МАГНИТОСОПРОТИВЛЕНИЕ МАНГАНИТОВ ЛАНТАНА С АКТИВАЦИОННЫМ ТИПОМ ПРОВОДИМОСТИ

М. И. Куркин^{*}, Э. А. Нейфельд, А. В. Королев, Н. А. Угрюмова, С. А. Гудин, Н. Н. Гапонцева

Институт физики металлов Уральского отделения Российской академии наук 620129, Екатеринбург, Россия

> Статья написана по материалам доклада на 36-м Совещании по физике низких температур (Санкт-Петербург, 2-6 июля 2012 г.)

Исследована температурная зависимость электросопротивления и магнитного момента монокристаллических образцов манганитов La_{0.85}Ba_{0.15}MnO₃ и La_{0.85}Sr_{0.15}MnO₃ в интервале температур 40–300 К в магнитных полях до 90 кЭ. Из анализа экспериментальных данных следует, что магнитосопротивление манганитов лантана вдали от температуры Кюри T_C количественно описываются стандартной для ферромагнетиков s-d-моделью, учитывающей только обменное взаимодействие спинов носителей тока и магнитного момента. Из этих данных также следует, что особенности манганитов лантана, ответственные за колоссальное магнитосопротивление (КМС), проявляются в узком интервале температур $\delta T \approx 20$ К вблизи T_C . Полученные результаты позволили предложить механизм КМС, аналогичный механизму гигантского магнитосопротивления (ГМС), который наблюдается в мультислоях типа Fe/Cr с нанометровой толщиной слоев. Необходимое для ГМС нанорасслоение в манганитах лантана можно описать при учете разброса T_C в интервале существования КМС δT .

DOI: 10.7868/S0044451013050182

1. ВВЕДЕНИЕ

Уже около двух десятилетий эффект колоссального магнитосопротивления (КМС) в манганитах лантана, допированных двухвалентными ионами $La_{1-x}A_xMnO_3$ (A = Ba, Ca, Sr, ...), является предметом самого активного интереса многочисленных исследователей [1–6]. Магнитосопротивление, т. е. относительное изменение электросопротивления под влиянием магнитного поля, называется колоссальным из-за аномально большой величины отношения

$$\frac{\Delta\rho}{\rho} = \frac{\rho(0) - \rho(H)}{\rho(H)} \approx 10^2 \text{--}10^4,$$
(1)

где $\rho(H)$ — электросопротивление в магнитном поле H. Для сравнения укажем, что в магнитных металлических гетероструктурах, магнитосопротивление которых называют гигантским (эффект ГМС) [7,8], величина $\Delta \rho/\rho \approx 1$. В других ферромагнетиках $\Delta \rho / \rho \approx 10^{-2}$ [9], а в пара- и диамагнетиках $\Delta \rho / \rho \approx 10^{-5}$ [9].

Несмотря на огромный объем публикаций по манганитам (см. списки литературы в [1-6]), микроскопический механизм КМС до сих пор остается предметом острых дискуссий. Многие авторы связывают проблему КМС с ограниченностью моделей, используемых для описания электропереноса и магнетизма кристаллических веществ. Эту ограниченность они видят в использовании упрощающих предположений, позволяющих приписывать электроперенос и магнетизм разным группам электронов в кристаллах, которые в первом приближении считаются невзаимодействующими. По их мнению, взаимодействие зарядовых, магнитных и решеточных степеней свободы в манганитах оказывается настолько сильным, что их нельзя описывать независимо ни в каком приближении.

Однако отказ от приближений мы считаем наименее благоприятным вариантом для построения теории КМС. В нашей статье (разд. 2) приводятся экспериментальные данные, указывающие на возможность описания магнитосопротивления манганитов

^{*}E-mail: kurkin@imp.uran.ru

с использованием двух слабо взаимодействующих групп электронов. Одна из них ответственна только за электроперенос, вторая — только за магнитные свойства. В разд. 3 обсуждаются экспериментальные результаты, из которых следует, что все особенности манганитов исследованного нами типа, ответственные за КМС, проявляются в узком температурном интервале вблизи температуры Кюри T_C :

$$\delta T/T_C = |T - T_C|/T_C \ll 1.$$
 (2)

Это свойство манганитов позволило предложить новый механизм КМС, который обсуждается в заключительном разделе статьи.

