn + n?)’ (42)
V3
Yaa
b = e )
V3/2

m2 +mn+n2’

Finding the parameter ¢, ) for a general orien-
tation is a more complicated problem. Defining the
direction to the nearest-row site (mq,n1) (see Fig. 6),
we have

e(m’n) .e(mhnl)

q(m,n) = =
( ) |e(m n) |2
|mm1 +(m1n+mn1)/2+nn1| .
m?2 + mn + n? (45)
Expressing the neighboring-row separation via
(m17 n1)7
He(m’”) < e(mhnl)” 7&A|m1n - mn1|
b(myn) = =

vm?2 +mn + n?

and comparing it with Eq. (43), we can see that the
pair (my,n1) must satisfy the condition

€(m,n)

|min —mn| = 1. (46)
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It is well known from the theory of numbers that for
any relatively prime pair (m,n), there exists a com-
plementary pair (mq,nq) satisfying this condition, and
there is a general recipe to find complementary pairs
based on the Euclid algorithm (see, e.g., Ref. [60]).
Moreover, because the combination min — mn; does
not change under the substitution m; — my + m,
ni — ni +n, there is an infinite set of pairs that satisfy
condition (46) (physically, this corresponds to different
lattice sites in the neighboring row). Therefore, the
problem to find ¢, ) can be formulated as follows:
among all pairs (mq,n) satisfying condition (46), find
the pair that minimizes |mmy + (min+mny)/2 +nnq|
and use this pair in Eq. (45). (Practically, we need
not, search to very high-order directions.) In the case
n = 1 and arbitrary m, the choice of (m1,n1) is obvi-
ous, (m1,n1) = (—1,0), and we obtain

m+1/2
m2+m-+1

A(m,1) = (47)

We stress that these results essentially rely on
the linear London approximation, which implies a
very strong inequality aa > ~d, or equivalently,
Nvm2+mn+n? > 1. The number of vortex-free
layers per unit cell is given by N — 1. The case N =1
represents a special situation where all the layers are
filled with vortices and are equivalent. It is interest-
ing to note that even for a dilute lattice, we can have
Josephson vortices in every layer (N = 1) in the case of
high-order commensurability (m,n > 1). In an ideal
situation, the lattice transfers with changing the mag-
netic field between different commensurate configura-
tions via a series of first-order phase transitions. The
number of competing states rapidly increases as the
field decreases.

A full analysis of the structural evolution requires
consideration of the energy. In the London limit, a very
useful expression for the energy of the general lattice in
Fig. 6a has been derived in Ref. [60]. We outline this
derivation and present the final result in a somewhat
different form. For the lattice in Fig. 6a, the interaction
energy in the London limit is given by

2
T

8

{1+>\Zb
/dydz{l—l—/\

int __
Jl

>

1k

X

Z—z (27l)* + B—Z(k—ql)] 2] }_1 -

(2my)?
b2
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Using the formula

o0

Z (k+v

k=—o

m sh (27u)
u ch (27u) — cos (27v)

1 T

)2-|-u2 -

we can sum over k and integrate over y, leading to

|

sh2mgy(1)

77)\ab

b

int _ B_g b2
gl 8m 2wA2,

£y o

=1

sh (b/Aab)
ch (b/Aap) — 1

[0

with g, (2) \/(b/Qﬂ'Aab + 7222 and r = by/a. This
expression significantly simplifies in the intermediate
region b < 27\, where we can use the expansion

sh(b/Aay) 27023,
ch(b/Aap) —1 ~ b2

gn(1) ch[2mgy(l)] — cos 27rql

71'Aab
b

6
and drop b2/ (2mAa)” in gy(z) meaning that gy(z) —

— rz. This allows us to represent the interaction en-
ergy in this regime as [57]

it _ B B:®
J 2
8 (471') )\ab>\c
SEEN %o + In2+Gr(r,q)| (48)
—In| ————— —In
2 "\ oA NB, ) TP Ling

with vg = 0.5772 being the Euler constant and

wr
6

> cos (2mql) — exp (—2mrl)

Gr(r.q) = ~ 1[ch (2rl) — cos (2mql)]

- %ln(%rr). (49)
The dimensionless function G, (r,q) depends only on
the lattice shape. Its absolute minimum corresponding
to the triangular lattice is given by G (v/3/2,1/2) =
—0.4022. A peculiar property of Gr(r,q), follo-
wing from the rotational degeneracy, is that this func-
tion also has this value for the whole set of pairs
(1,4) = (T(m,n)>q(m,n)) corresponding to the different
lattice orientations. In particular, for (m,n) = (m, 1),

we have

GL(

This function also has very peculiar behavior at small
r, which is important for the statistics of metastable
states [58]: at » — 0 it acquires peaks at all rational
values of ¢ = k/l. Large-order peaks with the denomi-
nator [ develop as r drops below 1/(2xl).

V3/2 m+1/2

m24+m+1"m2+m+1

) =G (V3/2,1/2).

6 ZKOT®, Bem. 3 (9)
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For layered superconductors, we have

0
" B,dN’

B,

r=N?
B, g

b= Nd,

with B, g2 = ®9/(yd?) and, adding the energy of iso-
lated Josephson vortices, we can write the total energy
of the lattice as

B2
le(N7q7h) = 8 +
B, ®, 1 1
o o |5in | 5 ) +1.432
D W [2 " (h) +1432+ GL(r,q)|  (50)

with h = 27B, /B, 42 and r = N?h/2r. For a given
h, the ground state configuration is determined by the
minimum of Gz (N2h/2m, q) with respect to discrete N
and continuous ¢. As follows from Eq. (42), perfect fits
where GG, reaches its absolute minimum occur at the
set of reduced fields h = h(y, »)(N), where

V3

N2(m?2 4+ mn +n?)’

Pm,n) (N) = (51)

At these fields, this energy reproduces the result in (35).
The field dependence of G for the ground state
is shown in Fig. 7. The continuous London model
does not not accurately describe layered supercon-
ductors at high fields. To obtain lattice structures
in this region, one has to consider the more general
Lawrence—Doniach model. The transition between the
aligned lattices have been studied within this model by
Ichioka [61]. However, our analysis in the next section
shows that at many fields, the true ground state is not
given by an aligned lattice.

4.2, Evolution of ground-state configurations
within the Lawrence—Doniach model

The accurate analysis of lattice configurations
within the Lawrence—Doniach model which we report
in this section was only published in short proceed-
ing [62]. Independently, such numerical analysis was
done by Nonomura and Hu [63], with fully consistent
results.

At high in-plane magnetic fields, the spatial varia-
tions of the field are very small and can be neglected in
the first approximation. In this limit, the only relevant
degrees of freedom are the superconducting phases and
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Fig.7. Upper panel: The field dependence of the re-
duced energy functions for the London model (G
upper curve) and the full Lawrence-Doniach model
(G = Gy,
we subtracted from G(h) its fit at small h given by
Eq. (58). Values of commensurate fields . ) (N)
are shown in the top axis and the corresponding indices
for several of them are written in the format (m,n)n.
As expected, G'1, reaches its absolute minimum for ev-
ery hiy.»)(N). The lower panel shows the field de-
pendence of N for the ground state for both mod-
els (stripes for the London model and circles for the
Lawrence—Doniach model). The same grey level codes
the value of N in the upper panel and the London-
model plot in the lower panel

lower curve). For clearer comparison,

the relevant part of LLD energy (1) per unit volume,
fo = Frip/(L.LyL.) — B%/(87), can be written as

folon(r

dy V¢n

LL

+ﬁ(1_005<¢n+1_¢n+ ))] (52)

To simplify the analysis, we introduce the reduced in-
plane length § = y/vd and the reduced magnetic field
h = 27yd® B, /®g, which yields

JH

+ 1 —cos(¢nr1

2md By
@0

folon(r)

_|_
- ¢n + hg)] (53)

with ey = Ey/vd. Varying this energy with respect to
the phases ¢, (7), we obtain an equation for the equi-
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librium phase distribution (equivalent to (2) when we
ignore the spatial dependence in B,):

v§¢n + sin (¢n+1 - ¢n + hg) -

—sin (¢n — ¢n—1 + hy) =0. (54)

We again consider a general lattice shown in Fig. 6a
with the in-plane period a, with N layers between
neighboring rows, and with the relative shift ga be-
tween relative rows, where a and NV are related to the
reduced field as h = 27yd/Na. Tt is sufficient to find
the solution for the phase in one unit cell, 0 < y < a,
1 < n < N, using appropriate quasiperiodicity condi-
tions for the phase. The total lattice energy per unit
volume can be represented as

Bacq>0

fo = mu(quvh)v (55)

where the reduced energy w(N,q,h) per unit cell is
given by

u

xl2<

Using a relaxation method to solve (54) numerically
within one unit cell, we can find the energy u for any
given values of N, ¢ and h. To match London repre-
sentation (48), we write u(N,q, h) in the form

N a
%Z/d@x
=
) 1= cos (Gnss — 6 +hg)| . (56)

dpn
dy

1.1
u(N,q,h) = §1nﬁ +1.4323+ G(N,q,h)

(57)
where the function G(N, ¢, h) defined by this equation
approaches the London limit G (r = N2h/2m,q) as
h — 0.

