СКЕЙЛИНГ В РЕЖИМЕ КВАНТОВОГО ЭФФЕКТА ХОЛЛА В НАНОСТРУКТУРАХ *n*-InGaAs/GaAs

Ю. Г. Арапов, С. В. Гудина, А. С. Клепикова, В. Н. Неверов^{*}, С. Г. Новокшонов, Г. И. Харус, Н. Г. Шелушинина, М. В. Якунин

Институт физики металлов Уральского отделения Российской академии наук 620041, Екатеринбург, Россия

Поступила в редакцию 22 октября 2012 г.

Экспериментально исследовано продольное $\rho_{xx}(B)$ и холловское $\rho_{xy}(B)$ магнитосопротивления в режиме целочисленного квантового эффекта Холла в наноструктурах n-InGaAs/GaAs с двойной квантовой ямой в диапазоне магнитных полей B = (0-16) Тл и температур T = (0.05-70) К до и после ИК-подсветки. Проведен анализ полученных результатов в рамках гипотезы скейлинга с учетом эффектов межэлектронного взаимодействия.

DOI: 10.7868/S0044451013070171

1. ВВЕДЕНИЕ

Режим квантового эффекта Холла (КЭХ) можно рассматривать как последовательность квантовых фазовых переходов диэлектрик-металл-диэлектрик при сканировании уровнем Ферми плотности состояний неупорядоченной 2D-системы в квантующем магнитном поле. В рамках концепции скейлинга [1,2] (см., например, обзор [3]) ширина перехода между соседними плато КЭХ, так же как и ширина соответствующего пика на зависимости $\rho_{xx}(B)$, должны стремиться к нулю по степенному закону T^{κ} . Здесь $\kappa = p/2\xi$, множитель p определяет температурную зависимость времени неупругого рассеяния $\tau_{in} \propto T^{-p}$, ξ — критический индекс длины локализации.

Первые экспериментальные исследования гетероструктур $In_{0.53}Ga_{0.47}As/InP$ с низкой подвижностью [4] показали справедливость скейлинговой гипотезы: температурные зависимости ширины пиков ρ_{xx} и величины, обратной максимальному наклону на ступеньках ρ_{xy} , $(d\rho_{xy}/dB)_{max}^{-1}$, для этих структур хорошо описываются степенным законом T^{κ} с показателем $\kappa = 0.42 \pm 0.05$ при T = (0.1-4.2) К для уровней Ландау с номерами 0^- , 1^+ , 1^- . В более поздних работах также наблюдалась скейлинговая зависимость для переходов плато–плато в режиме

КЭХ с показателем степени $\kappa = (0.42-0.46)$ для гетероструктур GaAs/AlGaAs и квантовых ям *p*-SiGe. Но в некоторых экспериментальных работах ставился вопрос об универсальности данного значения κ (см. обзорную статью [3]).

Более того, в работе Шахара и др. [5] обнаружены зависимости, существенно отличающиеся от критического поведения, предсказанного теорией скейлинга, вплоть до самых низких температур. При изучении перехода плато КЭХ-изолятор на серии гетероструктур GaAs/AlGaAs и InGaAs/InP при температурах до 70 мК найдена экспоненциальная зависимость ρ_{xx} от фактора заполнения $\nu = n/n_B$ (n -концентрация электронов, $n_B = eB/h)$ с обеих сторон от критического значения ν_c :

$$\rho_{xx} = \exp\left(-\frac{\Delta\nu}{\nu_0(T)}\right),\tag{1}$$

где $\Delta \nu = |\nu - \nu_c|$, а эффективная ширина перехода $\nu_0(T)$ меняется с изменением температуры по линейному закону ($\alpha T + \beta$). Это означает, что при $T \to 0$ ширина перехода остается конечной, что не соответствует концепции квантового фазового перехода.

С другой стороны, подробное исследование фазового перехода плато КЭХ-изолятор для набора гетероструктур InGaAs/InP и квантовой ямы InGaAs/GaAs в работах Пруискена и де Визера с соавторами [6] выявило универсальное скейлинговое поведение ширины перехода со средним значением критического индекса $\kappa = 0.56 \pm 0.02$.

^{*}E-mail: neverov@imp.uran.ru

В нашей предыдущей работе [7] проведен сравнительный анализ температурных зависимостей ширины переходов плато-плато в режиме КЭХ для двойных квантовых ям *n*-InGaAs/GaAs и гетероструктур p-Ge/GeSi. В то время как истинно скейлинговое поведение со значением критического индекса $\kappa = 0.48 \pm 0.04$ обнаружено в системе InGaAs/GaAs, в системах Ge/GeSi, как и в работе Шахара и др. [5], наблюдалась линейная по температуре зависимость $\nu_0(T)$. Мы связали разницу в поведении $\nu_0(T)$ с разным характерным масштабом примесного потенциала в этих системах: короткодействующий примесный потенциал в InGaAs/GaAs (сплавное рассеяние в слоях твердого раствора InGaAs) и сравнительно плавный потенциал для электронов в слоях Ge (рассеяние электронов на удаленных примесях в барьеpax).

Целью данной работы является подробное исследование переходов плато–плато квантового эффекта Холла в наноструктуре *n*-InGaAs/GaAs в рамках теории скейлинга.

