ПИКОСЕКУНДНЫЕ «РАЗГОРАНИЕ» И РЕЛАКСАЦИЯ ИНТЕНСИВНОГО СТИМУЛИРОВАННОГО ИЗЛУЧЕНИЯ GaAs

Н. Н. Агеева, И. Л. Броневой^{*}, Д. Н. Забегаев, А. Н. Кривоносов

Институт радиотехники и электроники им. В. А. Котельникова Российской академии наук 125009, Москва, Россия

Поступила в редакцию 24 сентября 2012 г.

В подтверждение представления, созданного ранее на основании косвенных признаков, обнаружено, что в GaAs возникало стимулированное излучение, а его интенсивность возрастало с пикосекундной задержкой относительно фронта мощной пикосекундной оптической накачки, создававшей плотную электроннодырочную плазму. При спаде накачки интенсивность излучения релаксирует с характерным временем порядка 10 пс. Получены зависимости времени задержки, времени релаксации, длительности пикосекундного импульса излучения от энергии его фотона. Оценки, основанные на том, что релаксация излучения определяется остыванием электронно-дырочной плазмы, соответствуют измеренному времени релаксации.

DOI: 10.7868/S0044451013040034

1. ВВЕДЕНИЕ

В работах [1,2] при исследовании спектров просветления (возрастания прозрачности) полупроводника GaAs при его пикосекундной оптической накачке было обнаружено, что плотность n = p > $> 1.7 \cdot 10^{18}$ см⁻³ и температура $T_c \ge 25$ мэВ электронно-дырочной плазмы (ЭДП) приблизительно обратимо (с инерционностью менее 10 пс) изменяются по отношению к накачке. Как одно из допустимых объяснений такого изменения плотности ЭДП было выдвинуто предположение о возникновении стимулированного (усиленного спонтанного) излучения пикосекундной длительности в GaAs во время накачки [2]. Справедливость этого предположения подтвердилась косвенными методами в экспериментах [3-5]. Косвенно подтверждало его и возникновение стимулированного излучения не позднее 12 пс после накачки фемтосекундным импульсом структуры GaAs/AlGaAs MQWS [6]. В работах [3, 5, 7–12] были экспериментально исследованы интегральные по времени характеристики пикосекундного излучения GaAs. В работе [7] было обнаружено, что релаксация просветления GaAs, отображавшая преимущественно релаксацию плотности ЭДП, происходила

экспоненциально. Из этого следовало, что и рекомбинационное излучение (интегральное по спектру) должно релаксировать экспоненциально с характерным временем τ_{Σ} , равным характерному времени релаксации плотности ЭДП $\tau_r \sim 10$ пс. После завершения пикосекундного излучения устанавливается, как было экспериментально показано в работе [4], универсальное пороговое состояние ЭДП, при котором температура T_c становится комнатной, а расстояние между квазиуровнями Ферми электронов (μ_e) и дырок (μ_h) равняется ширине запрещенной зоны E_q .

В работах авторов, опубликованных в период 1985-2012 гг. (часть в соавторстве с В. И. Перелем и С. Е. Кумековым), был обнаружен ряд нелинейных оптоэлектронных процессов, возникающих в GaAs под влиянием собственного пикосекундного излучения и, в свою очередь, влияющих на это излучение. Однако провести прямые измерения изменения интенсивности излучения со временем удалось только в настоящей работе. Полученная информация о разгорании, длительности и релаксации различных спектральных компонент излучения, возникающего при накачке GaAs пикосекундными импульсами, имеет не только чисто научный интерес. Она может быть полезна при создании мощных полупроводниковых лазеров и суперлюминесцентных диодов, предназначенных для генерации сверхкоротких импульсов.