We first consider the influence of the layered struc-
ture at small fields. As shown in Appendix B, in
the lowest order with respect to h, the layered struc-
ture gives an orientation-independent correction to en-
ergy, G ~ (h/32)In(Cy/h). In the higher (quadratic)
order, the layered structure generates an orientation-
dependent correction to the lattice energy, leading to a
breakdown of the “elliptic-rotation” degeneracy of the
lattice. To study this effect quantitatively, in Fig. 8,
we plot the computed field dependences of G(N,q,h)
for several lattice orientations at the corresponding re-
duced commensurate fields Ay, »)(IV) given by (51). At
small h, h < 0.05, neglecting a very weak dependence
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Fig.8. Left panel: Field dependence of the reduced-energy function G(N, h, q) for several lattice orientations (m,n) at the
commensurate field A, ) (V). In the right panel, to enlarge small differences, we plot the difference between G and its fit
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obtained using all data for h < 0.05

on orientation, we can accurately fit the correction from
the layeredness as

h 11
G(h)—Gr~ -—=In HO o752,

32 h (58)

It follows that among the two aligned structures shown
in Fig. 5, the layers favor the lower structure with in-
dices (1,1). However, for h < 0.1, the energy difference
between the two structures is tiny and external factors
may select the lattice orientation in real samples. On
the other hand, we can expect that at sufficiently large
fields, the ground-state configuration is selected by the
layered structure even in real samples.

Energy corrections due to the layered structure fa-
vor lattice stretching along the layer direction and shift
down the matching fields. This effect is strongest for
the aligned lattice (1,0) and is illustrated in Fig. 9.
In this figure, we show the field dependences of
G(N,h,0.5) for different N. When a smooth func-
tion is subtracted from these dependences, local min-
ima are realized at fields 5(1,0) (N) that are smaller
than the London matching field A1 g)(N). The shift
5(1,0) (N) = h(1,0)(N) rapidly decreases with increasing
the magnetic field. We found that this shift is described
by the equation

h1,0)(N)
1+ (0.63/N2) In(19/h1 0)(N))

h(1,0)(N) ~

For other lattice orientations, the shift is smaller but
still noticeable. To quantify the energy difference be-
tween the aligned lattices due to the layered structure,

-0.32
-0.34
© 036
-0.38
—-0.40
0
€ 0.002
g
& —-0.004
|
=< -0.006
O
—0.008
Fig.9. Upper panel: The field dependences of the

reduced-energy function G = G(N,h,0.5) for the
aligned lattice (1,0) and different N. Vertical bars
mark locations of the London-model commensurate
fields h(1,0)(IN). Lower panel shows the difference be-
tween G(N,h,0.5) and a smooth curve through the
points (h1,0)(N), G(N,h(1,0)(N),0.5)) (dashed line
in the upper panel). We can see that the matching
fields are systematically displaced to the lower values
ﬁ(l,o)(N), as illustrated for N = 4. The inset in the
upper panel shows the lattice structure at the displaced
matching field for N = 3 (solid symbols) in compari-
son with the regular-hexagon structure at the London
matching field
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we fit their energies at the shifted matching field for
h < 0.1 to smooth curves and subtract these curves.
This procedure gives G(1,1y — G(1,0) & —0.011A%.

We can now explore the evolution of the ground-
state configuration by direct minimization of the en-
ergy with respect to the lattice parameters N and
q defined in Fig. 6. For this, we have computed
the reduced ground-state energy defined as G(h)
= miny [G(N, ¢, h)]. We checked that if we consider
only aligned lattices, the results of Ichioka [64] are re-
produced for the transition fields between lattices with
different, periods N in the case of large anisotropy. For
comparison, we also made a similar calculation for the
London model and computed the field dependence of
the function Gp(h) = miny,[GL(r = N?h/(27),q)]
where G, (r,q) is defined in Eqs. (48) and (49). In
Fig. 7, we compare field evolutions of these ground-
state reduced energies and the corresponding c-axis pe-
riod N. For clearer comparison, we subtracted from
G(h) its fitted correction from G'1,(v/3/2,1/2) at small
h given in (58). Values of the London commensurate
fields Ay, »)(IN) are shown on the top axis with sev-
eral low-order fields marked by corresponding indices
using the format (m,n)n. As expected, G (h) reaches
its absolute minimum for every Ay, »)(IN). We can ob-
serve several interesting properties. Because the lattice
orientation with indices (m,n) = (1,0) is not favored
by the layered structure, several low-N configurations,
3 < N < 6, expected at h = h o) (N) are skipped.
However, as can be seen from the inset in Fig. 10, for
N =5 and 6, the ground-state energy is smaller than
the energies of these states at h = h(1 )(IV) only by
a tiny value. For h < 0.2, the actual evolution of the
lattice structure starts to roughly follow the London
route (except for skipped state (1,0)s near h = 0.16)
but with a small negative offset, i.e., we again see that
the matching fields are systematically shifted down in
comparison with their London values.

The field dependence of the energy function
G(N,q,h) in an extended field range is shown in
Fig. 10 for the ground state and competing states.
Each curve corresponds to the minimum of G(N, ¢, h)
with respect to ¢ at fixed h and N and is marked
by its value of N. We also show the first six lattice
configurations that are realized with decreasing the
field. The inset in the figure blows up the low-field
region. We can see that many lattice configurations
compete for the ground state at small fields and at
several fields (e.g., at h ~,0.19,0.137,0.105...), one
or more lattice configurations have energies very close
to the ground-state energy. We also note that there
are several extended field ranges where in the ground
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state all layers are homogeneously filled with vortices
(N = 1) even in the region of the dilute vortex lattice,
e.g.,0.115< h < 0.17 and 0.21 < h < 0.38.

We see that an accurate consideration within both
London and Lawrence—Doniach models shows that the
ground state of the Josephson vortex lattice at low
temperatures does not give any preference to the lat-
tices aligned with the layers. Therefore, for equilib-
rium field dependences we cannot expect to observe
any strong features at the matching fields of these lat-
tices, B(1,0)(IV) and By 1)(N) given by Eq. (43). Nev-
ertheless, clear commensurability oscillations have been
observed experimentally in underdoped YBCO in irre-
versible magnetization [28,29] and nonlinear resistiv-
ity [30]. The period of these oscillations corresponds to
the fields By o) (IV), indicating that in this material, the
aligned lattice (1,0) occurs to be preferable for some
reason. We note that in real materials, due to small
differences between the energies of different configura-
tions, aligned lattices can be selected by external fac-
tors, such as interaction with correlated disorder (twin
boundaries or dislocations) or the sample surface. We
also see in what follows that the aligned lattice with in-
dices (1,0) is favored by thermal fluctuations. Finally,
we mention the work of Ikeda and Isotani [64], who
performed similar analysis of the ground-state configu-
rations for the field applied along the layers within the
lowest Landau level approximation.

4.3. Properties of metastable states in the
London model

Josephson vortices can slide easily along the layers,
but there is a huge barrier for the motion across the lay-
ers. This property makes it difficult to equilibrate the
lattice. It also leads to the appearance of a very large
number of metastable states. The properties of these
states have been considered in Refs. [57, 58]. Systema-
tically, metastable states at a fixed c-axis period can be
sampled by first slowly cooling down the superconduc-
tor at a fixed magnetic field and then in a second step
decreasing the magnetic field at a low temperature [58].
We assume that the prepared starting configuration is
the aligned lattice. As the c-axis period N is locked
by the layers, the lattice stretches along the layers with
lowering the field, i.e., the ratio r = b/a decreases.
During stretching, these fixed-N metastable states go
through a sequence of nontrivial structural transforma-
tions. In the London regime, the aligned configuration
becomes unstable at ro &~ 1.51/(27) ~ 0.24 [57]. This
instability is driven by the repulsion between neighbor-
ing vortices in the vertical stack. At low r < rq, the pa-
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Fig.10. Field dependence of the energy function G(IV, ¢, h) for the ground state and competing states. Each curve corre-

sponds to the minimum of G(IV, ¢, h) with respect to ¢ at fixed h and N. The curves are marked by the value of V. Lattice

configurations in scaled coordinates are shown at six marked fields. The inset illustrates competition between different
configuration at smaller fields

rameter ¢ continuously decreases starting from 1/2 to
lower values. We found that the layeredness stabilizes
the aligned structures: the critical ratio decreases to
0.231 at N =3 and to 0.224 at N = 2. Tt is important
to note that the shear instability occurs in the ground
state only for N =1 (we consider this structural phase
transition in detail below). At higher values of N, this
instability only occurs when the state for this given N
is metastable with respect to other values of N. This
instability is considered in detail below.

The statistics of metastable states has been ex-
plored in detail in Ref. [58], where the similarity to
the phyllotaxis phenomenon in biological systems has
been pointed out. For every r, we can find all local
minima ¢;(r) of the energy function G(r,q) with re-
spect to ¢ and plot all these minima in the ¢r plane

(see Fig. 11). The obtained pattern is quite peculiar.
At r > rg, the only minimum is at ¢o(r) = 1/2. Be-
low r = rg, this trajectory symmetrically splits into
two. As r decreases further, many more minima ap-
pear forming a complex hierarchical structure. The
pattern can be viewed as a series of “quasibifurcations”
occurring near rational values of ¢. “Quasibifurcation”
corresponds to the appearance of a new branch below
a certain value of 7 in the vicinity of the old branch.
The branches turn at the points (g(m,n),"(m,n)) corre-
sponding to ground states. The evolution of the initial
state is described by the two main trajectories sym-
metrically split from ¢ = 1/2. The trajectory with
g > 1/2 “quasi-bifurcates” at ¢ = Fj/Fj1 where Fj
are the Fibonacci numbers and approaches the “golden
ratio” (v/5 — 1)/2 ~ 0.618 as r — 0. Tt goes through
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Fig.11. Levitov's hierarchical plot of metastable states
in the ¢r plane [58] (in this plot, ¢ is selected within the
interval [0.5,1]). Each dotted curve is obtained from
the local minima of the function G'1(r, ¢) with respect
to ¢ at a fixed r. New branches appear as a result of
“quasibifurcations”. Each “quasibifurcation”
ated with a rational number. The branches turn at the
POINts (¢(m n), "'(m,n)) corresponding to ground states
(marked by squares and labelled by the indices mn in
the plot)

is associ-

ground states with the indices also described by the Fi-
bonacci sequence, (m,n) = (Fji1, Fj). Unfortunately,
these exciting predictions have never been verified ex-
perimentally because there is no direct way to probe
the structure of the Josephson vortex lattice.