2. ХАРАКТЕРИСТИКА ОБРАЗЦОВ

Исследованы 2*D*-структуры с двойными квантовыми ямами GaAs/In_{0.2}Ga_{0.8}As/GaAs, выращенные методом металлорганической газофазной эпитаксии на полуизолирующей подложке GaAs в НИФТИ Нижегородского университета группой Звонкова. Гетероструктуры представляли собой последовательность эпитаксиальных слоев, формирующих две квантовые ямы In_xGa_{1-x}As шириной 5 нм, разделенные барьером 10 нм. Структуры симметрично δ -легированы Si в барьерах на расстоянии 19 нм от гетерограниц.

Проведены измерения продольной и холловской компонент тензора сопротивления $\rho_{xx}(B,T)$ и $\rho_{xy}(B,T)$ в магнитных полях $B \leq 16$ Тл, в интервале температур T = 0.05–70 К и при разной концентрации электронов, которая изменялась путем подсветки образцов инфракрасным (ИК) излучением при наивысшей температуре эксперимента. Электрофизические параметры исследованных образцов приведены в табл. 1. Обратим внимание на резкое возрастание как концентрации, так и подвижности носителей тока после воздействия ИК-подсветки.

Темновой образец представляет собой структуру с двойной сильно связанной квантовой ямой, где присутствуют носители двух типов от подзон симметричных и антисимметричных состояний с раз-

Рис. 1. Зависимости компонент тензора магнитосопротивления $R_{xx}(B,T)$ и $R_{xy}(B,T)$ в режиме квантового эффекта Холла при T = 0.05 К (*a*) и рассчитанная картина уровней Ландау для темнового образца с двойной квантовой ямой № 3892*a* (*б*). На вставке: схематическая диаграмма профиля потенциала для образца № 3892*a*, Δ_{SAS} — энергетическая щель между симметричным (E_S) и антисимметричным (E_{AS}) подуровнями пространственного квантования

личающимися подвижностями [8]. В этом образце параметры носителей заряда в подзонах были определены при $T \ge 10$ К по квазиклассическому положительному магнитосопротивлению и эффекту Холла по формулам для носителей двух типов [9]. При T < 10 К наблюдается отрицательное магнитосопротивление, связанное с вкладом квантовой интерференционной поправки, который не позволил нам разделить носители двух типов квазиклассическим методом при низких температурах.

На рис. 1 приведены зависимости компонент тен-

06	T, K	$n \cdot 10^{-15}, \mathrm{m}^{-2}$			$\mu \mathrm{w}^2/\mathrm{R}$ c
Ооразец		1	2	3	$\mu, \mathbf{m} / \mathbf{D} \cdot \mathbf{C}$
№ 3892 <i>a</i>	$1.7 ({\rm He4})$	2.2	2.1	2.3	1.2
№ 3892 <i>b</i>	0.05 (He3-He4) 1.6 (He4)	5.0 5.1	$\begin{array}{c} 4.7\\ 4.9\end{array}$	$4.8 \\ 5.0$	2.7 2.8

Таблица 1. Концентрация n и подвижность μ носителей заряда в структурах в зависимости от воздействия ИК-излучения

Примечание. 3892а — темновой образец; 3892b — засвеченный образец. Приведены значения концентрации, определенные разными методами: 1 — квантовый эффект Холла; 2 — осцилляции Шубникова – де Гааза; 3 — коэффициент Холла в слабом поле. Во втором столбце указаны температуры, при которых определялись параметры образцов, в скобках указан способ получения температуры для засвеченных образцов: He4 — жидкий гелий 4; He3–He4 — рефрижератор растворения He3–He4

зора магнитосопротивления $R_{xx}(B,T)$ и $R_{xy}(B,T)$ в режиме квантового эффекта Холла при T = 0.05 К и рассчитанная картина уровней Ландау для темнового образца с двойной квантовой ямой. Жирной линией схематически показано движение уровня Ферми, E_F , по уровням Ландау с изменением магнитного поля.

После освещения ИК-излучением структура оказывается выведенной из баланса [8], туннельный эффект сильно ослабевает и система представляет собой две почти независимые квантовые ямы с разной концентрацией носителей. Параметры носителей в ямах были определены методом фурье-анализа осцилляций Шубникова – де Гааза [10].

На рис. 2 приведены зависимости компонент тензора магнитосопротивления $R_{xx}(B,T)$ и $R_{xy}(B,T)$ в режиме квантового эффекта Холла при T = 0.05 К и рассчитанная картина уровней Ландау для образца с двойной квантовой ямой после освещения. Жирной линией схематически показано движение уровня Ферми по уровням Ландау с изменением магнитного поля.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Явление целочисленного квантового эффекта Холла (КЭХ), обнаруженного фон Клитцингом с соавторами [11], оказалось тесно связанным с проблемой локализации электронов в 2*D*-системе в квантующем магнитном поле *B*. В работах Лафлина [12] и Гальперина [13] было показано, что для существования КЭХ необходимо наличие узких полос делокализованных состояний вблизи середины каждой из подзон Ландау, при условии что все остальные состояния являются локализованными.

В работе Левине, Либби и Пруискена (LLP) [1] для объяснения КЭХ была предложена гипотеза двухпараметрического скейлинга, приводящая к существованию как локализованных, так и делокализованных (вблизи середины подзон Ландау) состояний в спектре неупорядоченной 2*D*-системы в квантующем магнитном поле. Подробное изложение концепции двухпараметрического скейлинга можно найти в работах Пруискена [2], а также Хмельницкого [14].