^{*}E-mail: bil@cplire.ru

2. ЭКСПЕРИМЕНТ

Опыты проводились при комнатной температуре на спектрофотохронометрическом пикосекундном лазерном комплексе с автоматизированной системой сбора и обработки измеряемых величин. Комплекс состоит из задающего YAG-лазера PL PDP1-300 с диодной накачкой (компания «СинхроТех», Россия); системы усилителей лазерного импульса, накачиваемых источниками 703TC-020-380-25-SCM-100-20 (ООО «ОптоСистемы», Россия); удвоителей частоты светового импульса (кристаллов KDP); двух параметрических генераторов света на LiNbO₃ с температурной перестройкой длины волны — первый для генерации накачивающего, второй (в данной работе не использовался) — зондирующего или других импульсов длительностью (FWHM) около 10 пс с линейной поляризацией света [13]; спектрофотохронометрической системы. Наиболее важными компонентами последней являлись двойной спектрограф SpectraPro-2500i, используемый как для спектральных измерений, так и (в режиме вычитания дисперсии) в качестве полосового фильтра длин волн, не искажающего длительность излучения; пикосекундная электронно-оптическая камера (ЭОК) PS-1/S1, разработанная и изготовленная в ИОФ им. А. М. Прохорова РАН; ССД-камеры PIXIS и CoolSNAP:HQ2 для регистрации соответственно спектра излучения и изменения со временем интенсивности спектральной компоненты излучения, пропущенной спектрографом.

Накачке подвергалась изготовленная молекулярно-лучевой эпитаксией гетероструктура $Al_{0.22}Ga_{0.78}As-GaAs-Al_{0.4}Ga_{0.6}As$ с толщинами слоев соответственно 1.3-1.5-1.2 мкм, с площадью поверхности 8 × 8 мм², освобожденная в середине на площади 4×4 мм² от подложки. Длительность (FWHM) и энергия фотона импульса накачки составляли соответственно $t_p = 11.3$ пс и $\hbar\omega_{ex} = 1.512$ эВ. Диаметр луча накачки (FWHM) равнялся $D \approx 0.5$ мм. Угол между лучом накачки и нормалью к эпитаксиальным слоям гетероструктуры составлял 10°. На поверхности гетероструктуры, за исключением торцевых, было нанесено антиотражающее покрытие, чтобы избежать интерференционных эффектов для накачки и для излучения, не сильно отклоняющегося от нормали к плоскости эпитаксиальных слоев. Для накачки и излучения слои $Al_x Ga_{1-x} As$ были прозрачны.

Вследствие интенсивной накачки в GaAs возникали инверсия населенностей носителей и стимулированное излучение, усиливавшееся преимуществен-

Рис. 1. Экспериментальные интегральные по времени спектр стимулированного излучения из GaAs W_s (1) и основание спектра света накачки W_{ex} (2) в зависимости от $\hbar\omega$, а также спектр излучения I_s (3) через 17 пс после начала накачки в зависимости от $\hbar\omega_\delta$ (воссоздан по хронограммам излучения с разными $\hbar\omega_\delta$)

но вдоль эпитаксиального слоя. Из-за несовершенства волноводных качеств гетероструктуры часть излучения, распространявшаяся внутри телесного угла $\Omega \approx 9 \cdot 10^{-4}$ ср с осью, ортогональной поверхности гетероструктуры, направлялась в двойной спектрограф. Чтобы ослабить долю рассеянного в образце света накачки, попадающую в спектрограф, перед его входной щелью был установлен анализатор (призма Глана), настроенный на пропускание излучения с поляризацией, ортогональной поляризации накачки. Интегральные по времени спектр стимулированного излучения и спектр рассеянного образцом света накачки, попадавшего внутрь угла Ω , регистрировались CCD-камерой PIXIS (рис. 1).