4.4. Elasticity of a dilute Josephson vortex
lattice

Josephson vortices easily slide along the layers but
motion across the layers is strongly suppressed by in-
trinsic pinning from the layers. Due to the intrinsic
pinning, z-axis fluctuations of the vortex lines occur
via kink formation. In moderately anisotropic layered
superconductors, such as YBCOQO, in which the c-axis co-
herence length is larger than or comparable with the in-
terlayer spacing d, the intrinsic pinning potential V' (u.)
can be described as a cosine function of the z-axis vor-
tex displacements V(u.) = —Vjcos(2mu,(z)/d). But
such description becomes inadequate in strongly lay-
ered materials, where the structure of kinks is very
similar to the structure of a pancake vortex.

In strongly layered materials at low temperatures,
we can neglect kink formation and take only in-plane
lattice deformations u(r) = w,(r) into account (planar-
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fluctuations model).
nonlocal elastic energy in the k-space as

In this case, we can derive the

1 / &k
72 ] @2n)3
x [en (K)k? + can(K)k? + cook?] [u(k)[* (59)
with the elastic moduli
B,®,
Ce6 = W7 (60)
B2 /An B, ®,
K) — z — (61
en (k) 142, k2402 (k24k2)  (87)2Aap e (61
B2 /4x
k) = z
) = T CEN
B, ®, 1
+ In . (62)
(47)? AapAc dy/az? + (’ykgc/ﬂ')2
While the tilt [e44(k)] and compression [eqq (k)] mod-

uli are not sensitive to the exact lattice structure, the
formula for the shear modulus cg¢ is valid only for per-
fect matching between the Josephson vortex lattice and
layered structure, which is achieved at matching fields
(42). For a general lattice shown in Fig. 6a we can
derive a more general expression for cgg using repre-
sentation (48)—(49) for the lattice energy [57] and the
relation between lattice deformation and change of the
parameter ¢, 0g = rdu/dz,

Ba: <I>0

Ce = Wﬂ% (r,q) (63)
with
5 0? 2 2
o6 (7, q) = 4r 6_q2GL(T’ q) =—4m)"r
0o _ ain2 _
o ZCOS(Qqu) ch(2mrl) — sin (27“51) 1lsh(27r1“l).
— (ch(27rl) — cos(2mql))

This formula reproduces the result in (60) for the com-
mensurate configurations (r,q) = (r(n,m)s Un,m))- It
also describes instability of the aligned configuration
(¢ =1/2) at r =~ 0.24 [57].

The softest mode in the planar model corre-
sponds to shearing between neighboring planar arrays
of Josephson vortices. The harmonic approximation
breaks for this mode first. The simplest extension of
the linear elastic energy that describes strong interpla-
nar fluctuations amounts replacing the continuous dis-
placement field u(r) by the displacement of the planar
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arrays uj(z,y) = u(z,y,jb) and replacing the shear
term in the energy by the nonlinear interaction term
c du
B8 (22

2
/ 2 <dz) -
2
2 (7" Cee Uj+1 — Uj
1-— g R E—— )
—>/dr ;[ cos<7r . >]

(27)° b
Such an extension has been used to study the strong-
fluctuation region [65].

5. DENSE LATTICE, B, > ®,/2n~d?

The distance between Josephson vortices decreases
as the magnetic field increases, and at the field B ~
~ Bep = ®g/2myd? = B, 42 /21 becomes of the order of
the vortex-core size. In contrast to the Abrikosov vor-
tex lattice, for which overlap of the vortex cores marks
the disappearance of superconductivity, for the Joseph-
son vortex lattice this field just marks a crossover to a
new regime, the dense Josephson vortex lattice. The
existence of this regime was pointed out by Bulaevskii
and Clem [25]. In the dense Josephson vortex lattice,
the gauge-invariant phase difference is a smoothly in-
creasing function of distance and the Josephson cou-
pling energy can be treated as a small perturbation.
This allows for the following quantitative description.

5.1. Very high fields: Quantitative description
using an expansion in the Josephson coupling

At high fields B, > B, vortices homogeneously fill
all the layers. This means that all layers are equivalent,
and the in-plane lattice period is @ = 27 /h (see Fig. 12).
When the strong inequality B, > B (h > 1) is sa-
tisfied, Eq. (54) for the phases can be solved using an
expansion with respect to the Josephson currents. In

OSSR R RN
Cer bl Tt
SRR YA RN R RN
b § .
Y

Fig.12. Schematic distribution of currents in the dense
Josephson vortex lattice. The circles mark the centers
of the Josephson vortices
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the zeroth order, we can construct a regular lattice with
an arbitrary translation from layer to layer by using the
form

n(n—l)‘

o) = k=

This corresponds to the gauge-invariant phase differ-
ence

0
302,3”1 =

= kn + hy,

i.e., the planar lattices in the neighboring layers are
shifted by the fraction ¢ = k/27 of the in-plane lattice
spacing a. In the first order, we obtain

2 1 . _ . _
Vy¢5z) + sin (kn + hy) — sin (k(n — 1) + hy) =0
which gives

e [sin (kn + hy) — sin (k(n — 1) + hg)].

Substituting this solution in (53), we obtain the energy
per unit volume up to the second order with respect to
the Josephson coupling,

We can immediately see that the minimum energy
fmin(h) = (g7/7vd?)(1—1/Rh?) is achieved at k = 7, cor-
responding to the triangular lattice shown in Fig. 12.
The phase distribution in the ground state is given by

nn—1) 2(=1)"
2 + h?

on(y) m 7 sin (hy) . (65)
From this solution, we can recover the distributions of

the in-plane and Josephson currents
).

2(=1)"
h

2rd By
@0

]y,n(y) i 'VjJ cos <

Jen(y) = —(=1)"js x
4(;21) "

2wdB,y
g

. [ 2rdB,y
X sin | — +

(5)

D
and a weak modulation of the in-plane field

A schematic distribution of the currents is shown in
Fig. 12.

|\

(1) 3
B, (2md\,)?

2rd By

By (y) = By — T{)
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5.2. Dense lattice close to the crossover region.
Structural phase transition

When the magnetic field approaches the crossover
field ®4/(27yd?), the perturbative approach of the pre-
vious section becomes insufficient and we have to obtain
a full solution of nonlinear equation (54). The general
solution for the lattice with an arbitrary phase shift x
can be written as

).

where g(y) is a periodic function, ¢ (y + 27/h) = g(y),
that obeys the equation

_ K

y+ -

(9(7+7)—9@ +h7) -
—sin(g(ﬂ)—g(

RN

h

n(n —1) 7+

+9(

d2

d—gjg + sin
_ K _ _

y—E) +hj—K) =0. (67)
The reduced energy f = f;vd>/e; can also be written
in terms of ¢(7):

27 /h 9
_ [ hdg (1 (dg
f‘/ o {2(dy) i
0

=) = (@) + hi } (68)

+ 1 —cos [g (g +
Equation (67) does not have an analytic solution
and has to be solved numerically. Lattice configura-
tions of the dense lattice have also been investigated
using the code developed for the lattice with a general
period N. Both approaches give identical results. Nu-
merical investigation shows that the triangular lattice
with Kk = 7 gives the ground state for h > 1.332. At
h =~ 1.332, the system has a second-order phase tran-
sition to a lower-symmetry lattice (see lattice struc-
tures for h = 1.35 (@) and h = 1.2 (b) in Fig. 10).
The field dependence of k£ and the corresponding lat-
tice shift ¢ are shown in Fig. 13. Tkeda and Isotani [64]
found that within the lowest Landau level approxima-
tion, this structural phase transition occurs at a some-
what higher value, h ~ 1.4.
In Fig. 14, to study the validity range of the high-
h approximation in the previous section, we plot the
computed field dependence of the reduced energy to-
gether with its high-field asymptotics, derived in the
previous section. It can be seen that the perturbative
approach gives a good approximation for the energy
down to h ~ 2.
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Fig.13. Field dependence of the phase shift x and the

corresponding lattice shift ¢ for the dense Josephson

vortex lattice. At h ~ 1.332, the lattice experiences a
continuous structural phase transition
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Fig.14. Field dependence of the reduced energy for

the dense Josephson vortex lattice. The dashed line

shows the high-field asymptotic behavior. The arrow

marks the position of the structural phase transition at
h ~ 1.332

5.3. Elasticity of the dense lattice

In this section, we consider the deformation en-
ergy of the dense Josephson vortex lattice in the limit
h = 27yd® B, /®o >> 1. In particular, this energy serves
as a starting point for the analysis of fluctuations. We
follow the approach used by Korshunov and Larkin [66].
The starting point of the analysis is again the reduced
LLD energy in the phase approximation (53), which we
now rewrite for the general case of the phase depending
on both reduced coordinates ¥ = (Z,7) = r/vd:

F¢:E02/d2f-><

s

1
2

ddn

2
dr > — COS (¢n+1 - ¢n + hg) . (69)
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The ground-state phase distribution is given by
Eq. (65). We now consider small deformations of the
lattice and split the total phase into a smooth part v,
and the part (;En rapidly oscillating in the y direction:

one) = x4 D)
where we assume that dv, /dj < v, and gz;n < 1. Be-
cause the smooth part of the gauge-invariant phase dif-
ference is given by h(§+ (vn+1 — v) /h)+7n, the quan-
tity w, = — (Unt1 — V) /h represents a local lattice
displacement. Substituting representation (70) in the
energy (69), expanding with respect to ¢,, and drop-
ping rapidly oscillating terms, we obtain
) 2

F¢NEOZ/dr —( ) %(
1

+ (énﬂ - qz?n) Sin (Ung1 — n + hi + m)J .