Квантовые фазовые переходы плато-плато в режиме КЭХ происходят при строго определенных значениях магнитного поля, при которых уровень Ферми совпадает с энергией делокализованных состояний E_c в центре подзоны Ландау, и проводимость $\sigma_{xx}(B)$ достигает максимального (пикового) значения. Равенство $E_F = E_c$ соответствует полуцелым значениям степени заполнения $\nu = \nu_c = i + 1/2$, а также полуцелым значениям σ_{xy} (в единицах e^2/h). В этой работе будут исследованы именно области переходов плато-плато КЭХ в окрестности критических значений магнитного поля.

При изучении перехода плато-плато в наших образцах использовалась методика описания $\sigma_{xy}(B)$ с помощью параметра s [15,16]:

$$s(\nu) = \exp\left(-\Delta\nu/\nu_0(T)\right). \tag{2}$$

Здесь $\Delta \nu = |\nu - \nu_c|$ — отклонение фактора заполнения от критического значения, а $\nu_0(T)$ — ширина полосы делокализованных состояний при температуре T. Для описания перехода между плато КЭХ с номерами (i-1) и i ($\nu_c = i - 0.5$) мы использовали функциональную зависимость недиагональной

Рис.2. Зависимости компонент тензора магнитосопротивления $R_{xx}(B,T)$ и $R_{xy}(B,T)$ в режиме квантового эффекта Холла при T = 0.05 K (*a*) и рассчитанная картина уровней Ландау для образца № 3892*b* с двойной квантовой ямой после максимальной засветки (*б*). На вставке схематическая диаграмма профиля потенциала для образца № 3892*b*, Δ — энергетическая щель между уровнями пространственного квантования E_1 и E_2 в отдельных ямах

компоненты тензора проводимости от параметра
 sв следующем виде [15] (в единицах $e^2/h):$

$$\sigma_{xy} = i - \frac{s^2}{1+s^2} \,. \tag{3}$$

В работе [16] для описания переходов плато-плато КЭХ предложены более общие формулы $\rho_{xx}(s,\eta)$ и $\rho_{xy}(s,\eta)$, учитывающие зависимость от двух скейлинговых параметров: «существенного» (relevant) *s* и «несущественного» (irrelevant) η . При $\eta \approx 0$ эти

Рис.3. Зависимость холловской проводимости σ_{xy} в зависимости от фактора заполнения ν в области перехода $1 \rightarrow 2$ при T = 0.2 К (сплошная линия); 0.5 К (штриховая); 1 К (пунктир). На вставке зависимость параметра s от фактора заполнения в полулогарифмическом масштабе

выражения при пересчете на $\sigma_{xx}(s)$ и $\sigma_{xy}(s)$ эквивалентны формуле (3)¹⁾.

Анализируя зависимость $\sigma_{xy}(\nu)$ в окрестности точки ν_c , можно получить зависимость $s(\nu)$, а из нее определить ширину полосы делокализованных состояний при данной температуре $\nu_0(T)$.

Нами был проведен анализ экспериментальных данных для образцов $\mathbb{N}\mathbb{N}$ 3892*a*, *b* по схеме, описанной выше, для переходов между плато 1 и 2 $(1 \rightarrow 2)$ в темновом образце \mathbb{N} 3892*a* и для переходов $1 \rightarrow 2$; $2 \rightarrow 3$; $3 \rightarrow 4$ в образце \mathbb{N} 3892*b* с максимальной засветкой. Для примера на рис. 3 приведены зависимости $\sigma_{xy}(\nu)$ и $s(\nu)$ для перехода $1 \rightarrow 2$ в образце \mathbb{N} 3982*b* при различных температурах.

Для темнового образца № 3892*a* обнаружено, что температурная зависимость ширины полосы делокализованных состояний для перехода $1 \rightarrow 2$ описывается степенной зависимостью $\nu_0 \sim T^{\kappa}$ с показателем степени $\kappa = 0.48 \pm 0.04$ (рис. 4), что достаточно хо-

¹⁾ Следуя работе [17], параметр $\eta = \pm (T/T_1)^{2.5}$ можно оценить из значений $\rho_{xx}(1,\eta)$ и $\rho_{xy}(1,\eta)$ по формулам (83), (84) работы [16]. Наши оценки дают $\eta(1 \text{ K}) \leq 0.01 \ (T_1 \geq 6.3 \text{ K})$ для перехода 2 \rightarrow 3 и $\eta(1 \text{ K}) \leq 0.02 \ (T_1 \geq 4.8 \text{ K})$ для перехода 3 \rightarrow 4 в образце № 3892b, что находится в пределах ошибки измерений. При дальнейшей обработке результатов мы пренебрегли поправкой от η .

Рис. 4. Зависимость ширины полосы делокализованных состояний от температуры для темнового образца N° 3892a для перехода $1 \rightarrow 2$ в двойном логарифмическом масштабе. На вставке та же зависимость в линейном масштабе

рошо соответствует классическому результату Вея и др. [4]: $\kappa = 0.42 \pm 0.05$.