2. МАГНИТОСОПРОТИВЛЕНИЕ $La_{0.85}Ba_{0.15}MnO_3$ ПРИ ТЕМПЕРАТУРАХ $T < 100~{ m K}$

Мы измеряли электросопротивление $\rho(T, H)$ и намагниченность M(T, H) монокристаллических образцов La_{0.85}Ba_{0.15}MnO₃ и La_{0.85}Sr_{0.15}MnO₃ в зависимости от температуры T и магнитного поля H. Измерения проводились на установке PPMS-9 фирмы Quantum Design (USA). Температурные зависимости $\rho(T, H)$ обоих соединений относятся к активационному типу:

$$\rho(T,H) = \rho(0) \exp\left\{\Delta(T,H)/k_BT\right\},\tag{3}$$

где k_B — константа Больцмана, $\Delta(T, H)$ — энергия активации носителей тока. Их магнитосопротивление имеет сравнительно скромную величину $(\Delta \rho / \rho \approx 5)$, сильно уступая значениям $\Delta \rho / \rho$ (1) в манганитах, в которых магнитное упорядочение сопровождается переходом диэлектрик-металл. Однако электросопротивление металлических соединений сложных составов определяется большим числом механизмов, что затрудняет количественное описание экспериментальных данных по их магнитосопротивлению. По этой причине мы предпочли исследовать манганиты с активационным типом сопротивления (3) с достаточно простой зависимостью от температуры. При этом оказалось достаточным использовать самую простую зависимость Δ от H [9], которая соответствует расщеплению в энергетическом спектре носителей тока по спиновому квантовому числу $\sigma = \pm 1/2$ во внешнем магнитном поле Н и обменном поле

$$H_{ex} = H_E M(T, H) / M_0, \tag{4}$$

создаваемом носителями магнитного момента M(T, H) [9], $H_E \approx 10^7 \ \Im$ — эффективное поле обменного подмагничивания носителей тока,

Рис. 1. Зависимости магнитосопротивления ρ и намагниченности M бариевого манганита от магнитного поля H при T = 40 K, 100 K

 M_0 — намагниченность насыщения при T=0 $(M_0=M(T,H),$ при $T=0,~H\to\infty).$ В этом приближении

$$\Delta(T,H) = \Delta_0(T) - 2\mu_B |\mathbf{H} + \mathbf{H}_{ex}|, \qquad (5)$$

где μ_B — магнетон Бора, Δ_0 — энергия активации без учета спинового расщепления.

Формулы (3)–(5) описывают зависимость $\rho(T, H)$ и H_{ex} , если известен вид функции M(T, H). При низких температурах ($T < 0.5T_C$) эта функция имеет существенно различный вид на разных интервалах изменения H относительно так называемого поля насыщения H_s [9]. При $H \leq H_s$ зависимость M(T, H)от H определяется магнитными неоднородностями (доменной структурой), возникающими в ферромагнитном образце за счет магнитнодипольного взаимодействия (области технической кривой намагничивания [9]). Количественное описание M(T, H) при $H < H_s$ является сложной и до конца нерешенной задачей, поэтому мы ограничились областью

$$H > H_s. \tag{6}$$

При условии (6) полевая зависимость M(T, H)связана с подавлением полем H тепловых флуктуаций M(T, H) (область парапроцесса [9]). В этой области имеет место соотношение

$$M(T, H) = M(T, 0) + \chi(T)H,$$
 (7)

где $\chi(T)$ — магнитная восприимчивость парапроцесса.

На рис. 1 приведены полевые зависимости $\rho(T, H)$ и M(T, H) для соединения La_{0.85}Ba_{0.15}MnO₃ при двух значениях температуры $T = T_1 = 40$ К и $T = T_2 = 100$ К в интервале полей $0 \le H \le 90$ кЭ. Области $H > H_s$ (6) соответствуют участки кривых при H > 10 кЭ. Для таких H обработка кривых $\rho(T, H)$ по формулам (3)–(5) и (7) позволяет определить величину отношения восприимчивостей $\chi(T_1) = \chi(40)$ и $\chi(T_2) = \chi(100)$ без использования подгоночных параметров:

$$(\chi(100)/\chi(40))_{a} = 2.79 \pm 0.06.$$
 (8)

Из значений $\chi(100)$ и $\chi(40)$, полученных с помощью кривых M(T, H) при H > 10 кЭ (рис. 1), следует, что

$$(\chi(100)/\chi(40))_M = 2.80 \pm 0.04.$$
 (9)

Из (8), (9) следует, что формулы (3)–(5), (7) в пределах экспериментальных погрешностей идеально описывают магнитосопротивление исследуемого манганита при $T < 0.5T_C$. Отметим, что формулы (3)–(5), (7) предполагают существование двух групп электронов, из которых одна группа (условно *s*-электроны) ответственна за электроперенос $\rho(T, H)$, а другая (условно *d*-электроны) определяет намагниченность манганитов M(T, H). При этом для описания магнитосопротивления (формулы (8), (9)) оказалось достаточным учесть расщепление в спектре *s*-электронов по спиновому квантовому числу $\sigma = \pm 1/2$, что соответствует первому приближению теории возмущений по обменному взаимодействию *s*- и *d*-электронов.