При измерении огибающей импульса двойной спектрограф был настроен, как указывалось выше, в режим вычитания дисперсии. Промежуточную щель между первой и второй ступенями спектрографа раскрывали так, чтобы она пропускала излучение спектральной ширины $\delta\hbar\omega = 7.6$ мэВ. В результате через выходную щель спектрографа выходила только требуемая для измерения спектральная компонента излучения той же длительности, которая была у нее при входе в спектрограф. Эта компонента излучения направлялась в ЭОК, где зависимость интенсивности излучения от времени преобразовывалась в пространственную зависимость интенсивности. Последняя зависимость, далее называе-

Рис.2. Хронограммы импульса накачки I_{ex} (1, 3, 5) и спектральных компонент стимулированного излучения I_s при $\hbar\omega_\delta = 1.429$ эВ (2), 1.403 эВ (4), 1.384 эВ (6). Хронограммы 3, 4 — экспериментальные, остальные — экспериментальные, подвергнутые сглаживанию (подробнее см. в конце разд. 2)

мая хронограммой, регистрировалась CCD-камерой CoolSNAP:HQ2. Приводимые в статье хронограммы были измерены в начальной части динамического диапазона хронометрической системы.

Представление о погрешностях измерений ЭОК PS-1/S1 дано в работе [14]. В настоящей работе в расчет принимались только те акты накачки, для которых отклонение энергии импульса накачки от заданного значения не превышало ±5 %. Накопление данных продолжалось до тех пор, пока усредненный спектр (или хронограмма) не переставал с точностью 3 % зависеть от числа импульсов накачки. При накоплении хронограмм осуществлялась автоматическая компенсация джиттера (нестабильности запуска линейной развертки) ЭОК PS-1/S1. Сам же джиттер не превышал ±4.5 пс.

На рис. 2 представлены хронограммы излучения с разными значениями $\hbar\omega_{\delta}$ вместе с хронограммами

Рис. 3. Задержки δt_b (1) и δt_m (2) в зависимости от $\hbar \omega_{\delta}$. Здесь и ниже на рис. 5, 6 линии проведены через экспериментальные точки для наглядности

импульса накачки ($\hbar\omega_{\delta}$ — энергия фотона в середине интервала $\delta\hbar\omega$). Видно, что излучение «разгорается» и его интенсивность I_s растет с пикосекундной задержкой относительно фронта импульса накачки. Определялись две задержки. Во-первых, δt_b — задержка «разгорания» излучения; моментом разгорания излучения (началом накачки) мы условно считали тот, на который приходилась максимальная положительная кривизна на фронте излучения (накачки). Это проиллюстрировано на рис. 2. Во-вторых, δt_m — интервал между моментами времени, на которые приходятся соответственно максимум интенсивности импульса накачки и максимум интенсивности излучения. Задержки δt_b , δt_m в зависимости от $\hbar \omega_{\delta}$, как и погрешность в определении δt_m (для δt_b она заметно меньше), представлены на рис. 3. Заметим, что измерения проводились при тех значениях $\hbar\omega_{\delta}$, для которых отношение сигнал/шум позволяло получать достоверную информацию.

Релаксация излучения, как и предполагалось, оказалась экспоненциальной с характерным временем $\tau_{\Sigma} = 12$ пс. Обнаружилось, что характерное врения релаксации τ_s для различных спектральных компонент излучения неодинаково (рис. 4). Время τ_s и длительность (FWHM) $t_{0.5}$ импульса отдельной спектральной компоненты излучения являлись немонотонными функциями $\hbar\omega_{\delta}$ (рис. 5).

Для определения времен δt_b , δt_m , τ_s , τ_{Σ} , $t_{0.5}$ использовались усредненные хронограммы, подвергнутые сглаживанию. Это делалось, чтобы избежать влияния остатков шумов на усредненных хронограммах. Сглаживание проводилось по алгоритму бы-

Рис.4. Экспериментальные хронограммы спектральных компонент стимулированного излучения при $\hbar\omega_{\delta} = 1.429$ эВ (1), 1.390 эВ (2). К спадам хронограмм проведены касательные линии, справа от которых указаны соответствующие им значения τ_s

Рис. 5. Зависимости от $\hbar\omega_{\delta}$ характерного времени релаксации τ_s (1) и длительности импульса (FWHM) $t_{0.5}$ (2) спектральной компоненты стимулированного излучения