При исследовании переходов 2 \rightarrow 3 и 3 \rightarrow 4 в образце № 3892*b* с максимальной концентрацией электронов также наблюдалась степенная зависимость ширины полосы делокализованных состояний от температуры, однако с другими значениями показателя степени: $\kappa = 0.22 \pm 0.01$ для перехода 2 \rightarrow 3 и $\kappa = 0.21 \pm 0.01$ для перехода 3 \rightarrow 4 (рис. 5).

В отличие от результата для темнового образца № 3892*a*, в случае засвеченного образца № 3892*b* для перехода 1 \rightarrow 2 наблюдается линейная зависимость ширины полосы делокализованных состояний от температуры ($\alpha T + \beta$) с параметрами $\alpha = 0.045 \pm 0.03$ и $\beta = 0.049 \pm 0.02$ (вставка на рис. 5).

В табл. 2 представлены значения критических магнитных полей B_c , оценка магнитной длины l_B для этих полей, а также наблюдаемый тип температурной зависимости $\nu_0(T)$ в системе с двойной квантовой ямой до (образец № 3892*a*) и после (образец № 3892*b*) подсветки.

4. ОБСУЖДЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

В теоретических и экспериментальных работах [6,18–21] отмечена существенная роль короткодей-

Рис.5. Зависимость ширины полосы делокализованных состояний от температуры для засвеченного образца № 3892b n-InGaAs/GaAs для переходов $1 \rightarrow 2$ (\blacksquare); $2 \rightarrow 3$ (\triangle); $3 \rightarrow 4$ (\bigcirc) в двойном логарифмическом масштабе. На вставке $\nu_0(T)$ для перехода $1 \rightarrow 2$ в линейном масштабе

ствующего случайного примесного потенциала для обнаружения скейлинговых зависимостей, тогда как крупномасштабный примесный потенциал значительно усложняет наблюдение критических квантовых явлений. В экспериментальной работе [20] на квантовых ямах $Al_x Ga_{1-x} As / Al_{0.33} Ga_{0.67} As$ с контролируемым короткодействующим сплавным потенциалом наблюдается универсальная скейлинговая зависимость с параметром $\kappa = 0.42 \pm 0.01$ для переходов плато-плато в области концентраций 0.0065 < x < 0.016, с хорошей точностью воспроизводящая результат Вея и др. [4]. При больших величинах x показатель степени κ увеличивается примерно до 0.58, что, по-видимому, вызвано образованием кластеров атомов Al и, тем самым, изменением характера рассеивающего потенциала.

В продолжение работы [20] в работе [21] проведены тщательные исследования переходов плато-плато КЭХ (переход 3 \rightarrow 4) в образце $Al_xGa_{1-x}As/Al_{0.32}Ga_{0.68}As$ с x = 0.85% при сверхнизких температурах. С хорошей точностью подтверждено существование скейлинговой зависимости с $\kappa = 0.42 \pm 0.01$ в широком интервале температур от 1.2 К до 12 мК.

В исследованной нами системе n-InGaAs/GaAs с

Образец	Переход	$B_c,$ Тл	$l_B, \mathrm{\AA}$	$\nu_0(T)$	Значения
					параметров
№ 3892 <i>a</i>	$1 \rightarrow 2$	7.0	97	$\left(\frac{T}{T_0}\right)^{\kappa}$	$\kappa = 0.48 \pm 0.04$
					$T_0^{\kappa} = 4.5 \pm 0.1$
№ 3892 <i>b</i>	$2 \rightarrow 3$	7.8	92	$\left(\frac{T}{T_0}\right)^{\kappa}$	$\kappa = 0.22 \pm 0.01$
					$T_0^{\kappa} = 18.2 \pm 0.2$
№ 3892 <i>b</i>	$3 \rightarrow 4$	6.0	105	$\left(\frac{T}{T_0}\right)^{\kappa}$	$\kappa = 0.21 \pm 0.01$
					$T_0^{\kappa} = 19.4 \pm 0.2$
$\mathbb{N}^{\underline{0}}$ 3892 b	$1 \rightarrow 2$	14.1	68	$\alpha T + \beta$	$\alpha = 0.045 \pm 0.003$
					$\beta = 0.049 \pm 0.002$

Таблица 2. Критические магнитные поля B_c для исследованных переходов плато-плато КЭХ, величины магнитных длин l_B для этих полей и вид температурной зависимости $\nu_0(T)$ для исследуемых образцов

двойной квантовой ямой даже в отсутствие подсветки (образец № 3892*a*) для перехода $1 \rightarrow 2$ наблюдается реальное скейлинговое поведение с показателем степени $\kappa = 0.48 \pm 0.04$, что близко к экспериментальным результатам работ [4, 20, 21]. Такое поведение, как и в работе Ли с соавторами [20, 21], может быть обусловлено решающей ролью короткодействующего потенциала сплавного рассеяния, в данном случае на атомах In в твердом растворе InGaAs.

