ОСОБЕННОСТИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ И НАМАГНИЧЕННОСТИ МОНОКРИСТАЛЛА Co₃B₂O₆

Н. В. Казак^а, М. С. Платунов^{а*}, Н. Б. Иванова^b, Ю. В. Князев^а,

Л. Н. Безматерных^а, Е. В. Еремин^а, А. Д. Васильев^{а,b}, О. А. Баюков^а,

С. Г. Овчинников^{а,b,c}, Д. А. Великанов^а, Я. В. Зубавичус^d

^а Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^b Сибирский федеральный университет 660074, Красноярск, Россия

^сКрасноярский государственный аэрокосмический университет 660014, Красноярск, Россия

^d Национальный исследовательский центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 27 июля 2012 г.

Проведены исследования кристаллической структуры и магнитных свойств монокристаллов $C_{03}B_2O_6$. При комнатной температуре обнаружена ромбическая симметрия с пространственной группой Pnnm. Измерения статической намагниченности и динамической магнитной восприимчивости выявили две магнитные аномалии при $T_1 = 33$ K, $T_2 = 10$ K и магнитную анизотропию типа «легкая ось». Величина эффективного магнитного момента указывает на высокоспиновое магнитное состояние иона Co^{2+} . При низких температурах обнаружен спин-флоп-переход при $H_{sf} = 23$ кЭ. Получены спектры EXAFS на K-крае поглощения Co при различных температурах, проанализированы температурные изменения параметров локального окружения кобальта, определены эффективные расстояния Co-Co и Co-O. Проведен анализ магнитных взаимодействий с использованием модели косвенной связи.

DOI: 10.7868/S0044451013070122

1. ВВЕДЕНИЕ

Оксибораты переходных металлов на протяжении многих лет вызывают большой интерес в силу уникального сочетания магнитных, оптических, магнитоупругих, магнитооптических и резонансных свойств. В последнее время интерес к данным материалам также связан с поиском новых мультиферроиков. Так, в ряде боратов ReFe₃(BO₃)₄ (Re редкоземельный металл) недавно было обнаружено сегнетоэлектрическое упорядочение, совпадающее со спин-ориентационным переходом [1, 2]. Другое направление исследований связано с эффектами взаимосвязи зарядовых, спиновых и орбитальных степеней свободы под действием высоких давлений. Недавние исследования магнитных оксиборатов $M^{3+}BO_3$ ($M^{3+} = Fe, V$) выявили резкий сдвиг края оптического поглощения, сопровождающийся коллапсом магнитного момента иона Fe^{3+} [3, 4].

Кристаллы синтетических боратов обладают целым рядом перспективных физических свойств и рассматриваются как потенциальные объекты для практического применения в качестве магнитоуправляемых акустических фильтров, детекторов ионизирующего излучения, генераторов, частотных преобразователей и т. д. [5, 6].

Несмотря на многообразие, эти соединения характеризуются рядом общих свойств: низкой симметрией кристаллической решетки (в основном моноклинной или ромбической); сложным содержанием элементарной ячейки, наличием как сугубо кова-

^{*}E-mail: platunov@iph.krasn.ru

лентных химических связей внутри борокислородных анионных групп, так и сравнительно слабых ионных связей между катионом и соответствующей анионной группой. Последнее обстоятельство способствует локализации носителей и диэлектрическому основному состоянию.

Наличие неэквивалентных кристаллографических позиций и различная вероятность их заполнения металлическими ионами одного (M) или разного (M, M') сорта позволяют наблюдать магнитное поведение разного типа: от дальнего магнитного порядка в гомометаллических оксиборатах (M = M') [7–9] до состояния спинового стекла в гетерометаллических соединениях (M \neq M') [10, 11].

Ортобораты химической С формулой $M_{3-x}M'_{x}B_{2}O_{6}$ (M, M' = Co, Mn, Ni, Mg, Cu, Cd) обладают ромбической (пространственная группа Pnnm), триклинной $(P\bar{1}(2))$ или моноклинной $(P2_1/c)$ сингонией (табл. 1). Ромбические бораты $\mathrm{M}_3\mathrm{B}_2\mathrm{O}_6$ изоструктурны минералу котоиту (kotoite). Известны четыре гомометаллических (M = M') котоита: $Co_3B_2O_6$, $Ni_3B_2O_6$, $Mn_3B_2O_6$, $Mg_3B_2O_6$ [12–16]. В литературе имеется крайне скудная информация о свойствах данных материалов, где затронуты, в основном, кристаллохимические аспекты. В работе [14] проведено исследование кристаллической структуры монокристаллов котоитов с M = M' = Mg, Co, Ni. В работе определены координаты атомов, межатомные расстояния, а также параметры изотропного и анизотропного смещений атомов Mg, Co, Ni, B, O. Недавно в работах [17,18] было доложено о синтезе и исследовании структуры замещенных котоитов на основе кобальта Co_{3-x}Ni_xB₂O₆. Обнаружено, что до уровня замещения x = 2.0 образуется ромбическая фаза, изоструктурная Со₃В₂О₆. Из табл. 1 следует, что изменение параметров решетки в ряде ромбических котоитов коррелирует с ростом ионного радиуса двухвалентного иона. В случае M^{2+} = Cu происходит понижение симметрии до триклинной [19, 20]. Частичное замещение ионов Cu^{2+} ионами $M'^{2+} = Co$, Ni, Cd вызывает переход в моноклинную фазу [21-24].

Магнитные исследования гомометаллических $Co_3B_2O_6$, $Ni_3B_2O_6$, $Mn_3B_2O_6$ показали, что эти материалы испытывают переход в антиферромагнитное состояние с установлением дальнего магнитного порядка (табл. 2) [13]. Величины эффективного магнитного момента имеют значения, типичные для двухвалентных ионов Co, Ni, Mn. Магнитная структура $Co_3B_2O_6$ и $Ni_3B_2O_6$ была изучена в работах [13, 25] при температурах выше

и ниже магнитного перехода с использованием нейтронной дифракции. Низкотемпературная модель предполагает существование магнитной сверхячейки $2a \times b \times 2c^*$, которая в четыре раза больше кристаллографической. Авторы предполагают наличие спиновой конфигурации, согласно которой магнитные моменты ионов кобальта, упорядоченные ферромагнитно вдоль оси b, направлены перпендикулярно оси a.

Магнитные исследования медных оксиборатов $Cu_{3-x}M'_{x}B_{2}O_{6}$ (M' = Co, Ni, Cd; x = 0.0, 1.0) более многочисленны. Комплексное изучение магнитных, калорических и резонансных свойств, а также измерения рассеяния нейтронов и спиновой релаксации показали, что в Си₃В₂О₆ реализуется сложная магнитная структура, включающая в себя как одиночно взаимодействующие спины (синглетная фаза), так и кластеры из нескольких спинов (магнитоупорядоченная фаза). При температурах ниже 10 К происходит переход в состояние, которое является суперпозицией этих двух фаз [20, 26]. Интересно, что изоструктурные Cu₂CoB₂O₆ и Cu₂NiB₂O₆ демонстрируют совершенно разное магнитное поведение. Первый проявляет свойства фрустрированной магнитной системы и испытывает переход в состояние спинного стекла $(T_{sf} = 5 \text{ K})$, в то время как второй показывает свойства магнитоупорядоченной системы ниже $T_N = 15$ K. Такое различие в свойствах объясняется сильной конкуренцией обменных взаимодействий внутри и между магнитными полосами, сформированными шестью рядами магнитных ионов Си-Со(Ni)-Си-Си-Со(Ni)-Си. Высокая чувствительность магнитной системы к типу магнитного иона и его пространственному расположению внутри полосы приводит к установлению неустойчивого баланса магнитных связей.