строго преобразования Фурье с отсечением высокочастотных колебаний (FFT-фильтр). Для получения верного представления о результате сглаживания хронограмм накачки и излучения, относящегося к разным участкам спектра, хронограммы 3, 4 на рис. 2 и хронограммы 1, 2 на рис. 4 приведены без сглаживания, а хронограммы 1, 2, 5, 6 на рис. 2 после сглаживания.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Согласно работе [12], при фиксированной накачке край интегрального по времени спектра излучения тем больше сдвинут в длинноволновую сторону, чем больше дефектов кристаллической решетки образовывалось при облучении образца в предшествующих опытах. В данной работе оцениваемая таким образом дефектность образца, значение разности $\hbar\omega_{ex} - E_g$, энергия накачки, величина $\delta\hbar\omega$ были такими, чтобы не возникали более тонкие эффекты, которые мешали бы определению исследовавшихся характеристик. С другой стороны, чем больше несовершенство волноводных свойств образца из-за его дефектности, тем большая часть излучения выходит перпендикулярно плоскости гетероструктуры. Это и обеспечивает возможность исследовать излучение, выходящее преимущественно из активной области, с минимальной долей изменений, возникающих при прохождении через пассивную область образца.

С помощью оценок, аналогичных выполненным в работе [4], разберем, можно ли измеренное излучение рассматривать как стимулированное (усиленное спонтанное). Скорость спонтанной рекомбинации, суммарная по всем энергетическим уровням, определяется выражением $R_{sp} = Bnp$ [15], где B константа рекомбинации, n — плотность электронов в зоне проводимости, p — плотность дырок в валентной зоне. Оценку максимальной плотности ЭДП, достигающей в нашем эксперименте значения $n_m =$ = $p_m \approx 6 \cdot 10^{18}$ см⁻³, получаем из зависимости $E_g = \hbar \omega_e = f(n)$ (рис. 2 в работе [10]), где $\hbar \omega_e =$ = 1.37 эВ — спектральное положение длинноволнового края интегрального по времени спектра излучения (см. рис. 1). Указанная зависимость соответствует сужению ширины запрещенной зоны вследствие кулоновского взаимодействия носителей заряда [16-19].

При наличии интенсивного стимулированного излучения плотность и температура T_c ЭДП становятся взаимосвязанными [2, 10] (подробнее об этом см. ниже). Как экспериментальная [2, 4], так и расчетная [10] зависимости n от T_c (рис. 6) дают оценку $T_c \approx 60$ мэВ (экспериментальные значения n и T_c были получены в работах [2, 4] с помощью подгонки расчетных спектров просветления к экспериментальным). Для GaAs при $T_c = 294$ К константа $B = 7.21 \cdot 10^{-10}$ см³/с. Используя это значение и зависимость B от температуры, представленную выражением (6.41) в работе [15], находим B = $= 2.16 \cdot 10^{-10}$ см³/с при $T_c \approx 60$ мэВ. Получаем оценку числа квантов спонтанного излучения, из-

Рис. 6. Зависимость плотности *п* ЭДП от температуры *T_c*: • — эксперимент [2]; △ — эксперимент [4]; сплошная кривая — расчет [10]

лучаемых в единицу времени из единицы объема при максимальной в эксперименте плотности ЭДП: $R_{sp} = 0.78 \cdot 10^{28} \text{ см}^{-3} \cdot \text{c}^{-1}.$

Для оценки числа стимулированно излучаемых квантов R_s , приведенных к единице объема и единице времени, будем использовать выражение [4]

$$R_s = \frac{R_{sp}}{(k_m D)^2} \exp(k_m D),$$

где $k_m = k_M - \gamma_M$, k_M — максимальный коэффициент усиления в области усиления спектра поглощения света, $\gamma_M = 115 \text{ см}^{-1}$ — коэффициент внутризонного поглощения света, оцененный для приведенной выше плотности ЭДП [20]. Множитель $1/(k_m D)^2$ учитывает долю площади активной области, спонтанное излучение которой усиливается в степени, близкой к максимальной.