Уникальные результаты получены для системы с двойной квантовой ямой с максимальной концентрацией электронов и максимальной подвижностью после инфракрасной подсветки (см. рис. 6). Критическое поведение $\nu_0(T)$ для переходов $2 \rightarrow 3$ и $3 \rightarrow 4$ прекрасно соответствует значению $\kappa = 0.21$, что ранее наблюдалось лишь для перехода между нерасщепленными по спину уровнями Ландау (переход $2 \rightarrow 4$ в гетероструктурах In_xGa_{1-x}As/InP [22]). Напомним, что $\kappa = p/2\xi$ есть комбинация двух микроскопических параметров, а именно, коэффициента р, определяющего температурную зависимость времени неупругого рассеяния, $\tau_{in} \propto T^{-p}$, и критического индекса длины локализации Е. В связи с этим в работе [22] обсуждается вопрос, на какой из процессов (неупругое рассеяние или локализация) оказывает влияние изменение спинового вырождения.

Теоретические представления [1, 2] относятся к системе невзаимодействующих электронов, тогда как в реальных системах необходимо учитывать электрон-электронное (e-e) взаимодействие. Попытки учесть влияние e-e-взаимодействия на критические свойства переходов плато-плато в режиме целочисленного КЭХ предпринимались и ранее (см., например, [23]), однако последовательный подход развит в работах [24, 25] и изложен в рабо-

Рис. 6. Низкотемпературные зависимости продольной проводимости от магнитного поля для ИК-засвеченного образца № 3892b InGaAs/GaAs при T = 0.05 K (сплошная кривая), 0.2 K (штриховая), 0.5 K (пунктир), 1 K (штрихпунктир); $n = 5.1 \cdot 10^{15}$ м⁻², $\mu = 2.7$ м²/В·с

те [26]. Обобщенный подход [24–26] согласовывает LLP-механизм делокализации в условиях сильного квантующего магнитного поля [1] с теорией Финкельштейна для эффектов локализации и *е-е*-взаимодействия [27]. При этом обосновывается применимость скейлинговой концепции при рассмотрении ширины переходов плато-плато КЭХ для взаимодействующих электронов (трехпараметрический скейлинг). В частности, для случая короткодействующего потенциала e-e-взаимодействия фиксированная точка, соответствующая делокализованному состоянию при $\sigma_{xy} = i + 1/2$, остается стабильной относительно взаимодействия [23–25].

Теория двухпараметрического скейлинга (для невзаимодействующих электронов) [1,2] или трехпараметрического скейлинга (с учетом *e*–*e*-взаимодействия) [24–26], решая принципиальные вопросы, не дает конкретных значений критических индексов. Результаты численных расчетов критического индекса длины локализации для модели невзаимодействующих электронов, полученные Хакестейном и Крамером [28] и подтвержденные во многих последующих работах (см. обзор [3], а также ссылку [6] в работе [26]), таковы: $\xi = 2.35 \pm 0.03$. Эти результаты в последнее время подвергнуты ревизии, что привело к большему значению $\xi = 2.62 \pm 0.06$ (см. [29], а также [30] и ссылки там).

Количественные оценки предполагаемого значения параметра κ в моделях с учетом короткодействующего *е*–*е*-взаимодействия немногочисленны и разноречивы. Приведем оценки, сделанные разными авторами.

1. Ли и Ванг [23]: $\kappa = 0.21$ ($\xi = 2.3, z = 2 -$ динамический критический индекс, $\kappa = 1/z\xi$);

2. Пруискен, Баранов [24]:
 $\kappa=0.21$ ($\xi=2.3,$ p=1);

3. Пруискен, Бурмистров [26]: $\kappa = 0.29 \pm 0.04$ ($\xi = 2.30$ –2.38, p = 1.22–1.48); если взять $\xi = 2.62 \pm \pm 0.06$, то получим $\kappa = 0.26 \pm 0.05$;

4. Бурмистров и др. [31]: $p\approx 1.62;\,\kappa\approx 0.346$ (пр
и $\xi\approx 2.35)$ и $\kappa\approx 0.314$ (при $\xi\approx 2.59).$

Отметим, что в работах [24, 31] предлагается способ экспериментальной реализации 2*D*-системы с конечным радиусом действия *e*–*e*-потенциала, а именно, введение в образец параллельного металлического слоя [24] (внешнего металлического затвора [31]), что привело бы к эффективному экранированию дальнодействующего кулоновского потенциала.

В случае кулоновского потенциала e-e-взаимодействия для теоретических значений критических индексов в области переходов плато-плато КЭХ (κ, ξ, p) в настоящее время не существует ни аналитических предсказаний, ни развитых приближенных численных методов [31]. Более того, в работах [25, 26] на фундаментальном уровне доказывается, что дальнодействующий кулоновский потенциал (в отличие от потенциала с конечным радиусом действия) переводит проблему переходов плато-плато КЭХ в другой (не фермижидкостный) класс универсальности. Сообразуясь с неоднозначными предсказаниями существующей теории, мы выскажем два предположения о причинах изменения температурного поведения ширины переходов плато-плато КЭХ в исследуемой системе после ИК-подсветки.

 а) Причина «фундаментальная», принимающая
во внимание особенности движения электронов в двойной квантовой яме.

В темновом образце с сильной туннельной связью между одиночными ямами состояния электронов определяются симметричной (S) и антисимметричной (AS) комбинациями волновых функций отдельных ям (см. вставку на рис. 1a) [8,32]. В результате электроны с равной вероятностью находятся в обеих одиночных ямах, составляющих двойную квантовую яму. Ситуация практически эквивалентна движению электронов в единой яме, как, например, в экспериментах Вея и др. [4] или Ли с соавторами [20, 21].