Таким образом, при $T < 0.5T_C$ исследованные манганиты лантана практически не отличаются от других ферромагнетиков, в которых КМС не наблюдается. Это позволяет надеяться, что КМС не связано с какими-то уникальными особенностями энергетического спектра электронов и теорию КМС удастся построить в рамках традиционной для ферромагнетиков *s*-*d*-модели. Мы полагаем, что для построения такой теории важно знание температурного интервала δT (см. формулу (2)), в котором наблюдается КМС. В следующем разделе обсуждаются экспериментальные данные, позволяющие определить интервал δT .

3. МАГНИТОСОПРОТИВЛЕНИЕ $La_{0.85}Sr_{0.15}MnO_3$ ВБЛИЗИ ТЕМПЕРАТУРЫ КЮРИ T_C

Проблема определения температурного интервала δT (2) состоит в том, что восприимчивость $\chi(T)$

Рис.2. Температурные зависимости электросопротивления стронциевого манганита при H = 0 (верхняя кривая), 50 кЭ (нижняя кривая). Средняя кривая соответствует формулам (3)–(5)

в (7), от которой зависит магнитосопротивление в s-d-модели, имеет расходимость при $T = T_C$ (особенность Кюри – Вейсса [9]). Чтобы выявить специфические для манганитов лантана особенности свойств, ответственных за КМС, нужно исключить влияние указанной расходимости. Для этого использовалась кривая $\rho(T, H)$, снятая при значении H = 50 кЭ (нижняя кривая на рис. 2). Мы полагаем, что поле H = 50 кЭ способно подавить все магнитные неоднородности, связанные не только с магнитнодипольным взаимодействием, но и с тепловыми флуктуациями в критической области вблизи T_C [9].

Формулы (3)-(5) позволяют построить кривую

 $\rho_{s-d}(T,0)$, которая получается из $\rho(T,50)$ в предположении, что зависимость $\rho(T,H)$ от H определяется только подмагничиванием носителей тока за счет s-d-обменного взаимодействия. Зависимости $\rho_{s-d}(T,0)$ на рис. 2 соответствует средняя кривая. Различия между кривой $\rho_{s-d}(T,0)$ и экспериментальной кривой $\rho(T,0)$ (верхняя кривая на рис. 2) определяется теми механизмами магнитосопротивления, которые специфичны для манганитов лантана. На рис. 3 приведена температурная зависимость разности

$$\Delta \rho(T,0) = \rho(T,0) - \rho_{s-d}(T,0),$$

нормированной на ее значение в максимуме при T = 230 K:

$$\delta(T) = \Delta \rho(T, 0) / \Delta \rho(230, 0). \tag{10}$$

Она имеет вид резонансной кривой с полушириной на полувысоте $\delta T = \pm 10 \text{ K},$ (11)

удовлетворяющей условию (2). Выполнение неравенства (2) позволяет предложить новый механизм КМС, который обсуждается в разд. 4.

4. НЕОПРЕДЕЛЕННОСТИ ТЕМПЕРАТУРЫ КЮРИ КАК ВОЗМОЖНАЯ ПРИЧИНА КМС В МАНГАНИТАХ

По нашему мнению, экспериментальные данные, приведенные в этой статье, указывают на новые возможности при решении проблемы КМС в манганитах лантана. Во-первых, из формул (8), (9) следует, что вдали от T_C магнитосопротивление манганитов прекрасно описывается обычной *s*-*d*-моделью. Следовательно, эти вещества, по-видимому, ничем не выделены по сравнению с другими ферромагнетиками, так что проблему КМС не следует связывать с какими-то особенностями электронного спектра.

Во-вторых, из кривых на рис. 2 следует, что вся уникальность свойств манганитов, ответственных за КМС, проявляется в узкой температурной области (с шириной $2\delta T$ (11)) вблизи T_C . Это позволяет связать КМС с фазовым расслоением на ферромагнитные и парамагнитные области в неоднородном материале. Вне зависимости от конкретного механизма фазового расслоения мы можем для описания характеристик материала ввести разброс значений T_C по объему образца (рис. 4):

$$\overline{T}_C - \delta T < T_C < \overline{T}_C + \delta T, \qquad (12)$$

где \overline{T}_{C} — среднее значение T_{C} , δT — полуширина распределения значений T_{C} . Мы считаем ее совпадающей с величиной δT (11). Возможности описания неоднородностей \overline{T}_{C} обсуждались в работе [10].