Число электронно-дырочных пар, стимулированно рекомбинирующих в единицу времени в единице объема, составляет

$$\left|\frac{dn}{dt}\right| = \left|-\frac{n}{\tau_r}\right| \approx 5 \cdot 10^{29} \text{ cm}^{-3} \cdot \text{c}^{-1}$$

при $\tau_r = \tau_{\Sigma} = 12$ пс. Равенство $R_s = |dn/dt|$ выполняется при $k_m = 170$ см⁻¹ и $k_M = 285$ см⁻¹. При оценке k_M не учтены потери излучения, связанные со светочувствительными дефектами кристаллической решетки, из-за которых значение k_M должно быть несколько больше приведенного выше. Полученная оценка k_M не противоречит коэффициенту усиления, рассчитанному из экспериментальных спектров просветления [4], а также полученному из измерений спектра поглощения в области усиления

света [21] в близких условиях накачки GaAs. Таким образом, стимулированное излучение способно приводить к релаксации плотности ЭДП с оцененной выше скоростью dn/dt.

Перейдем к задержкам δt_b и δt_m . Например, если возникает некоторая инверсия заселенностей, то стимулированное излучение достигает интенсивности, соответствующей этой инверсии в стационарном случае, за время своего прохождения через активную область или несколько быстрее, если при прохождении достигается насыщение усиления [22]. Это позволяет предположить, что в описанном эксперименте задержка δt_b должна быть близка к времени t_a прохождения излучением расстояния, равного диаметру луча накачки. Задержка δt_b при $\hbar \omega_b > 1.4$ эВ (см. рис. 3) и оценка $t_a = Dc^{-1}\chi = 5.5$ пс действительно близки (здесь $\chi = 3.3 -$ коэффициент преломления GaAs [20]). Возрастание δt_b при уменьшении $\hbar\omega_{\delta} < 1.4$ эВ, по-видимому, связано с тем, что в этой спектральной области излучение возникало по мере сужения запрещенной зоны при росте плотности ЭДП. Этими же факторами (сужением зоны и конечным временем прохождения через активную область) можно пытаться объяснить и наблюдавшуюся зависимость $\delta t_m(\hbar\omega_\delta)$, см. рис. 3. Сужение запрещенной зоны сопровождается изменением области усиления спектра поглощения света. Это могло бы быть, в частности, причиной того, что на коротковолновом краю упомянутой зависимости величина δt_m близка к нулю.

Приведенные выше оценки свидетельствуют о приемлемости предположения, что наблюдаемое излучение можно рассматривать как стимулированное. Оценим его интенсивность при средней плотности ЭДП

$$n_{av} = (n_m - n_t)/2 = 3.65 \cdot 10^{18} \text{ cm}^{-3},$$

где $n_t \approx 1.3 \cdot 10^{18} \text{ см}^{-3}$ — плотность ЭДП в пороговом состоянии [10]. Примем, что излучение происходит в объеме $V = d\pi D^2/4$ и движется вдоль слоя GaAs толщиной d, а его средняя энергия составляет 1.39 эВ. Тогда интенсивность излучения на расстоянии D/2 от центра активной области составляет

$$I = \hbar \omega \left| \frac{dn}{dt} \right| \frac{D}{4} = \frac{\hbar \omega n_{av} D}{4\tau_r} \approx 0.85 \frac{\Gamma B_{\rm T}}{{}_{\rm CM}^2}$$

Перейдем к обсуждению релаксации излучения. В работах [2, 4] сформировалось следующее представление. Пока энергия фотона накачки $\hbar\omega_{ex}$ ненамного превышает ширину запрещенной зоны E_g , температура генерируемой плотной ЭДП должна не сильно превышать температуру решетки, приблизительно равную комнатной (например, в работе [4] при $\hbar\omega_{ex} = 1.52$ эВ температура ЭДП не превышала 470 К). Уменьшение плотности ЭДП начинается через несколько пикосекунд после того, как интенсивность света накачки прошла через максимум и началось охлаждение ЭДП [2]. При охлаждении происходит переход носителей заряда с более высоких на более низкие энергетические уровни, поддерживающий инверсию заселенностей. Стимулированное рекомбинационное излучение не дает существенно возрастать полосе инверсии [4, 12, 21], уменьшая плотность ЭДП по мере остывания ЭДП [2]. При этом если пренебречь той малой долей плотности ЭДП, при вычитании которой исчезает инверсия заселенностей, то энергетическое распределение ЭДП во время остывания можно характеризовать условиями [4]