С другой стороны, как показывают наши предыдущие исследования [33, 34], ИК-подсветка выводит систему из баланса (см. вставку на рис. 2*a*), и электроны в *z*-направлении локализуются преимущественно в пределах той или иной одиночной ямы. В реальном пространстве система представляет собой два практически независимых проводящих слоя, параллельных друг другу. Хотя микроскопическое описание ситуации пока отсутствует, мы видим, что наблюдаемое поведение системы (реальный скейлинг с $\kappa \approx 0.21$) соответствует выводам работ [23, 24] или оценкам работы [26] (в пределах ошибки измерений и расчетов) для случая *е-е*-потенциала с конечным радиусом действия.

б) Причина «тривиальная».

ИК-подсветка существенно увеличивает концентрацию и подвижность носителей, и, тем самым, улучшается однородность системы. В результате, в освещенном образце проявляется реальный скейлинг с $\kappa \approx 0.21$, а в темновом происходит искажение реальной картины из-за неоднородности образца. При этом близость «искаженного» значения $\kappa \approx 0.48 \pm 0.04$ к классическому $\kappa \approx 0.42$ является случайной.

Если справедливо предположение (a), то могут оказаться перспективными исследования скейлинговых зависимостей в режиме КЭХ именно в системах с двойными квантовыми ямами. При этом величину туннельной связи (степень независимости отдельных слоев) можно регулировать с помощью затвора [35] и/или продольного магнитного поля [32, 36].

Как следует из табл. 2, в рассмотренных системах скейлинговый закон нарушается в сильных магнитных полях $B \approx 14$ Тл, где для перехода $1 \rightarrow 2$ в засвеченном образце наблюдается линейная зависимость $\nu_0(T)$ (см. вставку на рис. 5). Мы полагаем, что переход от степенной зависимости к линейной с ростом магнитного поля в соответствии с квантовой моделью двумерной перколяционной сетки, развитой Пруискеном с соавторами [18], обусловлен изменением соотношения магнитной длины $l_B = (\hbar c/eB)^{1/2}$ и величины a — корреляционной длины случайного примесного потенциала.

Действительно, в работе [18] показано, что для плавного случайного потенциала с $a > l_B$ эффективная ширина полосы состояний, вносящих вклад в проводимость в режиме КЭХ, W_{eff} , остается конечной даже при $T \to 0$ из-за квантового туннелирования в окрестности седловых точек. При конечной температуре, согласно работе [18],

$$W_{eff} = W_0 + \tau_{in}^{-1}, \tag{4}$$

где W_0 — ширина полосы делокализованных состояний при T = 0. Выражение (4) соотносится с экспериментальной зависимостью ($\alpha T - \beta$) в засвеченном образце как $\beta = W_0/W$, где W — полная ширина уровня Ландау, а наблюдаемая линейная температурная зависимость соответствует зависимости $\tau_{in} \propto T^{-1}$.

Из данных, приведенных в табл. 2, видно, что магнитная длина для перехода $1 \rightarrow 2$ в образце с подсветкой по крайней мере в 1.5 раза меньше, чем для всех остальных случаев. Таким образом, действительно можно полагать, что смена степенной зависимости $\nu_0(T)$ на линейную связана с переходом к движению электронов в плавном случайном потенциале с $a/l_B > 1$. Оценка в поле B = 14 Тл дает $a \ge l_B \approx 70$ Å, т.е. можно полагать, что величина характерного масштаба случайного примесного потенциала в данной структуре порядка 70 Å.

В исследуемой системе *n*-InGaAs/GaAs с максимальной концентрацией и подвижностью после ИК-подсветки уникальные результаты получены также и для продольной проводимости σ_{xx} в режиме КЭХ. На рис. 6 представлены зависимости $\sigma_{xx}(B)$ при низких температурах, $T \leq 1$ К, для образца № 3892b. Замечательно, что для спин-расщепленных пиков 1⁻ и 1⁺ (соответствующих переходам 2 \rightarrow 3 и 3 \rightarrow 4 между плато КЭХ) при $T \leq 0.05$ К мы имеем $\sigma_{xx}^c = (0.5 \pm 0.05)e^2/h$ для максимальных (критических) значений σ_{xx} : $\sigma_{xx}^c \equiv \sigma_{xx}(B_c)$. Это наблюдение находится в прекрасном соответствии с результатами численного моделирования для различных моделей примесного потенциала: $\sigma_{xx}^c = (0.5 \pm 0.05)e^2/h$ [3, 37, 38]. Эти расчеты

Рис.7. График зависимости $\sigma_{xx}(\sigma_{xy})$ для образца № 3892b. На вставке интегральные кривые системы уравнений двухпараметрического скейлинга согласно теоретическим представлениям [1, 2]: A — фиксированные точки, соответствующие плато квантового эффекта Холла; C — фиксированная точка, соответствующая делокализованному состоянию в центре подзоны Ландау

обычно плохо подтверждаются экспериментом, большинство исследователей сообщает о критических значениях амплитуды пиков σ_{xx} в режиме КЭХ, $\sigma_{xx}^c(T \to 0)$, на (40–80) % меньше теоретически ожидаемого значения $0.5e^2/h$ (см., например, обзоры [39, 40]). Такое расхождение, как и наблюдаемые отклонения от скейлингового поведения температурной зависимости ширины переходов КЭХ $\nu_0(T)$, обычно связывается с недостаточной однородностью исследуемых образцов [6, 19].