As ¢, rapidly oscillates only in y direction, we keep
only its § derivative. Minimizing this energy with re-
spect to ¢, gives

+ un(T) + an (t), (70)

dén

don
dr

(71)

~ sin (V41— +hy) + sin (v, —vn—1+hy)
On = (—1)" 7 .
Substituting this solution in Eq. (71) and averaging
with respect to ¢, we finally obtain the coarse-grained
energy of the deformed dense Josephson vortex lat-
tice [69], which we write in real units:

B,
Fy ~ %Z/drx
[(dvn>2
X R J—

dr

This energy describes the phase fluctuations in a large
in-plane magnetic field. The first term is just the
usual in-plane phase stiffness energy. In the elasticity
theory language, this term represents the compression
(dvp/dy) and tilt (dv,/dx) contributions. The second
term represents the shearing interactions between the
Josephson vortex arrays in neighboring junctions. It
originates from the Josephson coupling energy and can
be viewed as the effective Josephson coupling renormal-
ized by the in-plane magnetic field. Roughly, we can
state that as the magnetic field increases, the effective
Josephson energy decreases as 1/h> and the effective
Josephson length A jj, increases linearly with h,

21v2d® B,
P

cos (Up—1 + Vpr1 — 2v0,) + 1
(Ash)?

(72)

AthAth (73)
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For the deformation slowly changing from layer to
layer, we can expand the cosine in Eq. (72) and obtain
the harmonic elastic energy of the dense Josephson vor-
tex lattice in terms of smooth phase deformations:

E
F¢,e[% 702/(11‘ X

X dvn ?  (Un—t1 +Upg1 — 20,)° _
dr 2(Ash)? B
w/d
_@/ d2kH / dk.
2d ) (27)2 27
—m/d
2 (1 —cosk.d) 612
x|k + (Aj—h)]' " (74)

Using the relation between the phase perturbation
and lattice displacements

hu*
Ay (exp(ik.d) — 1)’

’Uk

(75)

we can rewrite the elastic energy in a more traditional
way, via lattice deformations

w/d
P /dk| / dk.
o=t =5 | (2n)2 27
—m/d

X [enn (k)R + cok?] [ut? - (76)

with the elastic constants
B 1
L
4 kgAab

3

k.) = .{ R—
2 32m3dPy4N2,

011( Ce6 =

where we use the notation k., = 2sin (k.d/2) /d. We
note that in our case, the nonlocal tilt modulus ¢4 (k)
is identical to the compression modulus ¢ (k.) and
they coincide with elastic moduli within the anisotropic
London model (61) and (62) in the limit kA, >
> 1,k Ac. These elastic energies (74) and (76) can
be used to study weak fluctuations and weak pinning
of the dense Josephson vortex lattice. The shear mod-
ulus is field independent in the dense-lattice regime. It
can be verified to match the dilute-lattice result (60)
at the crossover field.

5.4. Lattice configurations and magnetic
oscillations in finite-size samples

In this section, we consider dense-lattice configu-
rations in finite-size samples. This study is actually
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motivated by experimental observations of magnetic
oscillations in small-size BSCCO mesas with lateral
sizes 2-20 um [44-48]. Such small-size mesas behave
as stacks of intrinsic Josephson junctions with strong
inductive coupling between the neighboring junctions.
The detailed analytic theory describing the magnetic
field dependences of lattice configurations and the crit-
ical current has been developed in Ref. [67]. Lattice
structures also have been extensively explored numeri-
cally in [45,47,68,69], and both approaches give iden-
tical results. In a small-size sample, the lattice struc-
ture is determined by two competing interactions: the
interaction with boundaries, which favors an aligned
rectangular configuration, and the bulk shearing inter-
action between neighboring layers, which favors a tri-
angular configuration. Depending on the mesa width L
and the magnetic field, two very different regimes can
be realized. In the large-size regime, the vortex lat-
tice is triangular and is only deformed near the edges.
In the small-size regime, the lattice structure expe-
riences a periodic series of phase transitions between
rectangular and triangular configurations. The trian-
gular configurations in this regime are realized only in
narrow regions near magnetic field values correspond-
ing to an integer number of flux quanta per junction
where the interaction with edges vanishes. The typi-
cal width of the mesa that separates these two regimes
is given by the length Ay, in Eq. (73), which is pro-
portional to the applied magnetic field. Hence, the
crossover from one regime to another is driven by the
magnetic field and the corresponding crossover field
scale is By, = B..L/Ajy = L®y/(2nv%d?); for B, > By,
the small-size regime is realized. The size—field phase
diagram is shown in Fig. 15. The regimes are char-
acterized by distinctly different oscillating behavior of
the critical current as a function of the magnetic field.
In the small-size regime, the critical current oscillates
with the period of one flux quantum per junction, sim-
ilar to a single junction. In the large-size regime, due
to the triangular lattice ground state, the oscillation
period is half the flux quantum per junction.

The quantitative study of the described behavior is
based on reduced energy (69), which has to be rewrit-
ten for the finite-size case 0 < y < L = L, and also
assuming that the system is uniform along the field
direction, i.e., [dr — L, fOL dj. This energy has to
be supplemented with the boundary conditions at the
edges, d¢,/dj = 0 for § = 0,L. The important pa-
rameter in the case of a finite-size sample is the total
magnetic flux through one junction, ® = B,dL, which
is connected with the reduced magnetic field by the
relation hL = 27®/®;. In the dense-lattice limit, we
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again use the representation in Eq. (70) containing the
smooth phase v,, and the rapidly oscillating compo-
nent ¢,. It is natural to assume that the interactions
with the boundaries preserve the alternating nature of
the vortex lattice. In this case, symmetry allows taking
the smooth phase in the form

un(y) = an + (=1)"v(y), (77)

where a describes the translational displacement of the
lattice and v describes lattice deformations with re-
spect to the triangular lattice. In particular, it can be
shown that the maximum value of v(J), Vmee = 7/4,
describes the rectangular lattice, i.e., identical ¢, in
all layers up to a 27 phase shift. The rapid phase cor-
responding to the smooth phase (77) becomes ¢, (7)) ~
(—=1)"2 cos(2v) sin (o + hy) /h%. Averaging with re-
spect to the rapid oscillations for such v, (7) gives the
reduced energy f4 = FyAy/(NL,Ep) per layer and per
unit length along x:

~

fo = —% [sin (2vg) cos a— sin (2vr,) cos (hL+a)] +

L 2
+1/d— @
2 ] Y\ 4y
0

where the bulk part directly follows from Eq. (72) for
general v, (7). Varying this energy with respect to v(7),
we obtain that it obeys the static sine-Gordon equation

1+ cos(4v)

. @®

d?v 2
d_g2 — ﬁ Sin (4U) =0 (79)
with the boundary conditions
d 2
—11(0) = —— cos(2vg) cos
dy h (80)
dv

d_g(L) = —% cos(2vr,) cos (RL + q) .
Substituting the solution of these equations in energy
functional (78) gives the energy as a function of the lat-
tice shift o, fy(a). The minimum of the energy with
respect to a gives the ground state for given h and L.
Higher-energy states at other values of « typically carry
a finite current. The total Josephson current flowing
through the stack is proportional to dfs/da. Taking
derivative of functional (72) with respect to o and as-
suming that at every « it is minimized with respect to
v(u), we obtain the total current in units of j;A;L,:

J(a)

1
& X
x [sin (2vg) sina — sin (2v7,) sin (hL + )] . (81)
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Fig.15. Size-magnetic field phase diagram of the confined Josephson-junction stack. The dashed line separates the large-

size and small-size regimes. Black lines correspond to integer flux quanta per junction. Shaded areas mark regions of the

rectangular-lattice ground state. Representative lattice configurations in two points are illustrated by plots of oscillating
Josephson currents in two neighboring layers. Small ellipses mark the centers of the Josephson vortices

An important consequence of this equation is that a
nonzero current exists only if the surface deformations
vo and vy, are finite.

The general solution of Eqgs. (79) and (80) can be
written in terms of the elliptic integrals, and an elab-
orate analytic analysis is possible [67]. Here, we sum-
marize the most important results of this analysis for
two limit cases.