$$n = p, \quad \mu_e - \mu_h \approx E_g. \tag{1}$$

В изложенном приближении плотность и температура ЭДП взаимосвязаны [10]. Для рассматриваемого диапазона 25 мэВ $\leq T_c \leq 60$ мэВ можно принять, что плотность ЭДП изменяется с температурой пропорционально $T_c^{3/2}$. Такой аппроксимации соответствуют, как легко убедиться, экспериментальная [2] и близко расположенная к ней расчетная [10] зависимости (рис. 6).

Релаксация излучения, интегрального по спектру, должна происходить с тем же характерным временем, что и характерное время τ_r релаксации плотности ЭДП (см. Введение). Поэтому оценка τ_r , приводимая ниже, будет одновременно и оценкой τ_{Σ} . В соответствии с взаимосвязью n и T_c имеем $\tau_r \approx (2/3)\tau_T$, где τ_T — характерное время релаксации температуры ЭДП. В работе [23] было получено выражение для времени охлаждения ЭДП в GaAs при наличии собственного стимулированного излучения. Это время, как и в работе [7], принимаем за τ_T . Оценим τ_r , пользуясь тем же выражением, что было удовлетворительно использовано в работе [7]:

$$\tau_r \approx \frac{2}{3} \left(A + B \tau_p T_c^{1/2} E_g \right) \tau_h, \qquad (2)$$

где $A = 6.2, B = 0.34, \tau_h \approx 0.8$ пс — время релаксации энергии ЭДП за счет эмиссии оптических фононов с учетом разогрева последних [24], величины τ_r , τ_p , τ_h измеряются в пикосекундах, T_c — в кельвинах, E_g — в электронвольтах. Первое слагаемое в выражении (2) учитывает разогрев ЭДП, связанный с тем, что энергия носителей заряда, участвующих в стимулированной рекомбинации, меньше средней энергии носителей в ЭДП. Второе слагаемое учитывает разогрев ЭДП из-за внутризонного поглощения собственного излучения. Заметим, что совместное влияние на T_c и n обоих механизмов разогрева наблюдалось в работе [25], а только внутризонного поглощения света — в [26]. Время τ_p — это характерное время движения фотона излучения в активной среде, пока фотон не покинет эту среду или не будет поглощен. Без учета неизвестного нам количества оптически чувствительных дефектов кристаллической решетки можно принять

$$\frac{1}{\tau_p} \approx \frac{c}{\chi} \left(\gamma + \frac{1}{D} \right). \tag{3}$$

Здесь у — коэффициент внутризонного поглощения.

Как и в работе [7], в формулу (2) будем подставлять величину T_c , соответствующую n_{av} . Для приведенного выше значения n_{av} были оценены соответствующие ему температура $T_c = 495$ K по экспериментальной и $T_c = 557 \,\mathrm{K}$ по расчетной зависимостям (см. рис. 6), коэффициент $\gamma = 54 \text{ см}^{-1}$ согласно [20], $E_q = 1.375$ эВ по зависимости $E_q(n)$, представленной в [10]. Оценки $\tau_r \approx 11.6$ пс и $\tau_r \approx 12.1$ пс получаются приблизительно одинаковыми, если пользоваться соответственно экспериментальной и расчетной зависимостями, приведенными на рис. 6. Рассчитанное значение τ_r близко к экспериментальному значению τ_{Σ} , т. е., действительно, равенство $\tau_{\Sigma} \approx \tau_r$ выполняется. Это говорит в пользу того, что выражение (2) можно использовать для оценки τ_{Σ} , и релаксация излучения определяется остыванием ЭДП.

