РАСПРОСТРАНЕНИЕ ВОЗБУЖДЕНИЯ В ДЛИННЫХ ОДНОМЕРНЫХ ЦЕПОЧКАХ: ПЕРЕХОД ОТ РЕГУЛЯРНОЙ КВАНТОВОЙ ДИНАМИКИ К СТОХАСТИЧЕСКОЙ

В. А. Бендерский^а*, Е. И. Кац^{b**}

^а Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

^b Институт теоретической физики им. Л. Д. Ландау Российской академии наук 142432, Черноголовка, Московская обл., Россия

Поступила в редакцию 17 мая 2012 г.

 ${\it Д}$ ано аналитическое решение квантовой динамической задачи для одномерной цепочки из 2N+1 узлов $(N\gg1)$ с взаимодействием ближайших соседей и примесным узлом в середине, отличающимся от узлов остальной цепочки энергией и константой связи. Начальное возбуждение примеси сопровождается распространением возбуждения по узлам цепочки и появлением эха Лошмидта (частичным восстановлением населенности примесного узла) в циклах возврата, период которых пропорционален N. Эхо состоит из основной (наиболее интенсивной) компоненты, модулированной затухающими осцилляциями. С ростом номера цикла и матричного элемента C взаимодействия примесного узла n=0 с узлами $n=\pm 1$ $(0 < C \leq 1,$ для остальных соседних узлов матричный элемент равен 1) интенсивность осцилляций увеличивается. Перемешивание компонент эха соседних циклов вызывает переход от регулярной эволюции к стохастической. В области регулярной эволюции волновой пакет распространяется по цепочке с почти постоянной групповой скоростью, охватывая периодически изменяющееся во времени число узлов. В стохастическом режиме возбуждение распределяется по близкому к 2N числу узлов, населенности которых иррегулярно изменяются во времени. Модель качественно объясняет экспериментальные данные по баллистическому распространению колебательной энергии в линейных цепочках из CH₂-фрагментов и предсказывает возможность бездиссипативной передачи энергии между реакционными центрами, связанными такими цепочками.

DOI: 10.7868/S0044451013010005

1. ВВЕДЕНИЕ

В традиционной теории безызлучательных переходов [1,2] передача энергии рассматривается как необратимый процесс, характерный для систем с непрерывным спектром, а циклы возврата, присущие любой динамической системе с дискретным спектром, не учитываются. Вследствие отсутствия обратных переходов эволюция начального состояния (низшего возбужденного состояния одного из внутримолекулярных колебаний) ограничивается его экспоненциальным распадом. Однако современные экспериментальные исследования показали

[3–5], что эти представления не описывают фемтосекундную динамику больших молекул, в которых совокупность нормальных колебаний (внутримолекулярный резервуар) обладает дискретным спектром. Средние расстояния между соседними уровнями в этом спектре (порядка 10 см⁻¹) соответствуют периодам циклов возврата порядка 10⁻¹² с, которые меньше типичных значений времен колебательной релаксации ($\sim 10^{-11}$ с). При таком соотношении характеристических времен обратными переходами из резервуара в начальное состояние нельзя пренебрегать. Простейшая динамическая модель, в которой учитываются обратные переходы из резервуара в систему, была предложена Цванцигом [6] (см. также [1]). Подробное исследование динамики этой модели [7-10] показало, что в начальном цикле действительно происходит экспоненциальный распад