In the large-size regime, L > Ay, or B, < By,
the smooth alternating deformation v(g) has a solution
in the form of two isolated surface solitons [67]. For
example, near the edge ¥ = 0, such a soliton solution
decaying from the surface into the balk is given by the
well-known formula for the sine-Gordon kink

tg v = tg vy exp (—2\/§gj/h) , (82)

where the boundary value vy can be found from
the boundary condition (80), leading to tg (2vg)
= V2 cosa. Using this solution, we can find the surface
energy and surface current for the edge ¥ = 0 as func-
tions of the lattice displacement «:

1
fs(a):ﬁ(l—\/2+cos2a), (83)
1 sin 2« (84)

js(a) = — .
Js(@) V2h /2 + cos2a
The 2a periodicity of these results is a consequence of
the triangular lattice structure: the change of a by 7
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corresponds to the vertical lattice displacement by one
layer. A similar solution is realized at the opposite edge
g = L. Tts energy and current can be obtained from the
above results using the substitution a — a4 hL. For a
wide stack, we can neglect the interaction between the
solitons, and the total Josephson current is then given
by the sum of two independent surface currents,

J(a) = js(a) + js(a + hj’)

The critical current J. can be found as a maximum of
J(a) with respect to o, which gives the following result

in real units:
(57,

where J; = jsLL, is the maximum Josephson cur-
rent through the sample at zero field, and the os-
cillating function F(x) has the period 7 and in the
range 0 < x < m/2 can be approximated by F(x) =
~ 0.1284-0.888 cos(x)+0.021 cos(3 ) . We can see that
in this regime, the product B, J. has the periodicity of
half the flux quantum per junction and reaches max-
ima at the points ® = dLB, = j®o/2 with By J; maz ~
~ 1.035J;®P0/(2wdL). This corresponds to the low-
field part of the plot in Fig. 16. All other properties
of the sample should also oscillate with the period of
half the flux quantum. Such oscillations of the flux-flow
resistivity in BSCCO micro-mesas were first detected

P
2mdL B,

2ndL B,

J.(B) = J, o

(85)
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Fig.16. lllustration of the oscillating magnetic field de-

pendence of the critical current for L = 4A ;. Crossover

between the ®¢/2 and ®q periodicities is seen at

hL = B,/Br ~ 1. Shaded areas show the regions
of stable rectangular lattice

experimentally in Ref. [44] and later confirmed by sev-
eral experimental groups.

In the small-size regime L < Ay, or B, > By, the
interaction with edges dominates. As a consequence,
extended regions of the rectangular lattice appear in
the phase diagram (see Fig. 15). The energy of the
rectangular lattice, v = £ /4, coincides with the well-
known result for a single junction

——sin )

hLY\ . hL
n (7> sin (a + 5
and has the minimum fp..; = —2|sin (hL/2)| /h at a =
—hL/2 + 67 /2 with 6 = sign[sin (hL/2)]. An ac-
curate analysis [67] shows that the rectangular lattice
is stable with respect to small deformations at «
—hL/2+4m/2in the regions |hL/2m— (k+1/2)| < 1/4
only if the inequality

lsin (hL/2)| < tg (\/ii/h) V2

2

frect(a) = (86)

(87)

is satisfied. These regions are plotted in the phase di-
agram in Fig. 15. This means that the rectangular
lattices first appear in the ground state at the points
hL = (k4 1/2)27 for L/h < I; = arctan (v2) /V2 ~
~ 0.675. This corresponds to the dashed line shown in
the phase diagram in Fig. 15. But if L/h is only slightly
smaller than this value, the rectangular lattice becomes
unstable as the current increases and the configuration
at the critical current still corresponds to the deformed
lattice. The accurate analysis shows that there is an-
other typical value of the ratio L/h, L/h =l ~ 0.484,
below which the rectangular lattice remains stable up
to the critical current.
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In the region h > L, the rectangular lattice is real-
ized in the most part of the phase diagram except nar-
row regions in the vicinity of the integer-flux quanta
lines hL/2m = ®/®, = k, where the interaction with
the edges vanishes. Switching between the rectangular
and triangular lattices in the ground state occurs via a
first-order phase transition [67] at the transition fields
determined by the equation

_(mI\| 3L
sin (T) ‘ =5
At high fields, the critical current approaches the clas-
sical Fraunhofer dependence for a single small junction,
Jp(®) = Jy|sin(n®/Py)|/|7P/Pg|. Two important de-
viations persist at all fields and sizes: (i) Near the
points ® = k®y, due the phase transitions to the tri-
angular lattice, the critical current never drops to zero
and actually always has small local maxima; (ii) Away
from the points ® = k®,, the critical current is reached
at the instability point of the rectangular vortex lattice
and it is always somewhat smaller than the “Fraun-
hofer” value Jp(®).

In the region B ~ By, the crossover between the
two described regimes takes place. In the oscillations
of the critical current, this crossover manifests itself by
breaking the ®,/2 periodicity: the maxima at the half-
integer flux-quantum points ® = (k + 1/2)®, progres-
sively become larger while the maxima at the integer
flux-quantum points ® = k®y become smaller. This
crossover behavior of the critical current is illustrated

in Fig. 16. Such behavior was indeed observed experi-
mentally in very narrow BSCCO mesas [45,47,48].

(88)

6. THERMAL FLUCTUATIONS

In this section, we consider thermal fluctuations ef-
fects for the Josephson vortex lattice. Confinement of
the vortex cores in between the layers leads to strong
suppression of the vortex motion across the layers,
which can only occur via formation of kinks. There-
fore, as a first step, we can neglect these energy-costly
displacements and consider only planar fluctuations
of vortices along the layers. This simple model de-
scribes fluctuation behavior in the most part of the
field-temperature phase diagram, but it occurs to be
insufficient for describing the melting transition of the
lattice. In general, thermal effects for Josephson vor-
tices are much weaker than for a pancake-vortex lat-
tice, and phase transformations are expected only in
the vicinity of the transition temperature. On the other
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hand, due to the intrinsic pinning potential and involve-
ment of kink excitations, the overall behavior near the
melting line is rather complicated and, in spite of quite
extensive theoretical effort [65,66,70-74] and numeri-
cal simulations [75, 76], there is no clear consensus on
the nature of the melting transition and structure of
the phase diagram for the magnetic field aligned with
the direction of the layers.

6.1. Thermal effects for the dilute Josephson
vortex lattice: the intermediate phase problem

A standard first step to study thermal fluctuation
effects is to evaluate the mean-squared local fluctuation
displacement from elastic energy (59)%):

d*k T
2\ _
<U > o / (271')3 Cll(k)kz + C44(k)k% + 666]63 ) (89)
Introducing the reduced wave vector k as
ke = kpzke /7, ky = kpzky /7, (90)

k.= kBZﬁ];za

where kpy = /47 B, /¢ is the average wave vector of
the Brillouin zone, we rewrite this integral in a more
explicit form

(u?) = (47r)2szAgT/ Pk | (1 1\
V%0 B, (27)3 B2o4)Y
g1
1 bo/d N
+ | =+h—— |2+ 2
k? \/ 1+ 32k2 4
with § ~ 1. Evaluating this integral yields
> 127
) 0 (91)

ai  boy/In (bo/d)eo
where ag = /7®o/B, and b /®o/vB, are the

typical lattice constant in the y and z directions. From
this result, we can obtain an estimate for the typical
temperature at which fluctuations become strong [65]:

Tf ~ bo\/ In (bo/d)Eo(Tf)

Unfortunately, this temperature is located very close
to T,., where we cannot use the approximations un-
derlying Eq. (59), e.g., neglect thermal activation of

(92)

4) As in most theoretical papers, the temperature is measured
in energy units.
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kinks and antikinks. We can conclude that the model
of planar fluctuations given by elastic energy (59) is not
sufficient to describe the melting of the Josephson vor-
tex lattice [65]. The temperature scale in (92) is much
higher than the corresponding temperature scale for
the pancake vortex lattice [19], meaning that thermal-
fluctuation effects for the Josephson vortex lattice are
much weaker than for the pancake vortex lattice.

We can estimate the typical temperature above
which kink formation strongly influences the fluctua-
tion displacements of the vortex lines. In an isolated
line, the typical distance between thermally excited
kinks is given by

Liink = &kink €Xp(Erink /T), (93)

where Epinr & deg In(yd/Eqp) is the kink energy. Usu-
ally, it is assumed that the preexponential factor &g
is of the order of the in-plane coherence length &gy, [72].
Analysis of fluctuations of the order parameter near
the core [77] gives a somewhat more accurate estimate
Ekink ~ Eapr/T/deo. Typical k, contributing to fluctu-
ation displacement (89) can be estimated as k, ~ m/by.
Therefore, the kinks start to contribute to thermal wan-
dering if Lginr < bp. This gives an estimate for the
typical temperature

Think = Ekink/ In(bo /Epink)- (94)
In the limit v > &,;,/d, we obtain
In(vyd/&ap)
Trink = deo(Think) e - 95
kink o(T k)ln(bo/fkmk) (95)

It follows that even though this temperature is smaller
then Ty in (92), it is also located close to the fluctu-
ation region near 7. and very slowly decreases with
increasing the magnetic field.