Ранее нами были подробно изучены кристаллическая структура, магнитные и транспортные свойства оксиборатов со структурой людвигита на основе кобальта: Co₃BO₅ и Co_{3-x}Fe_xBO₅. Измерения намагниченности, проведенные в разных кристаллографических направлениях, позволили обнаружить сильную магнитную кристаллографическую анизотропию типа «легкая ось» и экстраординарный рост коэрцитивного поля при введении железа в монокобальтовый людвигит [27–29]. В людвигитах переходные ионы Со и Fe обладают двух- и трехвалентной степенями окисления и занимают четыре неэквивалентные кристаллографические позиции. В отличие от них, в котоите Со₃В₂О₆ ионы кобальта находятся только в двухвалентном состоянии (Со²⁺) и занимают две кристаллографически неэквивалентные

		$a, \mathrm{\AA}$	$b, \mathrm{\AA}$	$c, \mathrm{\AA}$	$lpha,eta,\gamma$	$V, Å^3$
$\mathrm{Ni}_3\mathrm{B}_2\mathrm{O}_6$	Монокристаллы [12,14] Поликристаллы [13]	Pnmn 4.459 4.490	$5.396 \\ 5.395$	8.297 8.391	_	199.63
$\mathrm{Mg_3B_2O_6}$	Монокристаллы [14,15]	Pnmn 4.497	5.398	8.416	_	204.29
$\mathrm{Co}_3\mathrm{B}_2\mathrm{O}_6$	Поликристаллы [13] Монокристаллы [14,15]	Pnmn 4.529	5.462	8.436	_	208.68
$\mathrm{Mn_3B_2O_6}$	Поликристаллы [13] [16]	Pnmn 4.648 4.646	$5.675 \\ 5.658$	8.695 8.740	_	229.35
Co ₂ NiB ₂ O ₆	Поликристаллы [17]	Pnmn 4.504	5.444	8.404	_	206.06
CoNi ₂ B ₂ O ₆	Поликристаллы [18]	Pnmn 4.478	5.419	8.352	-	202.67
$\mathrm{Cu}_3\mathrm{B}_2\mathrm{O}_6$	Монокристаллы [19,20]	$P\bar{1}(2)$ 3.344	19.757	19.587	$\alpha = 88.91^{\circ}$ $\beta = 70.05^{\circ}$ $\gamma = 69.93^{\circ}$	1135.46
$Cu_2CoB_2O_6$	Поликристаллы [21] Монокристаллы [22]	$P2_1/c \ 3.225$	14.849	9.114	$\beta = 93.69^{\circ}$	435.55
Cu ₂ NiB ₂ O ₆	Поликристаллы [23]	$P2_1/c \ 3.205$	14.838	9.064	$\beta=93.77^\circ$	430.11
$\mathrm{Cu}_2\mathrm{CdB}_2\mathrm{O}_6$	Поликристаллы [24]	$P2_1/c$ 3.419	15.137	9.31	$\beta = 93.05^{\circ}$	481.14

Таблица 1. Параметры кристаллической решетки оксиборатов $M_3B_2O_6$

 $\Pi pumeчanue.$ Для удобства восприятия и единства обозначений мы переобозначили параметры решетки a^* , b^* , c^* для ромбической фазы, найденные в литературе $(a \to b^*, b \to c^*, c \to a^*)$.

Таблица 2. Магнитные параметры котоитов $M_3B_2O_6$: T_{ord} — температура магнитного перехода T_N или T_{sg} , Θ — парамагнитная температура Кюри, μ_{eff} — эффективный магнитный момент, приходящийся на один ион

		T_{ord}, K	Θ, K	$\mu_{eff},\mu_B/{ m ion}$
Ni ₃ B ₂ O ₆	Поликристаллы [13]	49	-5	3.07
$Co_3B_2O_6$	Поликристаллы [13]	30	-63	5.29
$Mn_3B_2O_6$	Поликристаллы [13]	3	-185	6.18
$Cu_3B_2O_6$	Монокристаллы [19]	9.8	-422	1.05 - 1.54
$Cu_2CoB_2O_6$	Поликристаллы [21]	5	-65.7	5.83
Cu ₂ NiB ₂ O ₆	Поликристаллы [23]	15	-36.8	3.44
$Cu_2CdB_2O_6$	Поликристаллы [24]	9.8	-47.4	_

позиции, что сильно упрощает интерпретацию магнитных данных.

Следует заметить, что подавляющая часть проведенных ранее магнитных исследований выполнена на поликристаллических образцах (см. табл. 2). Отсутствие магнитных измерений с использованием монокристаллов оставляет сомнения в изотропности магнитных параметров и температур переходов, с учетом сильно анизотропных свойств родственных людвигитов. В связи с этим, данная работа посвящена изучению магнитных свойств и исследованию магнитной анизотропии в монокристаллическом $Co_3B_2O_6$.

Сложный сценарий магнитного поведения окси-

боратов в значительной мере зависит от конфигурации локальных межкатионных взаимодействий, которые, в свою очередь, выступают как следствие локальной атомной структуры. Проблема связи микроструктуры твердотельных оксидных материалов с интегральными физическими свойствами в целом представляет собой одну из фундаментальных проблем физики конденсированного состояния. В качестве метода, позволяющего получить необходимую информацию о локальном атомном окружении, выступает основанная на синхротронном излучении рентгеновская спектроскопия поглощения. Этот метод имеет достаточную чувствительность, чтобы исследовать изменения локальной структуры на микроуровне при различных внешних воздействиях [30]. Две части спектра рентгеновского поглощения — ближняя тонкая (XANES) и протяженная тонкая (EXAFS) — структуры рентгеновского поглощения дают взаимодополняющую информацию. Метод EXAFS позволяет получить информацию о межатомных расстояниях, дать оценку координационным числам и определить тип лигандов [31]. В то же время XANES содержит информацию об электронном состоянии поглощающего атома: его валентности, плотности электронных состояний, полной геометрии окружения (включая углы связи) [32].

Насколько нам известно, экспериментальные исследования оксиборатов переходных металлов методами XANES- и EXAFS-спектроскопии к настоящему моменту времени еще не проводились. Также не существует теоретических и экспериментальных работ, посвященных изучению локальной атомной структуры данных материалов и ее эволюции в зависимости от внешних воздействий. Поэтому исследования локальной атомной структуры монокристалла $Co_3B_2O_6$ выше и ниже температуры магнитного перехода представляют несомненный интерес.

2. СИНТЕЗ МОНОКРИСТАЛЛОВ И РЕНТГЕНОВСКАЯ ДИФРАКЦИЯ

Монокристаллические образцы котоита $Co_3B_2O_6$ были получены методом спонтанной кристаллизации из раствора-расплава 55 массовых процентов $(Bi_2Mo_3O_{12} + 2.1 \cdot B_2O_3 + 0.7 \cdot Li_2O)$ и 45 массовых процентов $Co_3B_2O_6$, приготовленного в платиновом тигле. После четырехчасовой гомогенизации при T = 1100 °C раствор-расплав быстро охлаждался до T = 980 °C, и далее температура понижалась со скоростью 4 °C/сут. Процесс роста кристаллов длился примерно трое суток. Полученные образцы

Таблица 3.	Данные рентгеновской дифракции для
	$C_{03}B_2O_6$

ЖЭТФ, том 144, вып. 1 (7), 2013

Химическая	$Co_3B_2O_6$		
формула			
Длина волны, Å	0.71073		
Размеры	$0.37 \times 0.22 \times 0.03$		
кристалла, мм ³			
Температура, К	296		
Кристаллическая	Ромбическая		
структура			
Пространственная	Pnnm(58)		
группа	1(00)		
$a,~{ m \AA}$	4.5287(6)		
$b, \mathrm{\AA}$	5.4614(8)		
$c, \ { m \AA}$	8.4391(12)		
$\alpha=\beta=\gamma$	90.000°		
$V, \mathrm{\AA}^3$	208.72(5)		
Z	2		
Плотность	2 50771		
$($ рассчитанная $), \ г/c M^3$	2.50771		
Коэффициент	5 867		
поглощения, $\mathrm{M}\mathrm{M}^{-1}$	0.001		
F(000)	148		
Θ	4.45° -29.39°		
Коррекция	Гауссова		
More no pour	Метод наимень-		
метод подгонки	ших квадратов		
Степень	1 039		
согласования	1.009		
Индекс R1	0.0286		
Индекс wR2	0.0449		

темно-малинового цвета имели форму наклонных призм и были оптически прозрачны. Размеры полученных кристаллов достигали $1.2 \times 5.0 \times 23.0$ мм³.