Из рис. 6 видно также, что спиновое расщепление пика 2^{\pm} становится все более и более выраженным по мере понижения температуры (что соответствует формированию плато КЭХ с i = 5), при этом для каждого из этих пиков $\sigma_{xx}^c \to 0.6e^2/h$ при $T \to 0.05$ К. С другой стороны, в ультраквантовом пределе магнитных полей для пика 0^- мы имеем $\sigma_{xx}^c \approx 0.35e^2/h$, что существенно меньше теоретического значения $0.5e^2/h$, как и во многих других экспериментальных работах [39–41].

Для образца № 3892b на рис. 7 представлены экспериментальные данные для продольной проводимости σ_{xx} как функции холловской проводимости

Зависимости $\sigma_{xx}(\sigma_{xy})$ для пиков 1⁺ и 1⁻ соответствуют представлениям теории двухпараметрического скейлинга (см. вставку на рис. 7). Максимальное (пиковое) значение $\sigma_{xx}(B) = \sigma^c_{xx}$ должно достигаться, когда уровень Ферми совпадает с энергией делокализованных состояний E_c в центре подзоны Ландау, что соответствует полуцелым значениям степени заполнения ν_c (а также полуцелым значениям $\sigma_{xy} = \sigma_{xy}^c = i + 1/2$). На рис. 7 видно, что огибающие кривые $\sigma_{xx}(\sigma_{xy})$ симметричны относительно линий $\sigma_{xy} = 2.5, \ \sigma_{xy} = 3.5$ (в единицах e^2/h), что свидетельствует о хорошем качестве (однородности) исследованных образцов. Как уже говорилось выше, для пиков 1
– $(\sigma^c_{xy}=3.5e^2/h)$ и 1+ $(\sigma^c_{xy}=2.5e^2/h)$ наблюдаемое пиковое значени
е $\sigma^c_{xy}=(0.5\pm0.05)e^2/h$ находится в соответствии с результатами численных расчетов для режима КЭХ [3, 37, 38].

5. ЗАКЛЮЧЕНИЕ

Экспериментально изучены магнитополевые зависимости продольного $\rho_{xx}(B)$ и холловского $\rho_{xy}(B)$ сопротивлений в режиме целочисленного квантового эффекта Холла в наноструктурах *n*-InGaAs/GaAs с двойной квантовой ямой в широком диапазоне магнитных полей и температур до и после ИК-подсветки.

Исследована температурная зависимость ширины переходов плато-плато КЭХ и, тем самым, получены сведения о температурной зависимости ширины полосы делокализованных состояний $\nu_0(T)$ вблизи середины подзон Ландау в режиме КЭХ. Реальное скейлинговое поведение $\nu_0(T) \propto T^{\kappa}$ наблюдается для перехода $1 \rightarrow 2$ в неосвещенном образце ($\kappa =$ $= 0.48 \pm 0.04$) и для переходов $2 \rightarrow 3$ ($\kappa = 0.22 \pm 0.01$) и $3 \rightarrow 4$ ($\kappa = 0.21 \pm 0.01$) в образце после воздействия ИК-излучения. Найденные значения κ находятся в хорошем соответствии с экспериментально наблюдаемыми величинами критического индекса в классических [4, 22] и новых работах [20, 21], в которых исследовались 2D-системы с короткодействующим примесным потенциалом.

Наблюдаемую в сильных магнитных полях B > 14 Тл линейную зависимость $\nu_0(T) = \alpha T + \beta$ (с конечным значением β) мы связываем с изменением соотношения масштаба случайного потенциала и длины волны электрона (магнитной длины) и с эффективным переходом к крупномасштабному потенциалу $(a > l_B)$ в ультраквантовой области магнитных полей.

Построены диаграммы скейлинга в координатах $(\sigma_{xy}, \sigma_{xx})$ в интервале значений $\sigma_{xy} = (2-4)e^2/h$. Симметрия огибающих кривых $\sigma_{xx}(\sigma_{xy})$ относительно полуцелых значений $(\sigma_{xy} = 2.5 \text{ н} \sigma_{xy} = 3.5 \text{ в единицах } e^2/h)$, а также независимые от номера пика значения критических величин $\sigma_{xx}^c = (0.5 \pm 0.05)e^2/h$ для пиков 1⁻ и 1⁺ соответствуют предсказаниям теории скейлинга в режиме КЭХ, что позволяет сделать вывод о хорошем качестве (однородности) исследованных образцов, особенно, после ИК-подсветки.

Измерения частично были проведены в ЦКП УрО РАН «Испытательный центр нанотехнологий и перспективных материалов».

Работа выполнена в рамках Программы президиума РАН (12-П-2-1051) и при частичной финансовой поддержке РФФИ (гранты №№11-02-00427, 12-02-00202).