The model of planar fluctuation belongs to the uni-
versality class of the three-dimensional XY model, and
hence the phase transition described by this model has
to be continuous. In spite of the insufficiency of this
model, this suggests that the melting transition for the
magnetic field applied along the layers may become
continuous for sufficiently high anisotropy. It was in-
deed observed experimentally in [78] and in [30] that
the melting transition in YBCO becomes continuous
when the magnetic field is aligned with the layers. Con-
tinuous melting of the Josephson vortex lattice also has
been observed in numerical simulations in [75]. The
simulation parameters in this work, however, corre-
spond to the regime of dense lattice, which is considered
below.
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Crystal Smectic

I
I

Fig.17. Possible phases for the field applied along the

layers. Grey level illustrates the average vortex den-

sity. In the intermediate smectic phase suggested in

Ref. [72], density is modulated only in the direction
perpendicular to the layers

A description of the fluctuating Josephson vortices
taking kink-antikink formation into account is much
more complicated problem and possibilities for ana-
lytic progress are quite limited. General scenarios of
Josephson-vortex-lattice melting have been discussed
in [72]. It was argued there that an aligned lattice may
melt via an intermediate smectic phase, in which the
average vortex density is modulated only in the direc-
tion perpendicular to the layers but no order is pre-
served in the direction of the layers, as illustrated in
Fig. 17. The density modulation period has to be equal
to the integer number of layers. The developed Landau
theory of the liquid-to-smectic transition suggests that
this transition has to be of the second order. Static and
dynamic properties of the intermediate smectic phase
have been described in detail. In particular, it was ar-
gued in [75] that this phase is characterized by a finite
but very large tilt modulus, corresponding to a very
small transversal susceptibility pu, = B,/H., and by
very small in-plane resistivity. Both these properties
appear due to the thermally activated “superkink” ex-
citations, in which one vortex is moved across the layers
by one smectic period. While the density modulation
remains static and oriented parallel to the layers, these
excitations may facilitate tilting of the magnetic induc-
tion with respect to the layers and flux motion in the
z-axis direction. In spite of its physical appeal, the
theory in [72] is not quantitative. It does not predict
locations of the transitions in the field—temperature
plane, their thermodynamic signatures, and the width
of the intermediate-phase region. The very existence of
the intermediate smectic phase has been not rigorously
proven. Alternatively, the crystal may melt directly
into the liquid via a first-order phase transition.

A more quantitative study based on the density-
functional theory was performed in [74]. The intrinsic
pinning potential in this study was modeled by the co-
sine function and its strength was used as an adjusting
parameter. It was found that the smectic phase ex-
ists for a sufficiently strong periodic potential only for
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one type of aligned lattice, which in our notation cor-
responds to (m,n) = (1,0), and with one empty layer
between the layers filled with Josephson vortices, i.e.,
with N = 2. According to the analysis in Sec. 4.2, such
a lattice is realized in the ground state within the field
interval [0.8 — 0.98]®¢/(27yd?). The melting scenario
via the intermediate smectic phase is most probable in
this field range.

6.2. Elimination of the lattice rotational
degeneracy by thermal fluctuations

The dilute lattice at small fields is approximately
degenerate with respect to elliptic rotations, as was dis-
cussed in Sec. 4. This degeneracy is partially eliminated
by the intrinsic pinning potential and by the corrections
to the intervortex interactions due to the discreteness
of the layered structure. The latter effect becomes no-
ticeable only at high magnetic fields approaching the
crossover field. Because the Josephson vortices mainly
fluctuate along the layer direction, the fluctuation cor-
rection to the free energy depends on the lattice ori-
entation with respect to the layers and also eliminates
the elliptic degeneracy. Therefore, the Josephson vor-
tex lattice at small fields gives a physical realization of
a system in which the ground state is highly degenerate
at zero temperature and this degeneracy is eliminated
by thermal fluctuations. Similar behavior is realized in
some frustrated magnetics and is known as “order as an
effect of disorder” [79]. As a natural way to prepare the
ground state is to cool system in fixed field, it is impor-
tant to understand how the ground-state configuration
evolves with the temperature.

In this section, we consider the orientation-depen-
dent entropy correction to the free energy. This allows
us to trace evolution of the ground-state configurations
with increasing field at finite temperature. Qualita-
tively, fluctuations favor soft lattices, with smaller elas-
tic constants. We can then expect that the entropy cor-
rection favors the aligned lattice (1,0), because for this
lattice the shear deformations occur along the closed-
packed direction.

The orientation-dependent entropy correction is de-
termined by the short-wavelength lattice deformations,
and the long-wavelength elastic approximation in the
previous section is not sufficient. The elastic energy
for planar deformations in the whole Brillouin zone is

given by
Bk & k
F / Jvr(k)

(2m)3 2

| 2

|u(k) (96)

with



MKIOT®, Tom 144, Boim. 3(9), 2013

Josephson vortex lattice in layered superconductors

2
(I)JVL(k) = 4—; X
(ky — @) + K2
" Z(m 2 h QP TNy Q) TR
QZ

I+ A2,Q2+N2Q2

) » (97)

where Q = (Q,, Q) are the reciprocal-lattice vectors.
The fluctuation correction to the free energy is given
by
dkydk. C
/ / = . (98)
‘I>JVL(k)

Calculation of this correction is described in detail in
Appendix C. Combining the result of this calculation
with the London-limit presentation of the lattice in-
teraction energy (48), we represent the orientation-
dependent part of the total free energy at finite tem-
perature in the form

25 ga> :

71'@0

Bz €o

:

T

€0

5fa - 30_

(99)

The numerically computed orientation-dependent cor-
rection ¢,(6,h) in the range 0.001 < h < 0.1 is well
described by

9a(6,h) ~ gg(h) cos(66)
with (100)
0.01

90(h) ~ n(514/h)

The fluctuations give the largest negative contribution
at # = 0, meaning that they indeed favor the aligned
lattice (1,0).

We compare the orientation-dependent entropy cor-
rection with the correction due to the layered structure
considered in Sec. 4.2. We can see that these correc-
tions compete: the first one favors the (1, 0) orientation
while the second one favors the (1,1) orientation. The
entropy correction decays with decreasing fields as /B,
and at small fields always exceeds the “layeredness” cor-
rection, which decays as BZ. We estimate that the “lay-
eredness” correction exceeds the fluctuation correction
when B, exceeds the temperature-dependent field scale
2/3
T/dEo

Bz T (I>0
In(Crdeo/T)

T = 2myd?

with Or ~ 2.6 - 10*.
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6.3. Fluctuations and melting of the dense
Josephson vortex lattice

Using elastic energy (74), we can evaluate the mean-
squared fluctuation of the in-plane phase

w/d
dT [ d*k dk. 1
2\ /2y _ & Il
(9n) 2 on) Eo/(QW)z/ T Ry 8
—x/d Tha (Ash)2

with s,(k,) = sin(k,d/2) and the lattice displacement

up = =N (Upg1 —op) [he
w/d
<u2> _ dTA?,/ d2k|| / dk. 48§
- EO (271')2 27 2 + 8 84 ‘
—7/d Il (AJh)2 z

Renormalization of the effective coupling is determined
by the average

<(Un,1 + Un+1 — 2Un)2> et

w/d
B d_T/ a’Kk| dk, 1652
B EO (271')2 2w 2 8 4.
—r/d ki + A )

All above integrals diverge logarithmically at large k.
This divergence has to be cut off at ky ~ 1/&,. As
usual for quasi-two-dimensional systems, the weak in-
terlayer coupling cuts off the logarithmic divergence at
small k. Evaluating the integrals, we obtain
(&)
gab '

(32). -
Ajh)

3T
<(Un71 + Un41 — 2vn)2> ~ 6 <¢i> ~ l < fab

Fluctuations become strong and the harmonic approx-
<(vn_1 + Upp1 — 2vn)2>
~ 1, corresponding to (¢2) ~ 1/6 and (u?) ~ a®/3
with @ = A j/h being the in-plane lattice constant. This
gives the temperature scale

TA?
7Th2E[)

T
27TEO

Ash

(0n) e

~

imation breaks down when

Eo(Ty) _ _ =o(Ty)d
ln (AJh/fab) 7r1n (AJh/fab) )

As Ep(0) > T. (typically, for BSCCO, Ey(0) ~
~ 250-300K), this temperature scale usually corre-
sponds to temperatures close to T.. It is somewhat
lower than the corresponding temperature scale (92)
for the dilute lattice and even smaller than tempera-
ture scale (95) for kink formation in the dilute lattice.

Ty =

(101)
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We next discuss the melting transition of the dense
lattice based on the energy (72) describing weakly cou-
pled two-dimensional systems. Behavior of such a
system has to be similar to that of the layered XY
model [80] and a layered superconductor in zero mag-
netic field [81]. In the ordered phase of such systems,
below the Berezinskii—Kosterlitz—Thouless temperature
for a single layer, a weak interlayer coupling is always
relevant, cannot be treated as a small perturbation,
and restores three-dimensional long-range order. The
transition in such systems is expected to be continuous
and to occur slightly above the Berezinskii—IKosterlitz—
Thouless transition of an isolated layer that occurs at
the temperature T = wEo(Tkr)/2. This is in spite
of the fact that the interplane fluctuations actually be-
come strong at the temperature (101), which is signifi-
cantly smaller than the transition temperature Tk in
an isolated layer.

The melting transition of the dense lattice was
studied numerically in [75] using the frustrated XY
model. The authors claimed that the melting tran-
sition is continuous at high field and changes to a
first-order transitions when the field drops below B =
= &y /2V/37d* ~ 1.8%,/2wyd?. Tt is not clear how uni-
versal this field is. In principle, it may be sensitive to
the kink energy, which depends on the ratio yd/&,p.

Experimentally, an indication of the melting tran-
sition in the dense-lattice regime was found in small-
size BSCCO mesas in [46], where the temperature de-
pendence of magnetic oscillations discussed in Sec. 5.4
was explored. It was found that in the field range
0.6-0.8 tesla, the magnetic oscillations of the flux-flow
voltage rapidly decrease with increasing temperature
and are completely suppressed by thermal fluctuations
at temperatures ~ 4 K below the transition tempera-
ture.