Исследование кристаллической структуры выполнено с помощью рентгеновского монокристального автодифрактометра Bruker SMART APEX II при комнатной температуре (ССD-детектор). Использовалось K_{α} -излучение Мо. Кристаллическая структура была определена с использованием программного обеспечения SHELXTL [33]. Измерения показали, что кристаллическая структура $Co_3B_2O_6$ относится к ромбической сингонии, пространственная группа *Pnnm*. Параметры элементарной ячейки приведены в табл. 3 и находятся в хорошем согласии с данными работы [15]. Рассчитанная плотность Co₃B₂O₆ равна 2.51 г/см³. Координаты атомов и тепловые параметры приведены в табл. 4.

В структуре котоита 3*d*-катионы, находящиеся в октаэдрическом окружении кислорода, располагаются вдоль кристаллографической оси b. Атомы Со занимают две кристаллографически неэквивалентные позиции, Co1 (2a) и Co2 (4f). Атомы кислорода также имеют две позиции, О1 и О2. Атом бора окружен тремя атомами кислорода и формирует плоский треугольный анион $(BO_3)^{3-}$. Каждый анион $(BO_3)^{3-}$ связывает несколько октаэдров СоО₆. Определенные по данным рентгеновской дифракции межатомные расстояния приведены в табл. 5. Среднее расстояние В-О и угол связи В-О-В равны соответственно 1.386 Å и 119.92°, что хорошо согласуется с тригональной геометрией ВО3-группы. Расстояния Co-O находятся в интервале 2.073-2.126 Å для иона Co1 и 2.067–2.169 Å для иона Co2. Углы связей O-Co1/Co2-O находятся в интервале $66.66^{\circ}-113.34^{\circ}$ для Co1 и 81.56°-105.50° для Co2. Октаэдры имеют разную степень искажения. Вокруг иона Со1 октаэдр сжат, в то время как вокруг Со2 — вытянут, и кроме тетрагонального имеется еще и ромбическое искажение.

Аналогично варвикитам и людвигитам, кристаллическую структуру котоита удобно представить в виде структурных единиц, соединенных друг с другом в объемный каркас и распространяющихся вдоль выделенного направления. Атомы кобальта в позициях 2-1-2 объединены в треугольники, которые соединяются между собой вершиной Co1 и распространяются вдоль кристаллографической оси *b*, образуя бесконечные цепочки (рис. 1). Ионы Co1 принадлежат двум соседним треугольникам одновременно. Расстояния между ионами внутри треугольной цепочки Co1–Co2 и Co2–Co2 практически одинаковы и равны соответственно 3.151 и 3.146 Å. Наименьшее расстояние между цепочками равно 3.48 Å и соответствует расстоянию Co1–Co2.

3. СПЕКТРОСКОПИИ XANES И EXAFS

Эксперименты по измерению рентгеновских спектров *K*-края поглощения кобальта (EXAFS и XANES) проведены в НИЦ «Курчатовский институт» на станции «Структурного материаловедения» (накопитель Сибирь-2). Режим накопителя 2.5 ГэВ

Рис.1. Кристаллическая структура котоита CO3B2O6 в проекции на плоскость *ac* (*a*) и *bc* (*б*). Большие светлые и темные кружки — ионы кобальта в позициях 1 и 2, средними кружками изображены ионы бора, маленькими — ионы кислорода. Прямоугольник изображает элементарную ячейку

при среднем электронном токе 80 мА. Спектры поглощения записывались методом на пропускание, в качестве монохроматора использован монокристалл кремния с прорезью Si(111), обеспечивающий энергетическое разрешение $\Delta E/E \approx 2 \cdot 10^{-4}$. Интенсивности падающего и прошедшего через образец рентгеновского излучения регистрировались ионизационными камерами с воздушным наполнением, подключенными к цифровым пикоамперметрам Keithley-6487. Шаг сканирования в области XANES составлял около 0.5 эВ, в области EXAFS сканирование осуществлялось с равномерным шагом в шкале модулей волновых векторов фотоэлектро-

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Co1	0	0	0	79.4	56.4	97.4	-3.3	0	0
Co2	0	5000	1864.25	91.3	71.3	66.3	-2.617	0	0
O1	3019.4	2076.3	1384.2	111.8	122.9	102.8	-4.7	5.7	10.7
O2	2476.5	-3192.4	0	101.13	103.13	114.11	1.1	0	0
В	-4593.9	7457.7	0	122	54.19	132.19	18.14	0	0

Таблица 4. Координаты атомов ($\times 10^4$) и тепловые параметры (Å $^2 \times 10^4$) для $m Co_3B_2O_6$

Таблица 5. Длины связей, углы, сумма валентных связей и индекс искажения для $Co_3B_2O_6$

Координация кобальта						
Co1-O1	$2.1258(17) m \AA$	Co2–O2i	$2.1695(17) m \AA$			
Co1–O2v	2.0728(22) Å	Co2–O1ii	2.0678(17) Å			
Co1–O1v	2.1258(17) Å	Co2–O1iii	2.1409(17) Å			
Co1–O1ix	$2.1258(17){ m \AA}$	Co2–O2iv	$2.0678(17){ m \AA}$			
Co1–O2	$2.0728(2){ m \AA}$	Co2–O2v	2.1696(16) Å			
Co1–O1vi	$2.1258(17) m \AA$	Co2–O1	$2.1409(17) m \AA$			
O1-Co1-O2v	$84.224(45)^{\circ}$	O1iv-Co2-O1	$105.50(4)^{\circ}$			
O2-Co1-O1	$95.78(7)^{\circ}$	O1ii–Co2–O1iv	$88.72(10)^{\circ}$			
O2–Co1–O1ix	$84.22(7)^{\circ}$	O1iv-Co2-O1	$90.20(4)^{\circ}$			
O1ix-Co1-O2v	$95.776(45)^{\circ}$	O1iv-Co2-O2v	$92.559(49)^{\circ}$			
O1v-Co1-O2v	$95.776(45)^{\circ}$	O1ii–Co2–O1iii	$90.20(4)^{\circ}$			
O1-Co1-O1v	$113.34(9)^{\circ}$	O1ii-Co2-O1	$105.50(4)^{\circ}$			
O2-Co1-O1v	$84.22(7)^{\circ}$	O1–Co2–O2v	$81.566(45)^{\circ}$			
O1ix-Co1-O1v	$66.66(9)^\circ$	O1iii-Co2-O2v	$82.656(46)^{\circ}$			
O1vi-Co1-O2v	$84.224(45)^{\circ}$	O1iii-Co2-O2i	$81.56(8)^{\circ}$			
O1–Co1–O1vi	$66.66(9)^{\circ}$	O1ii–Co2–O2i	$92.57(7)^\circ$			
O2–Co1–O1vi	$95.78(7)^{\circ}$	O1–Co2–O2i	$82.66(7)^{\circ}$			
O1ix-Co1-O1vi	$113.34(9)^{\circ}$	O2i-Co2-O2v	$87.045(3)^{\circ}$			
O1vi-Co1-O1v	$180.00(11)^{\circ}$	O1ii–Co2–O2v	$172.823(47)^{\circ}$			
O2v-Co1-O2	$180.000(86)^{\circ}$	O1iii-Co2-O1	$158.18(9)^{\circ}$			
O1–Co1–O1ix	180.000°	O1iv-Co2-O2i	$172.83(8)^{\circ}$			
	Координа	ция бора				
B-O1	$1.3919(28) { m \AA}$	O1–B–O1vi	$114.1(3)^{\circ}$			
B-O1vi	1.392(3) Å	O1vi–B–O2vii	$122.83(16)^{\circ}$			
B–O2vii	$1.374(4)\mathrm{\AA}$	O2vii–B–O1	$122.83(16)^{\circ}$			
Индекс исн	кажения					
(Co1)O ₆	0.011					
$(Co2)O_6$	0.018					