Заметим, что в работе [7] для близких условий накачки, включая D = 0.5 мм, экспериментально определенное характерное время релаксации просветления составляло 18 пс, что превышает полученную выше оценку τ_r . Превышение, как показало проведенное математическое моделирование, вызвано тем, что просветление измерялось методом «накачка-зондирование» (ритр-ргове) при конечной длительности (14 пс) зондирующего импульса. Это аналогично превышению ширины автокорреляционной функции пикосекундного импульса над истинной длительностью импульса [27].

Зависимость $\tau_s(\hbar\omega_\delta)$, см. рис. 5, оказалась немонотонной. Одно из допустимых объяснений этого состоит в следующем. В работе [7] было обнаружено возрастание τ_r при увеличении D, что соответствует формулам (2), (3). Поскольку $\tau_r \approx \tau_{\Sigma}$, подобным же образом должна зависеть величина τ_{Σ} от D, а следовательно, и τ_s от длины z, на которой происходит усиление отдельной спектральной компоненты излучения в активной области. При накачке с неоднородным (например, гауссовым) распределением интенсивности по сечению луча плотность генерируемой ЭДП будет тоже неоднородно распределена в облучаемой области полупроводника. По этой причине, согласно расчетам [28], длина z становится немонотонно зависящей от энергии фотона излучения. Последнее, благодаря взаимосвязи z и τ_s , должно приводить к немонотонности зависимости $\tau_s(\hbar\omega_\delta)$.

Обнаруженная зависимость длительности импульса излучения $t_{0.5}$ от $\hbar\omega_{\delta}$ (см. рис. 5), по-видимому, зависит от нескольких факторов: задержки разгорания, инерционности отклика плотности ЭДП на уменьшение интенсивности накачки, зависимости времени релаксации τ_s от $\hbar\omega_{\delta}$, обратимого изменения E_g при изменении n. В сумме это приводит к тому, что самые коротковолновые импульсы излучения имеют длительность, на 15 % меньшую длительности t_p импульса накачки, тогда как длительность импульсов в максимуме зависимости на 35 % больше t_p .

После описанных выше исследований авторы только приступают к изучению эволюции спектра излучения во времени. Поэтому здесь отметим, что асинхронность излучения с разными энергиями фотона приводит к отличию мгновенного спектра излучения от интегрального по времени спектра (см. рис. 1).

В итоге, экспериментально обнаружено следующее¹⁾. В GaAs интенсивное излучение возникает с пикосекундной задержкой относительно фронта мощной пикосекундной оптической накачки полупроводника. Длительность импульса излучения сравнима с длительностью накачки. Задержка разгорания, длительность излучения и характерное время его релаксации зависят от энергии фотона излучения. Экспериментальным данным не противоречат оценки, сделанные в предположении того, что излучение является стимулированным (усиленным спонтанным) и его пикосекундная релаксация определяется остыванием ЭДП. Изложенные выше результаты соответствуют представлению об излучении, сформированному ранее на основании косвенных признаков в предшествующих работах.

Информация, заключающаяся в эксперименталь-

ных результатах и их обсуждении, может оказаться полезной при создании мощных импульсных полупроводниковых лазеров и суперлюминесцентных диодов. В частности, из этой информации следуют пути сокращения длительности импульсов пикосекундного диапазона.

Авторы посвящают свою работу светлой памяти В. И. Переля, выдающегося ученого, обладавшего редкой добротой и отзывчивостью, в соавторстве с которым и с С. Е. Кумековым была создана значительная доля представлений, использовавшихся в описанном исследовании. Авторы признательны Ю. С. Осипову, Г. А. Месяцу, Ю. В. Гуляеву, Н. А. Кузнецову, В. В. Румянцеву, В. А. Черепенину и М. Я. Щелеву, без поддержки которых у авторов не было бы требуемой для настоящей работы регистрирующей аппаратуры, а также сотрудникам ИОФ им. А. М. Прохорова РАН, изготовившим по Госконтракту пикосекундную ЭОК PS-1/S1 и адаптировавшим ее к лазерному комплексу.