7. SUMMARY

In this review, we considered in detail the static
properties of the Josephson vortex lattice following
from the Lawrence—Doniach model in the London
approximation, which mostly describes properties of
superconductors in terms of the distribution of the
order-parameter phase. We reviewed the properties
of an isolated vortex as well as the structure and
energetics of the vortex lattice in both dilute and
dense regimes. In addition to standard properties, our
consideration includes quite subtle nontrivial effects,
such as the influence of thermal fluctuations on the
orientation of the vortex lattice. We did not touch on
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dynamic properties of the lattice, which have became
a separate large field.
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APPENDIX A

Calculation of the nonlocal line-tension energy
of a single line

For deformations with wave vectors |k,| > 1/A.,
screening effects can be neglected and the energy
variation is determined by the phase part of en-
ergy, which we write using scaled in-plane coordinates

(Z,9) = (z/vd,y/~d) as

5FzEOZ/d;E/dgx
X |:% (v||¢n)2 — COS (¢n+1 - ¢n) -
— 5 (Vaol) "+ cos (2

where ¢£LO) (7) is the straight-vortex solution. The phase
of the deformed vortex obeys the equation

vﬁ¢n + sin (¢n+1 - ¢n) — sin (¢n - ¢n71) =0 (A2)

with the condition ¢ (Z,@(Z)) — ¢o(Z,u(Z)) = 7 defin-
ing the vortex core and @(Z) = u(z)/vd. In the elastic
limit |du/dz| < 1, at distances smaller than the typical
wavelength of deformation, the phase can be approxi-
mately represented as

On(2,9) = o [y — u()].

On the other hand, at large distances, we can use the
London approximation in Eq. (A.2) and find the phase
using the Fourier transformation. This gives the phase
perturbation ¢M (k) = ¢(k) — ¢(?) (k) in the form

_ 2mik.u(k,)

oM (k) o (A.3)
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where (k;,ky, k.) = (ydky,vdk,,dk,) and k* = k2 +
+ k2 4+ k2. We use this result in a mixed (k,,y, z)-re-
presentation, which is obtained by the inverse Fourier
transform of the above equations with respect to §
and Zz,

oV (E, ky) & (ks )V Ko(kaT)
with ¥ = (7, 2).

We split the total energy loss given by Eq. (A.1) into
the x-gradient and transverse parts, 0F = F, + F.,.
The z-gradient part,

R=2Y [dr [aga0.,

can be computed by introducing an intermediate scale
1 < R < 1/k, that splits the integral into the two con-
tributions, from small and large distances. The contri-
bution from 7 = \/y? + 22 < R with 2 = n —1/2 is
given by

e fu(%)'T [ ()

“Yn

where y,, = \/R?> — (n — 1/2)2. The quantity

Z/dy V60 g(lnR-l-C’)

—Yn

(A.4)

is determined by the exact phase distribution in the
core. Using the accurate numerical solution, we esti-
mate Cy ~ 0.93. The contribution from the region
r > R is computed using Eq. (A.4),

E,
Fps & %/dz / &PF (Vo)

>R
By [dkyiy, -
- 3 [ SRl

Computing the integral

/d V2 Ko (ko)) ~7r< kQR ;)

>R

E / PE [V Ko(ker)]

>R

where vg &~ 0.5772 is the Euler constant, we obtain

™ dk, 2 .
F,<- ~—F =
om0 [ 528 (2 = ve 5 ) i)

Combining the parts F, « and Fj -, we obtain

™ dk, 2 1

x (k).

(A.5)

7 ZKST®, Beim. 3 (9)

In the transverse part

nyzEOZ/dgﬁ/dgjx
X B (Vg¢n)2 — 08 (Gnt1 — On) —

_ % (vg@({))) + cos (¢n+1 ¢,(10))] ;

we replace qﬁ(o)(’, Z) with ¢n (y — a(Z), z) and repre-
sent ¢ (2,) as 6n(2,9) = 01 (§ — (@) + 6n(@,9).
where the Fourier transform of ¢,(Z,) at small wave
vectors is given by

1 1 -~
o(k) = 2mi <— — = > kytu(ky) =
PRk
o2mik? - -
)

We see in what follows that the main contribution to
F,, comes from the distances of the order of a typi-
cal wavelength of deformations far away from the core.
Therefore, we can expand with respect to (;En and can
use the linear and continuous approximation

By [ K o e
e 3 [ o 5 Y1000

Substituting ¢( ) and computing the integral with re-
spect to k and k., which converges at ky, k. ~ kg, we

obtain
T dky ~ -
Py SEo [ SRR

Finally, combining (A.5) and (A.6), we obtain the line-
tension energy of the Josephson vortex in (31), pre-
sented already in the real coordinates with the numer-
ical constant C; = 2exp(—yr + Cy).

(A.6)

APPENDIX B

Discrete and nonlinear corrections to the
Josephson vortex phase and energy at large
distances from the core

The phase distribution ¢, (y) in the Josephson vor-
tex core obeys Eq. (20). We measure the in-plane co-
ordinate y in units of the Josephson length A; = ~d

defining the dimensionless coordinate § = y/vd and
rewrite (20) in the form
Lo 4 o (5) — 00 ()] +
dy?
+ sin [¢p—1 (9) — én ()] = 0.
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At large distances from the core, n? 4+ #> > 1, this
equation transforms into the isotropic London equation
V24 = 0. In this region, ¢, () can be approximated
by a continuous function ¢ (g, Z) with n — Z. Using the
Taylor series for the difference ¢ (¢,z + 1) — & (3, 2), we
obtain

sin[o (7,2 + 1) — 6 (y,2)] +
+sinfp(7,2—1)— 0 (7,2)] =
0 19% 1 (8¢> %9

RE *

T o 12974 2 7%

Therefore, the phase equation to 4th order in the gra-
dient (which is small at large distances) is given by

19 1(00\" 9%
12 0z4 0z ) 0z2

¢ ¢

7 * 5 =0. (B.1)

This equation can be solved iteratively. For the Joseph-
son vortex located at § = 0 in between the layers
0 and 1, the zeroth-order solution ¢° (correct to the
second order in the gradients) is given by ¢°(y, 2) =
= —arctg[(Z — 1/2)/7] (we note that for Z = n, we
have ¢°(y/vd,n) = ¢J%(y) in (21)). The first-order
correction §¢'(y, z) obeys the equation

o 1 84¢0 1 3;& 2 52¢° B
Vieg = BE 0z 072
_ 25sin(2¢%) + 5 sin(4 ¢°)
B 87t ’

where 72 = 72 + (2 — 1/2)%. Using the solutions of the
inhomogeneous Laplace equations

. 2 0 . 2 0
V2 = smﬁ4¢ Sp= _smij InF,
T T
5, sin4g® __sin4g¢®
Vo= = 2 0= T

we build the solution for §¢' (7, ¢°) and arrive at the
correction

in(2 ¢°
56(5.2) = 228 (7 4 050) +
in(4¢°
B L o). (B2)

Here, we have added the solution sin(2¢")/#? of the
homogeneous Laplace equation with an unknown nu-
merical constant Css. Comparison of these asymp-
totic expressions with the full numerical solution gives
Cs¢ = 4.362. The result in (B.2) is given in unscaled
coordinates in (28).

In a similar way, we can derive a nonlinear/discrete
correction to the energy far away from the core. The
reduced energy contribution to the Josephson vortex
from the region 7 < Agp/d is given by

EJy = /dyz [ (%) +1—cos(dpe1 — ¢n)] .

In the region ¥ > 1, we can again use the expansion
with respect to a small gradient along the z axis, which
leads to the result

N |1 7deN\? 1700\
wn [ oe3() 45 (5) -

1LFL N /d
_L(%s T_1 (o)
52 24 \ 0z ’
In the lowest order with respect to small gradients, this

gives the correction to the energy due to the layered
structure

55JU=—2—141:X
82¢30 2 8¢0 4
< d?fK =) (%) | ®
1<<f‘<<kab/d

In the case of a single Josephson vortex, this formula
is not very useful because the integral is formally di-
vergent at small distances and is determined by the
small-distance cut-off. In the case of a finite vortex den-
sity, however, a generalization of this equation allows
obtaining a nontrivial correction to the vortex-lattice
energy.

In the vortex-lattice case at a finite in-plane field,
following the same reasoning, we obtain the correction
to the reduced energy per unit cell in (56):

5u=l/d2f'x
s
1 (82¢°\° 1 [9¢° !
a2y (2 )

where integration is performed over the unit cell and
#°(T) is the vortex-lattice phase within the London ap-
proximation. To estimate the dominating contribution,
we use the circular-cell approximation for the lattice
phase. In this approximation, supercurrents flow radi-
ally within the cell ¥ < a. = \/Q/—h and vanish at its

boundary, and hence the gauge-invariant phase gradi-
ent is given by
1 7

10 ce
j¢ =—+4+—= for0<r<a,
F Oa Fooa?

) (B'4)
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where o = tg~1(Z/7) is the polar angle, whence
0¢°/0z + hy — —cos(a)(1/r —r/a2). The integral
formally diverges at small distances. This divergence,
however, is due to the vortex-core energy. To find the
nontrivial correction to the lattice energy, we subtract
the diverging single-vortex term. The dominating con-
tribution to the rest part comes from the second (non-
linear) term

2T

1
ou ~ —E/dox X
0
Qe _ 4
1 T 1
F dr cos? -—=) -= B.5
x/r 7 cos” (a) l(r a%) =i (B.5)
0
and calculation gives the result
h Ch
ou=—In—. B.
u= g ln— (B.6)

From the fit of the numerically computed energy to this
formula, we obtain the numerical constant C}; = 110.
We note that this correction does not depend on the lat-
tice orientation with respect to the layers. Interaction
with the layers also eliminates the “elliptic” rotation de-
generacy of the lattice described in Sec. 4. Expansion
(B.5), however, is not sufficient to find the orientation-
dependent correction to the energy. To obtain that
correction, one has to obtain the next-order expansion
with respect to the gradients (6-th order terms).