Примечание. Коды симметрии: (i) x, 1 + y, z; (ii) 0.5 - x, 0.5 + y, 0.5 - z; (iii) -x, 1 - y, z; (iv) -0.5 + x, 0.5 - y, 0.5 - z; (v) -x, -y, z; (vi) x, y, -z; (vii) 1 - x, -y, z; (viii) x/a, y/b, z/c; (ix) -x, -y, -z.

на с $\Delta k = 0.05 \,\text{\AA}^{-1}$, время накопления сигнала составляло 4 с на точку.

Для проведения исследования EXAFS- и XANES-спектров из монокристаллов $Co_3B_2O_6$ был приготовлен порошок темно-коричневого цвета, который затем наносился на тонкую каптоновую пленку с клейким слоем для достижения равно-мерного поглощения. Спектры были измерены при комнатной температуре, а также в области низких температур при T = 10, 30, 40 К с использованием гелиевого криорефрижератора замкнутого цикла Sumitomo Heavy Industries (Япония).

Протяженная тонкая структура рентгеновских спектров поглощения представляет собой осцилляции коэффициента рентгеновского поглощения $\mu(E)$ (E -) энергия рентгеновских фотонов), возникающие в результате интерференции испускаемых поглощающим атомом первичных фотоэлектронных волн и волн, отраженных от атомов ближайшего окружения. Осциллирующая часть $\mu(E)$, нормированная на атомное поглощение, описывается интерференционной EXAFS-функцией [34]:

$$\chi(k) = \sum_{j} \frac{N_{j} S_{0}^{2}}{k} f_{j}(k) \times \\ \times \operatorname{Im} \left\langle \frac{1}{r_{j}^{2}} \exp\left(-\frac{2r_{j}}{\lambda} + 2ikr_{j}\right) \right\rangle \exp\left(i\delta_{j}(k)\right), \quad (1)$$

где k — волновой вектор фотоэлектрона, который задается соотношением $k = (0.2625 (E - E_0))^{1/2} (E_0$ энергия K-края поглощения), f_i — амплитуда вероятности рассеяния фотоэлектрона на 180° (амплитуда обратного рассеяния), N_j — число атомов в j-й координационной сфере, $\delta_j(k)$ — сдвиг фаз при отражении, r_j — мгновенное положение атома j-й сферы относительно поглощающего атома, λ — длина свободного пробега фотоэлектрона, S_0^2 — вероятность одноэлектронных процессов, формирующих EXAFS при поглощении фотона; угловые скобки означают усреднение по тепловым отклонениям атомов от положения равновесия.

Осциллирующая часть коэффициента поглощения, нормированная на атомное поглощение, определяется соотношением [36]

$$\chi(k) = \frac{\mu(k) - \mu_0(k)}{\mu_0(k) - \mu_1(k)},\tag{2}$$

где $\mu(k)$ — экспериментальный коэффициент поглощения образца, $\mu_1(k)$ — коэффициент поглощения, вызванного всеми процессами, за исключением фотоионизации электронной оболочки атома, $\mu_0(k)$ —

Рис.2. Нормализованные XANES-спектры $C_{03}B_2O_6$ в сравнении со спектрами $C_{00}O(Co^{2+})$ и $C_{02}O_3(Co^{3+})$

коэффициент поглощения, который наблюдался бы в случае отсутствия соседних атомов около поглощающего.

После стандартных процедур выделения фона, нормирования на величину скачка К-края и выделения атомного поглощения μ_0 [35] проводилось фурье-преобразование полученных EXAFS-спектров (χ_{exp}) в интервале волновых векторов фотоэлектронов k от 2.0 до 14.5 Å⁻¹ с весовой функцией k^3 с использованием окна кайзер-бесселевской формы. Пороговая энергия ионизации Е₀ выбиралась по значению максимума первой производной К-края. Точные значения параметров структуры ближайшего окружения атомов кобальта определялись путем нелинейной подгонки параметров соответствующих координационных сфер. Для этого сопоставлены рассчитанный EXAFS-сигнал и выделенные из полного EXAFS-спектра модули фурье-образа. Указанная нелинейная подгонка проводилась с использованием пакета программ IFFEFIT [36]. Необходимые для построения теоретического спектра фазы и амплитуды рассеяния фотоэлектронной волны рассчитывались с использованием программы FEFF8 [37]. Начальные приближения для параметров локального окружения кобальта выбирались на основе рентгеноструктурных данных.

В качестве стандартов для анализа XANES-спектров использовались спектры оксидов CoO (Co²⁺) и Co₂O₃ (Co³⁺).

Рис.3. Первая производная нормализованных XANES-спектров состава $\rm Co_3B_2O_6$ при температурах 10, 30, 40, 300 K в сравнении со спектрами $\rm Co^{2+}$ и $\rm Co^{3+}$

Haрис. 2приведены XANES-спектры СозВ2О6 на К-крае кобальта в интервале энергий 7700-7760 эВ при различных температурах. Также для сравнения показаны снятые при комнатной температуре спектры модельных соединений СоО и Со₂О₃. Совпадение максимумов первой производной К-края поглощения (рис. 3) для CoO и исследуемого Со₃В₂О₆ указывает на то, что исследуемое соединение содержит кобальт только в двухвалентном состоянии. Этот вывод находится в полном соответствии с результатами расчета методом валентных сумм.

В области края поглощения можно выделить три особенности, показанные на рис. 2 буквами «А», (B), (C), которые можно интерпретировать как переходы фотоэлектрона, возбуждаемого с 1s-уровня кобальта в связанные состояния и процессы его рассеяния на локальном окружении. Особенность А, расположенная перед основным краем поглощения, соответствует квадрупольному 1*s*-3*d*-переходу для октаэдрического окружения [38]. Интенсивность предкраевого перехода обычно очень мала, но из-за высокой плотности состояний в 3d-зоне и гибридизации 3*d*-4*p*-зон этот переход экспериментально может быть обнаружен. Основной максимум поглощения В соответствует дипольно-разрешенному 1s-4p-переходу. Максимум C в формализме многократного рассеяния отвечает резонансному рассеянию фотоэлектрона атомами кислорода в первой координационной сфере. Особенности тонкой

структуры, лежащие еще выше по энергии, имеют EXAFS-природу.