ЛИТЕРАТУРА

- 1. И. Л. Броневой, Р. А. Гадонас, В. В. Красаускас и др., Письма в ЖЭТФ **42**, 322 (1985).
- И. Л. Броневой, С. Е. Кумеков, В. И. Перель, Письма в ЖЭТФ 43, 368 (1986).
- Н. Н. Агеева, И. Л. Броневой, Е. Г. Дядюшкин и др., Письма в ЖЭТФ 48, 252 (1988).
- N. N. Ageeva, I. L. Bronevoi, E. G. Dyadyushkin et al., Sol. St. Comm. 72, 625 (1989).
- I. L. Bronevoi, A. N. Krivonosov, and V. I. Perel', Sol. St. Comm. 94, 363 (1995).
- D. Hulin, M. Joffre, A. Migus, J. L. Oudar et al., J. de Phys. 48, 267 (1987).
- И. Л. Броневой, А. Н. Кривоносов, ФТП 32, 542 (1998).
- И. Л. Броневой, А. Н. Кривоносов, ФТП 32, 537 (1998).
- 9. И. Л. Броневой, А. Н. Кривоносов, ФТП 33, 13 (1999).
- Н. Н. Агеева, И. Л. Броневой, А. Н. Кривоносов, ФТП 35, 65 (2001).
- 11. Н. Н. Агеева, И. Л. Броневой, А. Н. Кривоносов и др., ФТП 39, 681 (2005).

¹⁾ Авторы планируют продолжить времяразрешающие исследования излучения и влияния на него процессов, обнаруженных в предшествующих работах. Наблюдение каждого из них требует специфических условий накачки, чувствительности измерительной аппаратуры и определенного качества образцов. Авторы испытывают большой дефицит необходимых для экспериментов образцов, и приглашают к кооперации в будущих исследованиях коллег, способных изготовить требуемые образцы.

- Н. Н. Агеева, И. Л. Броневой, Д. Н. Забегаев и др., ФТП 46, 944 (2012).
- **13**. Параметрические генераторы света и пикосекундная спектроскопия, под ред. А. Пискарскаса, Мокслас, Вильнюс (1983).
- 14. Н. Н. Агеева, И. Л. Броневой, Д. Н. Забегаев и др., ПТЭ 4, 108 (2011).
- 15. В. П. Грибковский, *Теория поглощения и испуска*ния света в полупроводниках, Наука и техника, Минск (1975).
- 16. J. Shah, R. F. Leheny, and C. Lin, Sol. St. Comm. 18, 1035 (1976).
- S. Tarucha, H. Kobayashi, Y. Horikoshi et al., Jpn. J. Appl. Phys. 23, 874 (1984).
- 18. Т. Райс, Дж. Хенсел, Т. Филлипс, Г. Томас, Электронно-дырочная жидкость в полупроводниках, Мир, Москва (1980).

- **19**. *Теория неоднородного электронного газа*, под. ред. С. Лундквиста и Н. Марча, Мир, Москва (1987).
- 20. J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).
- 21. Н. Н. Агеева, И. Л. Броневой, А. Н. Кривоносов и др., ФТП 36, 144 (2002).
- 22. L. W. Casperson, J. Appl. Phys. 48, 256 (1977).
- 23. Ю. Д. Калафати, В. А. Кокин, ЖЭТФ 99, 1793 (1991).
- **24**. С. Е. Кумеков, В. И. Перель, ЖЭТФ **94**, 346 (1988).
- N. N. Ageeva, I. L. Bronevoi, V. I. Mironov et al., Sol. St. Comm. 81, 969 (1992).
- N. N. Ageeva, V. B. Borisov, I. L. Bronevoi et al., Sol. St. Comm. 75, 167 (1990).
- 27. Сверхкороткие световые импульсы, под ред. С. Шапиро, Мир, Москва (1981).
- 28. E. O. Goebel, O. Hildebrand, and K. Lohnert, IEEE J. Quant. Electron. QE-13, 848 (1977).