ЛИТЕРАТУРА

- H. Levine, S. Libby, and A. M. M. Pruisken, Phys. Rev. Lett. 51, 1915 (1983).
- А. М. М. Pruisken, Phys. Rev. Lett. 61, 1297 (1988); Квантовый эффект Холла, под ред. Р. Пренджа и С. Гирвина, Мир, Москва (1989), с. 127.
- 3. B. Huckestein, Rev. Mod. Phys. 67, 367 (1995).
- H. P. Wei, D. C. Tsui, M. A. Paalanen et al., Phys. Rev. Lett. 61, 1294 (1988).
- D. Shahar, M. Hilke, C. C. Li et al., Sol. St. Comm. 107, 19 (1998).
- 6. A. de Visser, L. A. Ponomarenko, G. Galistu et al., arXiv:cond-mat/0608482 и ссылки там.
- Yu. G. Arapov, G. I. Harus, I. V. Karskanov et al., Physica B 404, 5192 (2009).
- Ю. Г. Арапов, И. В. Карсканов, В. Н. Неверов, Г. И. Харус, Н. Г. Шелушинина, М. В. Якунин, ФНТ 35, 44 (2009).
- 9. R. Fletcher, M. Tsaousidou, T. Smith et al., Phys. Rev. B 71, 155310 (2005).
- 10. S. Yamada et al., J. Appl. Phys. 72, 569 (1992).

- K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
- 12. R. B. Laughlin, Phys. Rev. B 23, 563 (1981).
- 13. B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
- **14**. Д. Е. Хмельницкий, Письма в ЖЭТФ **38**, 454 (1983).
- 15. P. T. Coleridge, Phys. Rev. B 60, 4493 (1999).
- 16. B. Karmakar, M. R. Gokhale, A. P. Shah et al., Physica E 24, 187 (2004).
- 17. A. M. M. Pruisken, D. T. N. de Lang, L. A. Ponomarenko, and A. de Visser, Sol. St. Comm. 137, 540 (2006).
- 18. A. M. M. Pruisken, B. Scoric, and M. A. Baranov, Phys. Rev. B 60, 16838 (1999).
- A. M. M. Pruisken, D. T. N. de Lang, L. A. Ponomarenko et al., Sol. St. Comm. 137, 540 (2006).
- W. Li, G. A. Csathy, D. C. Tsui et al., Phys. Rev. Lett. 94, 206807 (2005).
- 21. W. Li, C. L. Vicente, J. S. Xia et al., Phys. Rev. Lett. 102, 216801 (2009).
- 22. S. W. Hwang, H. P. Wei, L. W. Engel et al., Phys. Rev. B 48, 11416 (1993).
- 23. D.-H. Lee and Z. Wang, Phys. Rev. Lett. 76, 4014 (1996).
- 24. A. M. M. Pruisken and M. A. Baranov, Europhys. Lett. 31, 543 (1995).
- 25. A. M. M. Pruisken and I. S. Burmistrov, Ann. Phys. (N. Y.) 322, 1265 (2007).
- 26. А. М. М. Pruisken and I. S. Burmistrov, Письма в ЖЭТФ 87, 252 (2008).
- **27**. А. М. Finkelstein, Int. J. Mod. Phys. В **24**, 1855 (2010) и ссылки там.

- 28. B. Huckestein and B. Kramer, Phys. Rev. Lett. 64, 1437 (1990).
- 29. K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999).
- 30. H. Obuse, I. A. Gruzberg, and F. Evers, Phys. Rev. Lett. 109, 206804 (2012).
- 31. I. S. Burmistrov, S. Bera, F. Evers, I. V. Gornyi, and A. D. Mirlin, Ann. Phys. (N. Y.) 326, 1457 (2011).
- 32. Ю. Г. Арапов, С. В. Гудина, В. Н. Неверов, С. М. Подгорных, М. В. Якунин, ФНТ 39, 58 (2013).
- 33. Ю. Г. Арапов, С. В. Гудина, В. Н. Неверов, С. М. Подгорных, М. В. Якунин, Труды XIX Уральской международной зимней школы по физике полупроводников, Екатеринбург (2012), с. 104.
- 34. Ю. Г. Арапов, С. В. Гудина, В. Н. Неверов, С. М. Подгорных, М. В. Якунин, ФНТ 39, № 4 (2013).
- 35. A. Palevski, F. Beltram, F. Capasso et al., Phys. Rev. Lett. 65, 1929 (1990); Y. Berk, A. Kamenev, A. Palevski, L. N. Pfeiffer, and W. West, Phys. Rev. B 50, 15420 (1994).
- 36. Y. Berk, A. Kamenev, A. Palevski, L. N. Pfeiffer, and W. West, Phys. Rev. B 51, 2604 (1995); M. Slutzky, O. Entin-Wohlman, Y. Berk, A. Palevski, and H. Shtrikman, Phys. Rev. B 53, 4065 (1996).
- 37. Y. Huo, R. E. Hetzel, and R. N. Bhatt, Phys. Rev. Lett. 70, 481 (1993).
- D. H. Lee, Z. Wang, and S. Kivelson, Phys. Rev. Lett. 70, 4130 (1993).
- 39. S. L. Sondhi, S. M. Girvin, J. P. Carini et al., Rev. Mod. Phys. 69, 315 (1997).
- 40. S. Das Sarma, in: Perspectives in Quantum Hall Effect, ed. by S. Das Sarma, A. Pinczuk, Wiley, (1997), p. 1.
- 41. H. P. Wei, D. C. Tsui, and A. M. M. Pruisken, in: *High Magnetic Fields in Semiconductor Physics*, ed. by G. Landwehr, Springer, Berlin (1987), p. 11.