Полный количественный анализ EXAFS-спектвызывает серьезные затруднения ввиду ров сложности кристаллографического устройства оксиборатов. В связи с этим, анализ полученных спектров был ограничен первой координационной сферой. Как видно на рис. 4, модули фурье-образов EXAFS-спектров состоят из первого пика $(r \approx 1.50-2 \text{ Å})$, соответствующего координационной сфере Со–О, второго пика ($r \approx 2.50-3.2$ Å), соответствующего координационной сфере Со-Со, и пиков меньшей интенсивности, соответствующих эффектам многократного рассеяния и расстояниям Со–В. Интенсивный пик фурье-образа ($r \approx 5.1 \,\text{A}$) соответствует расстояниям Co-Co (5.45-5.55 Å). В структуре Со₃В₂О₆ присутствует 18 контактов Со-Со в указанном диапазоне расстояний. Высокая интенсивность этого пика, наблюдаемая даже при комнатной температуре, указывает на жесткость химических связей, формирующих данную структуру. При понижении температуры наблюдается существенный рост интенсивности пиков Со-Со в фурье-образах в соответствии с уменьшением средней амплитуды тепловых колебаний (параметров Дебая-Валлера). Для первой координационной сферы температурные изменения носят немонотонный характер: максимальная пиковая интенсивность наблюдается при T = 40 K, а при последующем понижении температуры имеет место снижение интенсивности. Данное изменение является систематическим и по абсолютной величине превышает статистическую погрешность проведенных измерений.

Максимальная интенсивность пика Co–O на фурье-образе при температуре 40 К (вблизи магнитного фазового перехода) соответствует точке максимального эффективного упорядочения, учитывающего как динамическую (амплитуда тепловых колебаний), так и статическую (структурно-обусловленный разброс длин связей) составляющие.

Количественный анализ был выполнен для первого максимума фурье-образа в интервале расстояний r = 1.0-2.2 Å и интервале волновых векторов фотоэлектрона k = 2.0-14.5 Å⁻¹. Согласно данным рентгеноструктурного анализа, ближайшие расстояния Со–О можно разделить на две группы со средним значением $\langle (Co1-O)_1 \rangle = 2.07$ (две связи, N = 2) и $\langle (Co1-O)_2 \rangle = 2.12$ Å (четыре связи, N = 4) для ионов кобальта в позиции 1. Аналогично для Со2 имеем $\langle (Co2-O)_1 \rangle = 2.07$ (N = 2) и $\langle (Co2-O)_2 \rangle = 2.15$ Å (N = 4). Среднее расстояние

Рис.4. Фурье-образ, выделенный из EXAFS-спектров $C_{03}B_2O_6$ при разных температурах

(Co-O) (N = 6) в кристалле близко к 2.11 Å.

Анализ проводился в рамках как одно-, так и двухсферной структурных моделей, включающих в себя либо одно усредненное расстояние (Со-О) (N = 6), либо расстояния $(Co-O)_1$ и $(Co-O)_2$ соответственно с координационными числами 2 и 4. Были рассчитаны теоретические EXAFS-функции $\chi_{theor}(k)$ и проведена подгонка параметров первого пика фурье-образа. Параметры локального атомного окружения кобальта, полученные в результате лучшей подгонки EXAFS-данных, приведены в табл. 6. Односферная модель достаточно хорошо описывает наблюдаемые спектры EXAFS. Средняя длина связи (Со-О) слабо меняется с температурой и близка к 2.10 Å в хорошем согласии с данными рентгеноструктурного исследования, проведенного при комнатной температуре. Эффективные значения дебаевских параметров при этом проходят через минимум при температуре T = 40 К. Использование двух неэквивалентных расстояний Со-О с координационными числами 2 и 4 в уточняемой модели приводит к улучшению сходимости для спектра, измеренного при T = 10 К. В рамках этой модели можно выделить расстояния двух типов: «короткие» (Со-О)₁ = 2.02-2.09 Å и «длинные» $(Co-O)_2 = 2.11-2.13$ Å, которые по-разному изменяются с температурой. Первое расстояние увеличивается с ростом температуры, в то время как вто-

Таблица 6. Параметры ближайшего координационного окружения кобальта, полученные из подгонки EXAFS-данных в рамках одно- и двухсферной моделей

	Путь рас-	8		2 42		<i>R</i> -фак-
1, K	сеяния	r, A	IN	σ^2 , A ²	<i>Е</i> ₀ , эВ	тор
	(Co–O)	2.11	6	0.0058	0.1	0.008
10	(Co-O) ₁	2.02	2			
	(Co–O) ₂	2.13	4	0.0025	-1.4	0.003
	(Co–O)	2.10	6	0.0055	-0.4	0.007
20	(Co–O) ₁	2.03	2	0.0000	1.0	0.000
00	(Co-O) ₂	2.12	4	0.0032	-1.2	0.006
	(Co-O)	2.10	6	0.0054	0.3	0.011
	(Co-O) ₁	2.06	2			
40	(Co-O) ₂	2.12	4	0.0047	0.3	0.011
	(Co-O)	2.10	6	0.0074	0.0	0.020
300	(Co–O) ₁	2.09	2		0.0	0.020
	(Co–O) ₂	2.11	4	0.0074	0.0	0.020

Примечания. r — межатомные расстояния, N — координационное число, σ^2 — фактор Дебая – Валлера, E_0 порог ионизации атома, R-фактор — величина отклонения $\chi_{theor}(k)$ от $\chi_{exp}(k)$

рое демонстрирует небольшое уменьшение. В рамках двухсферного уточнения при понижении температуры изменение дебаевских параметров носит характер монотонного уменьшения.

4. НАМАГНИЧЕННОСТЬ И МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ

Исследование магнитных свойств $Co_3B_2O_6$ выполнено с помощью коммерческих платформ SQUID MPMS и PPMS Quantum Design. Магнитные измерения выполнены в интервале температур T = 2-300 К на монокристалле в направлении внешнего поля параллельном M_{\parallel} и перпендикулярном M_{\perp} оси *a* кристалла.

На рис. 5 представлены кривые действительной компоненты намагниченности M'(T), полученные в переменном внешнем магнитном поле $(f = 0.1-10 \text{ к}\Gamma \text{ц})$ при различной ориентации постоянного внешнего поля относительно кристаллографической оси a. В обоих случаях зависимость M'(T) характеризуется двумя максимумами, первый из которых соответствует переходу образца в антиферромагнитное состояние с температурой $T_1 = 33 \text{ K}$. Следует отметить, что температура перехода T_1 находится в хорошем согласии с магнитными данными

Рис.5. Действительная компонента намагниченности $C_{03}B_2O_6$ в переменном магнитном поле $(f = 0.1, 0.5, 1.0, 5.0, 10 \ {\rm kGu})$. Постоянное магнитное поле $(H_{\rm II} = 10 \ {\rm J})$. На вставке: температурная зависимость обратной магнитной восприимчивости $C_{03}B_2O_6, H_{\rm II} = 500 \ {\rm J}$. Прямая линия — аппроксимация по закону Кюри – Вейсса

ЖЭТФ, том **144**, вып. 1 (7), 2013

 $T_N = 30-37$ К [13, 25, 39]. При последующем понижении температуры видна слабая особенность при $T_2 = 10$ К. В переменном магнитном поле образец не обнаруживает дисперсию критических температур (T_1 и T_2). Измерения при различных режимах охлаждения (FC и ZFC) не выявили различия в кривых намагниченности (не приведены в работе). Видно, что направление параллельно кристаллографической оси a, которая является осью легкого намагничивания.

Анизотропия намагниченности также видна на температурных зависимостях обратной магнитной восприимчивости в постоянном магнитном поле (вставка на рис. 5). В широком температурном интервале со стороны высоких температур хорошо выполняется закон Кюри–Вейсса. Величины парамагнитной температуры Кюри $\Theta_{\perp} = -115$ К и $\Theta_{\parallel} = -52$ К. Отрицательные значения температур указывают на преимущественно антиферромагнитные корреляции спинов. Величины эффективного магнитного момента, приходящегося на один ион Co^{2+} , для параллельной и перпендикулярной ориентаций внешнего поля составляют $\mu_{eff\parallel} = 4.81 \mu_B$ и $\mu_{eff\perp} = 4.98 \mu_B$.