В рамках такого подхода предлагаемый механизм КМС, обусловленный фазовым расслоением на ферромагнитные и парамагнитные области, аналогичен механизму гигантского магнитосопротивления (ГМС) [7,8]. Эффект ГМС обнаружен в многослойных металлических структурах, состоящих из ферромагнитных слоев, разделенных неферромагнитными прослойками. Считается [7,8], что толщина слоев определяется условиями: 1) обменное взаимодействие спинов через неферромагнитную прослойку должно обеспечивать антиферромагнитную ориентацию намагниченностей соседних ферромагнитных слоев (обозначим их символами M_1 и M_2) при H = 0; 2) толщина прослойки R не должна превышать длину свободного пробега носителей тока с сохранением спина l_s :

$$R < l_s. \tag{13}$$

Для мультислоев Fe/Cr эти условия удовлетворяются при значениях R нанометрового масштаба. Величина

$$\Delta \rho / \rho \approx 1 \tag{14}$$

в таких мультислоях наблюдается в поле **H**, которое изменяет взаимную ориентацию \mathbf{M}_1 и \mathbf{M}_2 от антиферромагнитной (вставка на рис. 4a) до ферромагнитной (вставка на рис. 4δ).

Эффект типа ГМС может иметь место в случае фазового расслоения, представленного на рис. 4, если размеры неоднородностей удовлетворяют условию (13). В нулевом магнитном поле магнитнодипольное взаимодействие разупорядочивает намагниченности ферромагнитных областей (рис. 4*a*). Их упорядочение в поле $H \neq 0$ (рис. 4*b*) должно приводить к уменьшению сопротивления, если размеры парамагнитных прослоек *R* удовлетворяют неравенству (13). Проблема состоит в том, что при ГМС наблюдаемые значения $\Delta \rho / \rho \approx 1$ (14), в то время как КМС соответствуют значения $\Delta \rho / \rho \gg 1$ (1).

Один из возможных механизмов усиления КМС по сравнению с ГМС в мультислоях следует из сравнения рис. 4a и δ и вставок на них. Согласно вставкам на рис. 4 магнитные неоднородности в мультислоях существуют только вдоль нормали к плоскости пленки. Разброс T_C , как следует из рис. 4, создает магнитные неоднородности по всем трем направлениям. Трехмерность неоднородностей позволяет электрическому току обходить высокоомные участки образца. Похожая ситуация рассматривалась, в частности, в работе [11]. Наиболее сильно этот эффект проявляется вблизи так называемого порога протекания, существование которого предполагалось во всех моделях КМС [6]. Достоинство

Рис. 4. Магнитные состояния манганита при температуре T_C в интервале (12) в нулевом магнитном поле H = 0 (a), в состоянии магнитного насыщения $H > H_s$ (δ); R — расстояние между ферромагнитными областями. Вставки: магнитные состояния в нулевом магнитном поле H = 0 (a), в состоянии магнитного насыщения $H > H_s$ (δ); R — толщина неферромагнитной прослойки

предполагаемой модели КМС в том, что при разбросе T_C в интервале $2\delta T$ (12) порог протекания с неизбежностью существует для определенной температуры T из интервала (12).

Предполагаемый механизм позволяет также указать возможную причину, ответственную за КМС в манганитах. Ею мог бы быть структурный фазовый переход при $T > T_C$, влияющий на температуру T_C и дополнительно способствующий фазовому расслоению с размером неоднородностей R (13). Обнаружение таких фазовых переходов стало бы определяющим аргументом в пользу предлагаемого механизма КМС.

Пороговое протекание является лишь одним из отличий КМС в манганитах от ГМС в металлических мультислоях. В частности, для манганитов считается важным совмещение ферромагнитного упорядочения с переходом диэлектрик-металл [6]. В настоящей статье мы указали только на возможности влияния эффекта ГМС на КМС. Количественное сопоставление этого влияния с влиянием перехода диэлектрик-металл требует дополнительных исследований.

Авторы благодарны А. П. Носову и К. И. Кугелю за обсуждение результатов работы и ценные замечания, которые мы постарались учесть в тексте статьи. Работа выполнена при финансовой поддержке РФФИ (грант № 11-02-00093) и Президиума РАН (проект 12-П-2-1041).

ЛИТЕРАТУРА

- 1. Э. Л. Нагаев, УФН 166, 833 (1996).
- Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).
- J. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).
- M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
- 5. М. Ю. Каган, К. И. Кугель, УФН 171, 577 (2001).
- E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance, Springer-Verlag, Berlin (2002).
- 7. H. Zabel, J. Phys.: Condens. Matter 11, 9303 (1999).
- D. T. Pierce, J. Unguris, R. J. Celotta et al., J. Magn. Magn. Mater. 200, 290 (1999).
- 9. С. В. Вонсовский, *Магнетизм*, Наука, Москва (1971).
- N. G. Bebenin, R. I. Zainullina, and V. V. Ustinov, J. Magn. Magn. Mater. **322**, 963 (2010).
- A. L. Rakhmanov, K. I. Kugel, Ya. M. Blanter, and M. Yu. Kagan, Phys. Rev. B 63, 174424 (2001).