APPENDIX C

Calculation of the orientation-dependent
fluctuation correction to the free energy

In this appendix, we present the calculation of the
entropy correction to free energy (98) based on the pla-
nar elastic energy (96). To facilitate calculations, we
again introduce the reduced wave vectors k defined in
Eq. (90) and the corresponding reciprocal-lattice vec-
tors Q = (Qy, Q.). In this presentation, the reciprocal
lattice becomes a regular triangular lattice with the

unit vector Qo = {/2m/ /3 and the area of the Bravais
cell is equal to 7. Using the new variables, we represent
® ;v 1, (k) in the compact reduced form as

B2 ~
®rvr(k) = F;\%¢JVL(k)7 (C.1)
drvi(k) =
Ny - Qy)2 + k2 52
- e v_|, (C.2)
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Fig.18. a) Josephson vortex lattice in reduced coor-
dinates rotated at a finite angle 6 with respect to the
layers in real space such that the layers align with the
crystallographic direction (3,1). b) The corresponding
reciprocal lattice and illustration of two selections for
the basis used in the calculation of the entropy cor-
rection: the basic wave vectors G2 aligned with the
lattice, and the basic wave vectors L 2 aligned with
the layers

where by = 47T\apAcBa/®o = 2(Nap/d)*h > 1 and
ky. = (0, ky k).

We assume that the lattice is rotated at a finite
angle 6 with respect to the layers selected in such a
way that the layers are aligned with one of the crys-
tallographic directions, as sketched in Fig. 18. This
means that the lattice, in general, has the form of a
misaligned lattice sketched in Fig. 6a and is character-
ized by the aspect ratio r = yb/a and the shift param-
eter, ¢q. To compute the sum over the reciprocal-lattice
vectors, we use two equivalent parameterizations illus-
trated in Fig. 18. The first parameterization uses an
expansion over the two basic vector of the tilted lattice,
Q = nGi + mG» with m,n = 0,+1,£2... For such
an expansion, we can simply represent the component,
of Q along the two main directions of the tilted lattice,
(k1, ko), shown in Fig. 18,

Ql = ?mQO7

Q:=(n+5)Q  (C3)
This gives Q% = (n? +nm +m?) Q2. The (y,z) com-
ponents of the wave vectors are related to the (1,2)
components by axis rotation. For example, for the com-
ponent I::y in Eq. (C.2), we have Ey = cos Ok + sin Ok,.
This parameterization allows us to naturally trace the
dependence on the rotation angle 6. The second pa-
rameterization utilizes the basic wave vectors aligned
with the layers,

Q = nLl + mLZa

L1=<0,\/§>7 Lz=<\/ﬂ,—q\/§>, (C.4)

7*
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This basis allows easily tracing the dependence on the
lattice-structure parameters r and ¢. It also allows re-
ducing ¢y 1, (k) to a simpler form. Substituting pre-

s (k- mymr) 2
=V Z K (ky —my/Tr, k) .

m=—0oQ

drvr (k)

sentation (C.4) in Eq. (C.2) and taking the sum over
n, we obtain

sh [2\/7r_rn(l~cy—m\/7r_7'7 IN%)]

X

with k(ky,ks) = /bs' + k2 + k2. This formula con-
tains only one summation, which makes it convenient
for numerical evaluations. On the other hand, the de-
pendence on the rotation angle here is not obvious and
is hidden in the dependence on the parameters r and q.

The sums over the reciprocal-lattice vectors in
Eqgs. (97) and (C.2) formally diverge logarithmically
at large Q (Q). Correspondingly, the sum over m in
Eq. (C.5) also logarithmically diverges. This divergence
is due to the single-vortex tilt energy and has to be cut
at the core size, @, ~ 1/vd. This energy was consid-
ered in details in Sec. 3.1. We split the reduced elastic
matrix ¢y, (1~<) into the single-vortex, ¢sv(1::m), and in-
teraction, ¢;(k), terms,

bavi(k) = by (kz) + b;(k).

The single-vortex term ¢g,(k,) can be obtained from
Eq. (C.2) by replacing the summation over Q with in-
tegration,

s ( (k- myr) B2

h [ZWm(lgy—m\/ﬁ, I::m)] — cos [271' (qm-l—lz:z\/;)] -

mrm? sh [2/7rk(my/7r, 0)] )
k(my/7r,0) ch[2y/mre(my/mr,0)] — cos(2mgm)

buu (F) =/d2Q

™

QG +k Q)
b+ Q2 +E2 b+ Q2

Using Eq. (31), we obtain the line-tension term in
real units, ®,(k;) = 7(B,/®0)e k2 In(Cy/ydk,) with

e; = Eo/vd and C; ~ 2.86. This corresponds to
the following result for the reduced line-tension term
Gsv(ky) = (472 /B2) @4, (ks ):
bus i) e 12 1 409 (C.5)
sv x ~ 2 hk2 .

for k2 < 4/h. In the interaction term pi(k) =
= ¢JVL( ) — ¢sv(ky), the logarithmic divergence is
compensated and the sum over Q converges roughly at
Q ~ 1. In particular, using the presentation in (C.5),
the interaction term can be represented as a converging
sum,

sh [2\/7r_r/<a(l-cy —my/7r, Ich)]

=V L R )

m=—0o0

= Y U [k

0==%1

wrm? sh [2y/7rk(my/7r,0)]

ch[2y7T (R, —m T, Eo)| — cos[2m (gm + Eay/T)]

(m + 6/2) \/_—k]

k(m/7r,0) ch[2\/7re(my/mr,0)] — cos(2mrgm)

with

+ Y sUlo,

0==+1

m+5/2)\/_]>
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1 .
U [k, ky] = 5 {ky\/bxl + 2+ k2 +
+ (=b, ' +k2)In (ky + /b + k2 +k§>] .

Here, the terms with UJ...,...] originate from the
single-vortex contribution ¢, (k,), which is properly
decomposed to compensate the summation divergence.
In spite of its scary look, this formula is the most suit-
able one for numerical calculations.

From Eq. (98), we obtain the entropy correction to
the free energy in reduced form

3/2
=g (52"
dk, dk c
/ / _, (C6)
¢JVL(k)
where [, ... denotes the integral over the Brillouin

zone and C is a dimensionless constant. The inte-
gral over k, is formally diverging. This divergence
is due to short-wavelength excitations in the vortex
cores and does not contribute to the angular-dependent
correction. To separate the regular anisotropic correc-
tion, we subtract the isotropic single-vortex contribu-
tion from the total free energy and represent the result-
ing anisotropic correction as

T (B,\*?
) == () w  ©)
with
Pky. | o (Fa

o = / —y/dkxln%. (C.8)

i .

LT L v e

This presentation is used in Eq. (99). .

The large logarithmic factor in ¢, (k) in Eq. (C.5)

allows obtaining a useful approximate formula for g,.
As ¢i(k) ~ 1, the integral over k, converges at
kp ~1/y/In(1/h) < 1, meaning that for a log-accuracy
estimate, we can neglect the k,-dependence of ¢;(k).
Evaluating the integral over k,, we obtain

—WB/Z Ky 6:(kye)

with A ~ 1. If we neglect the small parameter b, !
in ¢;(k,.), then the integral in this formula becomes
field independent and the only field dependence of g,
for h — 0 is given by the factor [In(A/h)]~1/2.

~

Yo ~ (C.9)
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ge
fo.960 —
0.0035F ,, +(1.9  h=0.0067 -
—0.9637 .'
10.962(5, 1) "g}0-00302 co—é_(69)' e
0.0034 | (4, ) o
fooeaf (D% . -
0.0033}  |-a- D% ~ .
10.966(- © a1l &
.
00032l © 01 02 03 0.49’?:,5, |
0.0031 | e 1
A
0.0030 L ’,r"s’ o O-presentation
,,o‘/ --a-- (7, q)-presentation
0.0029 | .* . ;
0.01 0.1
h

Fig.19. The inset shows an example of the numerically
computed angular dependence of the reduced entropy
correction g,(6) defined by Eq. (C.8) for h = 0.0067.
Solid squares show results obtained using the represen-
tation for fixed lattice parameters r and ¢ in Eq. (C.6).
This computation is done for layers oriented along the
crystal directions (m,n), which are also shown in the
plot. Open symbols are obtained using the representa-
tion with the explicit dependence on the lattice rotation
angle # using expansion (C.3). The dashed line is the
fit to the formula go + g¢ cos(66). The main plot shows
the field dependence of the coefficient gs and the cor-
responding fit in Eq. (100)

We numerically computed the reduced entropy cor-
rection g, for different lattice orientations and reduced
fields h. An example of the angular dependence of
go for h = 0.0067 is shown in the inset of Fig. 19.
We found that in the range 0.001 < h < 0.1, the
orientation-dependent part of g, can be well fitted by
formula (100). The dependence gg(h) is plotted in
Fig. 19. The positive sign of gs(h) means that the fluc-
tuations give the largest negative contribution at 8 = 0,
i.e., they indeed favor the aligned lattice (1,0). We also
can see that the effect occurs to be quantitatively rather
small, at least in the considered Gaussian-fluctuation
regime.
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