На рис. 6 представлены температурные кривые намагниченности, измеренные в направлении внешнего поля параллельного оси а в полях до 50 кЭ. Экспериментальное значение магнитного момента, полученное при T = 4.2 К в поле 10 кЭ, близко к соответствующему значению, найденному ранее в работах [25, 39]. С ростом напряженности магнитного поля низкотемпературный максимум слегка смещается в область низких температур, в отличие от перехода T₁, который не зависит от поля. Из экспериментальных кривых M(T) довольно трудно определить полевую зависимость T₂. Такая зависимость более точно может быть обнаружена из температурной зависимости производной dM/dT(T) (вставка на рис. 6). Видно, что с увеличением напряженности магнитного поля температура перехода T_2 быстро уменьшается, достигая значения 4 К при H = 24 кЭ.

На рис. 7 представлены изотермы намагниченности $Co_3B_2O_6$ при T = 2 К и двух ориентациях внешнего поля относительно оси *a*. Здесь обращает на себя внимание то, что обе кривые демонстрируют особенность вблизи $H_{sf} = 23$ кЭ, которую можно связать со спин-флоп-переходом. Отсутствие магнитного гистерезиса в точке H_{sf} свидетельствует об обратимости перехода. Данная особенность хорошо видна на полевой зависимости производной dM/dH(H) в виде максимума при H_{sf} (нижняя вставка к рис. 7). При повышении температу-

Рис.6. Температурные зависимости намагниченности $Co_3B_2O_6$, измеренные в интервале внешних полей $H_{\rm H}=1-50$ кЭ. На вставке: температурные зависимости производных dM/dT. Максимумы соответствуют критическим температурам переходов T_1 и T_2 . В увеличенном масштабе приведено температурное смещение точки перехода T_2

Рис.7. Полевые зависимости намагниченности $Co_3B_2O_6$, полученные при различной ориентации внешнего магнитного поля относительно оси a (T = 2 K). Штриховыми линиями показана экстраполяция кривой к нулевому полю. На вставке вверху: температурная зависимость спонтанной намагниченности. Штриховая линия проведена на «глаз». На вставке внизу: полевая зависимость производной намагниченности по полю $(H \parallel a, T = 2 \text{ K})$. Спин-флоп-переход $H_{sf} = 23 \text{ к}$ Э

ры происходит значительное уширение максимума, переход становится сглаженным, однако его мож-

но наблюдать вплоть до температуры 10 К. В полях выше H_{sf} кривые намагниченности обнаруживают существование спонтанного магнитного момента и намагниченность может быть описана выражением $M = M_0 + \chi_{\perp} H$. Величина $M_0 = 0.11 \mu_B$ на формульную единицу при T = 2 К. С ростом температуры M_0 уменьшается (верхняя вставка к рис. 7). При T = 20 К и выше кривые намагничивания линейны без каких-либо особенностей. Магнитная восприимчивость в антиферромагнитной фазе для поля параллельного и перпендикулярного оси a равна соответственно $\chi_{\parallel} = 1.47 \cdot 10^{-5} \mu_B/Э$ и $\chi_{\perp} = 0.87 \cdot 10^{-5} \mu_B/Э$ в расчете на формульную единицу. В области $T \geq 40$ К кривые M(H) линейны и соответствуют парамагнитному поведению.

5. АНАЛИЗ ОБМЕННЫХ ВЗАИМОДЕЙСТВИЙ

Проведем анализ обменных взаимодействий в рамках простой модели косвенной связи. Теоретические основы этой модели изложены в работах [40, 41]. Практическое приложение модели к 3*d*-катионам в магнитодиэлектриках показано в работе [42]. Ранее подобный расчет был проведен нами для людвигитов $Co_{3-x}Fe_xBO_5$ и показал хорошее согласие с экспериментом [28].

В вычислениях ограничимся приближением ближайших соседей, т.е. будем рассматривать взаимодействия только по коротким связям Co–O–Co, пренебрегая длинными связями Co–O–Co–O–Co и Co–O–B–O–Co. С точки зрения косвенной обменной связи, в структуре котоита имеются четыре типа обменных взаимодействий: 93°, 95°, 112°, 123°, которые описываются интегралами

$$J1 = J_{12}^{95^{\circ}} = -\frac{1}{9}c \left[\left(\frac{8}{3}b + c \right) U - \left(4b + \frac{1}{2}c \right) J_{in} \right] \approx -2.16 \text{ K},$$

$$J2 = J_{12}^{112^{\circ}} = -\frac{1}{27}bc(4U - J_{in})(1 + 2\cos 65^{\circ}) \times (\cos 112^{\circ}) \approx -1.2 \text{ K},$$

$$J3 = J_{22}^{93^{\circ}} = -\frac{32}{27}bcU \approx -15.44 \text{ K},$$

$$J4 = J_{22}^{123^{\circ}} = -\frac{1}{9} \left(\frac{32}{9}b^{2}U - c^{2}J_{in} \right) \times (\cos 123^{\circ}) \approx -5.44 \text{ K}.$$

Здесь верхний индекс обозначает угол косвенной связи, а нижний — номер кристаллографической позиции; b и c — параметры электронного переноса соответственно по σ - и π -связям; U энергия электронного возбуждения лиганд-катион; J_{in} — интеграл внутриатомного обмена (энергия Хунда), соs 65° призван описать угловую зависимость электронного переноса при повороте координационного октаэдра относительно своей главной оси, $|\cos 112^{\circ}|$ и $|\cos 123^{\circ}|$ учитывают углы косвенной связи. Интеграл катион-катионного взаимодействия является суммой взаимодействий индивидуальных 3d-орбиталей.

Октаэдры соседних катионов, имеющие общие ребра, обусловливают обменную связь с углом 95° J1 и связь с углом 93° J3. Октаэдры, связанные общим атомом кислорода, допускают косвенную связь под углом 112° J2 и связь под углом 123° J4 (рис. 8). В качестве примера рассмотрим вклады в интеграл катион-катионного обменного взаимодействия J1. Катион Со1 располагается в сжатом кислородном октаэдре, в связи с чем, согласно представлениям теории кристаллического поля, его d_{xy} -орбиталь двукратно занята. Седьмой электрон равновероятно заселяет d_{xz} - и d_{yz} -орбитали, каждая из которых может быть заселена либо однократно, либо двукратно $\frac{1}{2}(\uparrow + \uparrow\downarrow)$. Вокруг узла Со2 октаэдр вытянут, в связи с чем его d_{xz} - и d_{yz} -орбитали заняты дву-

Рис.8. Схема косвенных обменных взаимодействий. Светлые кружки обозначают ионы Co1, темные — Co2. Цифрами показана принадлежность кристаллографических позиций к магнитным подрешеткам

кратно, а орбиталь d_{xy} — однократно. За локальные оси z приняты короткая ось октаэдра Co1O₆ и длинная ось октаэдра Co2O₆. Зная локальные оси, формы 3*d*-орбиталей, их заселенность для каждого катиона и геометрию взаимного расположения соседних октаэдров, определяем разрешенные симметрией перекрывания орбиталей взаимодействующих катионов. На рис. 9*a* приведены конфигурации индивидуальных 3*d*-орбиталей при косвенной связи Co1–Co2 с углом 95° через два кислорода при разрешенных симметрией решетки электронных переносах и выражения обменных интегралов индивидуальных орбиталей. Видно, что интеграл взаимодействия состоит как из положительных, так и из отрицательных вкладов. Используя известные для

Рис. 9. Схема взаимодействующих 3*d*-орбиталей катионов *a*) Co1–Co2 и *б*) Co2–Co2, участвующих соответственно в косвенных связях под углом 90° *J1* и *J3*, и вклады индивидуальных орбиталей в катион-катионное взаимодействие

структуры шпинели, октаэдрические позиции которой имеют сравнимые с котоитом межионные расстояния, значения параметров b = 0.02, c = 0.01, U = 5.6 эВ, $J_{in} = 2.2$ эВ [42], приходим к оценочным значениям параметров катион-катионного обменного взаимодействия, указанным в формуле (3) справа.

Наиболее слабыми являются взаимодействия J1 и J2, которые носят преимущественно антиферромагнитный характер. Однако они ослаблены ферромагнитными взаимодействиями, возникающими за счет перекрытия однократно занятых *е*_q-орбиталей подрешетки (Co1) и двукратно занятых t_{2a} -орбиталей подрешетки (Со2). Наиболее сильными являются антиферромагнитные взаимодействия J3 и J4, соответствующие обменной связи Со2-Со2. В случае взаимодействия Co2-Co2 под углом 93° перекрытие однократно занятых d_{z^2} -, $d_{x^2-y^2}$ -, d_{xy} -орбиталей таково, что возникает сильная антиферромагнитная связь ЈЗ (рис. 96). При расположении катионов Co2-Co2 под углом 123° антиферромагнитное взаимодействие слабее за счет перекрытия однократно и двукратно занятых орбиталей $d_{xy}(\uparrow) - d_{yz}(\uparrow\downarrow)$ и однократно занятых $d_{z^2}(\uparrow) - d_{z^2}(\uparrow), \ d_{x^2 - y^2}(\uparrow) - d_{x^2 - y^2}(\uparrow)$.

Взаимодействия между всеми кристаллографическими позициями отрицательны, что указывает на стремление к антиферромагнитному упорядочению. В этом случае кристаллографические позиции разбиваются на магнитные подрешетки. Представим котоит магнетиком, состоящим из шести подрешеток, в котором кристаллографические позиции Со1 разбиваются на две магнитные подрешетки — 1 и 2, — а кристаллографические позиции Со2 разбиваются на четыре магнитные подрешетки — 3, 4, 5, 6. Принадлежность позиций котоита к подрешеткам показана на рис. 10. Следует отметить, что ранее метод косвенной связи был применен для расчета магнитных структур $Ni_3B_2O_6$ и $Co_3B_2O_6$, выращенных в растворе-расплаве, содержащем Na₂O. Полученные нами величины интегралов взаимодействий хорошо согласуются с данными работы [39].

С учетом чисел соседей приходим к значениям межподрешеточных взаимодействий, приведенных в табл. 7. Стрелками показана магнитная структура (взаимная ориентация магнитных моментов), навязываемая вычисленными параметрами обменного взаимодействия. Сильные антиферромагнитные взаимодействия, действующие в кристаллографической подрешетке Co2, заставляют котоит быть антиферромагнетиком. На катионы подрешеток 1 и 2 со стороны катионов подрешеток 3–6 действуют как упорядочивающие взаимодействия, поддержи-

Рис.10. Магнитная фазовая диаграмма $Co_3B_2O_6$. Штриховая кривая проведена «на глаз»

вающие антиферромагнитную структуру котоита, так и разупорядочивающие взаимодействия. Разупорядочивающие взаимодействия в таблице записаны курсивом. При этом сила упорядочивающих взаимодействий равна силе разупорядочивающих взаимодействий. Таким образом, обменные поля на катионах 1 и 2 равны нулю, и магнитные моменты этих подрешеток свободны в своем поведении. Возможно, они могут дать парамагнитный вклад в намагниченность кристалла или же случайно упорядочиться под действием более слабых взаимодействий или дефектов решетки.

Зная набор обменных взаимодействий в кристалле, можно вычислить температуру магнитного упорядочения. Получаем $T_N = 32$ К, что хорошо согласуется с экспериментальным значением. Достаточно удовлетворительное согласие вычисленной магнитной структуры и температуры магнитного упорядочения с экспериментальными результатами может свидетельствовать в пользу адекватности проведенной оценки взаимодействий, существующих в котоите.

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

С помощью методов EXAFS- и XANES-спектроскопии изучены электронное состояние и локальная кристаллическая структура иона кобальта. Наличие высокоинтенсивных пиков дальних координационных сфер на модуле фурье-образа EXAFS-спектра указывает на жесткость каркаса химических связей в структуре. Обнаружены особенности на *K*-крае по-

$Z_{ij}J_{ij}, \mathbf{K}$	↑ 1(Co1)	\downarrow 2(Co1)	$\uparrow \\ 3(\text{Co2})$	\downarrow 4(Co2)	\downarrow 5(Co2)	↑ 6(Co2)
$\uparrow \\ 1(Co1)$	0	0	-4.32	-4.32	-2.40	-2.40
$\downarrow \\ 2(Co1)$	0	0	-2.40	-2.40	-4.32	-4.32
$\uparrow \\ 3({\rm Co2})$	-4.32	-2.40	0	-15.44	-21.76	0
$\downarrow \\ 4(\text{Co2})$	-4.32	-2.40	-15.44	0	0	-21.76
\downarrow 5(Co2)	-2.40	-4.32	-21.76	0	0	-15.44
↑ 6(Co2)	-2.40	-4.32	0	-21.76	-15.44	0

Таблица 7. Интегралы внутри- и межподрешеточных обменных взаимодействий

глощения, соответствующие квадрупольному 1s-3dи дипольному 1s-4p-переходам. Показано, что ионы кобальта находятся в двухвалентном состоянии. Для первого максимума фурье-образа был выполнен количественный анализ в рамках одно- и двухсферной структурных моделей, где учитывались шесть усредненных расстояний (Со-О) или два типа расстояний (Со-О)₁ и (Со-О)₂ с координационными числами соответственно 2 и 4. Теоретические EXAFS-функции $\chi_{theor}(k)$ хорошо описывают экспериментальные спектры в обоих случаях. Межионные расстояния, определенные в рамках обеих моделей, находятся в хорошем согласии с данными монокристаллической рентгеновской дифракции. Температурные изменения расстояний Со-О наилучшим образом проявляются в двухсферной модели. С температурой происходят сжатие октаэдра в направлении длинных кислородных связей и растяжение в направлении коротких связей.

Анализ показал монотонное уменьшение эффективных дебаевских параметров при охлаждении в обеих моделях. При этом в случае односферного подхода параметр Дебая – Валлера проходит через минимум при температуре T = 40 K, что может свидетельствовать об изменениях в локальной атомной структуре в области магнитного фазового перехода.

Магнитные измерения показали, что ось a является направлением легкого намагничивания. Обращает на себя внимание тот факт, что намагниченность ниже T_N в обоих направлениях (параллельно и перпендикулярно кристаллографической оси *a*) стремится к конечному значению. Такое поведение может как быть следствием неколлинеарной магнитной структуры, так и указывать на то, что в обоих случаях внешнее магнитное поле направлено под углом к оси антиферромагнетизма.

Величина эффективного магнитного момента для разных ориентаций внешнего поля лежит в интервале $\mu_{eff} = 4.81-4.98 \ \mu_B$ /Со и хорошо согласуется со значениями $4.44-5.25 \ \mu_B$, установленными ранее для двухвалентного кобальта в высокоспиновом состоянии $(t_{2g}^2 e_g^2)$ [43]. Небольшое различие в величинах $\mu_{eff\perp}$ и $\mu_{eff\parallel}$ также свидетельствует в пользу того, что система магнитно анизотропна. Чисто спиновое значение эффективного магнитного момента иона кобальта при величине *g*-фактора равной двум составляет $\mu_{eff} = g\mu_B \sqrt{S(S+1)} = 4.08 \ \mu_B$, что говорит о существенном орбитальном вкладе в магнитный момент.

Особенность на кривых M(H) при $H_{sf} = 23$ кЭ (T = 2 K) связана с опрокидыванием спиновой плоскости (спин-флоп-переход). При $H > H_{sf}$ спиновая переориентация вызывает возникновение спонтанной намагниченности, которая быстро уменьшается с ростом температуры.

Расчет обменных взаимодействий показал, что в $Co_3B_2O_6$ преобладающим типом обмена является антиферромагнитный, что согласуется с данными магнитных измерений. В этой связи $Co_3B_2O_6$ можно рассматривать как трехмерный антиферромагнетик.

Магнитная фазовая диаграмма $Co_3B_2O_6$, построенная с использованием результатов магнитных измерений, представлена на рис. 10. На диаграмме можно выделить три области: парамагнитную PM, антиферромагнитную AF1 и антиферромагнитную AF2, в которой имеет место спонтанная намагниченность, индуцированная полем. Таким образом, магнитная структура $Co_3B_2O_6$, по-видимому, является более сложной, чем предполагалось ранее в работе [25]. Наличие спин-переориентационного перехода на кривых намагничивания, измеренных в двух кристаллографических направлениях, свидетельствует о том, что ось антиферромагнетизма, возможно, располагается под углом к осям a и b.

В заключение отметим, что приведенные здесь расчеты анизотропных взаимодействий носят оценочный характер и проведены для случая одноосного антиферромагнетика без учета фрустраций обменных связей. Для получения дополнительных данных о магнитной фазовой диаграмме Co₃B₂O₆ несомненный интерес представляют нейтронографические исследования в магнитном поле.

Авторы благодарят С. Н. Софронову за полезное обсуждение и замечания.

Работа выполнена при финансовой поддержке РФФИ (гранты №№12-02-00175-a, 12-02-90410-Укр_а, 12-02-31543 мол_а, 13-02-00958-а), гранта Президента РФ (НШ-1044.2012.2), Министерства образования и науки РФ (соглашение № 8365), а также в рамках программы № 38 СО РАН и интеграционного проекта № 29 СО РАН-НАН Беларуси. Синхротронные измерения проводились в ЦКП «Курчатовский центр синхротронного излучения и нанотехнологий» (Госконтракт 16.552.11.7055).

ЛИТЕРАТУРА

- А. К. Звездин, С. С. Кротов, А. М. Кадомцева и др., Письма в ЖЭТФ 81, 335 (2005).
- A. D. Balaev, L. N. Bezmaternykh, S. A. Kharlamova et al., J. Magn. Magn. Mater. C 258–259, 532 (2003).
- **3**. И. А. Троян, А. Г. Гаврилюк, С. Г. Овчинников и др., Письма в ЖЭТФ **94**, 811 (2011).
- А. Г. Гаврилюк, Н. В. Казак, С. Г. Овчинников и др., Письма в ЖЭТФ 88, 877 (2008).
- R. Komatsu, T. Sugawara, K. Sassa et al., Appl. Phys. Lett. 70, 3492 (1997).
- И. Н. Огородников, Н. Е. Порывай, В. А. Пустоваров и др., ФТТ 51, 1097 (2009).

- Н. Б. Иванова, А. Д. Васильев, Д. В. Великанов и др., ФТТ 49, 618 (2007).
- J. P. Attfield, A. M. T. Bell, L. M. Rodrigues-Martinez et al., J. Mater. Chem. 9, 205 (1999).
- R. I. Goff, A. J. Williams, and J. P. Attfield, Phys. Rev. B 70, 014426 (2004).
- Yu. V. Knyazev, N. B. Ivanova, N. V. Kazak et al., J. Magn. Magn. Mater. **324**, 923 (2012).
- J. C. Fernandes, F. S. Sarrat, R. B. Guimaraes et al., Phys. Rev. B 67, 104413 (2003).
- J. Pardo, M. Martinez-Ripoll, and S. Garcia-Blanco, Acta Cryst. B 30, 37 (1974).
- R. E. Newnham, R. P. Santoro, P. F. Seal et al., Phys. Stat. Sol. 16, K17 (1966).
- 14. H. Effenberger and F. Pertlik, Z. Kristallogr. 166, 129 (1984).
- 15. S. V. Berger, Acta. Chem. Scand. 3, 660 (1949).
- 16. О. С. Бондарева, М. А. Симонов, Н. Б. Белов, Кристаллография 23, 487 (1978).
- 17. B. Tekin and H. Guler, Mater. Chem. Phys. 108, 88 (2008).
- 18. H. Guler and B. Tekin, Inorg. Mater. 45, 538 (2009).
- 19. H. Behm, Acta Cryst. B 38, 2781 (1982).
- **20**. Г. А. Петраковский, Л. Н. Безматерных, О. А. Баюков и др., ФТТ **41**, 677 (1999).
- Zhangzhen He, Toru Kyomen, and Mitsuru Itoh, Phys. Rev. B 70, 134431 (2004).
- 22. J. Schaefer and K. Bluhm, Z. Anorg. Allg. Chem. 620, 1051 (1994).
- Zhangzhen He, Toru Kyomen, Tomoyasu Taniyama et al., J. Sol. St. Chem. 179, 3937 (2006).
- 24. M. Hase, A. Donni, V. Yu. Pomjakushin et al., Phys. Rev. B 80, 104405 (2009).
- 25. R. E. Newnham, M. J. Redman, and R. P. Santor, Z. Kristallogr. 121, 418 (1965).
- 26. M. Boehm, B. Roessli, J. Schefer et al., Phys. Rev. B 68, 024405 (2003).
- 27. J. Bartolomé, A. Arauzo, N. V. Kazak et al., Phys. Rev. B 83, 144426 (2011).
- 28. N. V. Kazak, N. B. Ivanova, O. A. Bayukov et al., J. Magn. Magn. Mater. 323, 521 (2011).

- **29**. Н. Б. Иванова, Н. В. Казак, Ю. В. Князев и др., ЖЭТФ **140**, 1160 (2011).
- **30**. E. A. Stern, Phys. Rev. B **10**, 3027 (1974).
- 31. И. Б. Боровский, Р. В. Ведринский, В. Л. Крайзман и др., УФН 149, 275 (1986).
- 32. P. Eisenberg and B. M. Kincaid, Chem. Phys. Lett. 36, 134 (1975).
- 33. G. M. Sheldrick, Acta Cryst. A 64, 112 (2008).
- 34. J. M. Tranguada and R. Ingalls, Phys. Rev. B 28, 3520 (1983).
- 35. Д. И. Кочубей, Ю. А. Бабанов, К. И. Замараев и др., Рентгеноспектральный метод исследования структуры аморфных тел: EXAFS-спектроскопия, Наука, Новосибирск (1988).

- 36. M. Newville, J. Synchrotr. Radiation 8, 322 (2001).
- 37. S. I. Zabinski, J. J. Rehr, A. Ankudinov et al., Phys. Rev. B 52, 2995 (1995).
- 38. F. de Groot, G. Vank'o, and P. Glatzel, J. Phys. Condens. Matter 21, 104207 (2009).
- 39. L. N. Bezmaternykh, S. N. Sofronova, N. V. Volkov et al., Phys. Stat. Sol. B 249, 1628 (2012).
- 40. P. W. Anderson, Phys. Rev. 115, 1 (1959).
- **41**. М. В. Еремин, ФТТ **24**, 423 (1982).
- **42**. О. А. Баюков, А. Ф. Савицкий, ФТТ **36**, 1923 (1994).
- **43.** С. В. Вонсовский, *Магнетизм*, Наука, Москва (1971).