^{*}E-mail: bender@icp.ac.ru

^{**}E-mail: efim.i.kats@gmail.com

начального состояния, заканчивающийся распределением населенности по состояниям внутримолекулярного резервуара. Однако в последующих циклах переходы из резервуара частично восстанавливают населенность начального состояния, создавая эхо Лошмидта в каждом цикле. С ростом номера цикла структура эха становится все более сложной, так что при любой точности измерительного прибора существует такой номер цикла, начиная с которого измерения воспроизводят только огрубленные характеристики эволюции начального состояния. Результатом огрубления является нарушение взаимно однозначного соответствия между детерминированным спектром и долговременной стохастической динамикой. Чтобы установить, насколько универсальным является этот механизм перехода от регулярной динамики к стохастической, в настоящей работе рассмотрена модель цепочки с конечным числом одинаковых узлов и взаимодействием ближайших соседей, когда узел в середине цепочки заменен примесным. В отличие от модели Цванцига, в которой начальное состояние одинаково взаимодействует с бесконечным числом эквидистантных уровней резервуара, в модели цепочки спектр резервуара является зонным, а матричные элементы взаимодействия зависят от энергии. Эта модель интересна тем, что многие биологически важные молекулы и реакционные комплексы содержат длинные цепочки одинаковых связей. В их колебательном спектре наблюдаются последовательности Снайдера, описываемые соотношением [11, 12]

$$E_k = E_0 + 2J \cos(k\pi/(N+1)), \quad k = 1, \dots, N, \quad (1.1)$$

где E₀ и J — некоторые константы. Последовательности (1.1) характерны для полимеров, биополимеров и мембран [12–18]. Многочисленные примеры иррегулярной колебательной динамики фотохромных молекул [19-22] позволяют установить характерные масштабы рассматриваемых процессов по времени эволюции (10⁻¹³-10⁻¹¹ с), длине переноса (10-100 Å) и энергии (0.2-0.3 эВ). Распространение возбуждения по линейной молекуле, состоящей из СН₂-фрагментов было недавно продемонстрировано экспериментально [23-26]. Было найдено, что время распространения возбуждения пропорционально длине цепочки и для цепочки из 18-26 фрагментов происходит со скоростью приблизительно 2 пс на один фрагмент. Распространение возбуждения в обратном направлении после отражения от концов цепочки создает эхо (частичное восстановление населенности начального состояния). Эхо затухает с ростом числа прохождений, показывая, что распространение возбуждения сопровождается приходом к равномерному распределению по всем узлам. Ранее задача о распространении теплового импульса по цепочке CH₂-фрагментов была рассмотрена в модели теплопроводности, в которой начальное состояние связано с непрерывным резервуаром колебаний узлов [27]. Эта модель описывает диффузионное распространение теплового импульса (теплопроводность) и не согласуется с механизмом баллистического распространения, следующим из эксперимента.

Рассматриваемая ниже динамическая задача отличается от классической задачи о колебаниях цепочки гармонически связанных узлов предположением, что каждый узел может находиться только в двух колебательных состояниях, основном и низшем возбужденном. Высшие возбужденные состояния узлов не учитываются. Такое приближение справедливо, когда энергия возбужденных состояний примеси и узлов цепочки много больше ширины зоны. Этому условию при $N \to \infty$ соответствуют колебательные экситонные зоны в молекулярных кристаллах. Задача непосредственно связана с моделями переноса возбуждения в длинных линейных молекулах, в которых в каждом из N узлов находится фрагмент, обладающий нормальным колебанием с частотой E_0 , а взаимодействие узлов приводит к расщеплению низшего возбужденного состояния этого нормального колебания в зону (1.1).

В настоящей статье дано аналитическое решение динамической задачи для цепочки с примесным узлом и взаимодействием ближайших соседей. Кратко результаты были представлены ранее в работе [28].

Работа имеет следующую структуру. В разд. 2 дано качественное описание модели и оценка параметров. В разд. 3 вековое уравнение для цепочки с примесным узлом в середине выведено с помощью определителей тридиагональных матриц. В разд. 4 базис собственных функций узлов преобразован в базис собственных функций примеси и полуцепочек, что позволило установить соответствие между моделью цепочки и моделью Цванцига. В разд. 5 дано решение уравнений движения Гейзенберга и найдено выражение для зависящей от времени населенности примесного узла. В разд. 6 введено представление парциальных амплитуд циклов возврата и установлена зависимость эволюции этих амплитуд от параметра связи. В разд. 7 рассмотрены расплывание и восстановление волнового пакета при его распространении по узлам цепочки. В разд. 8 рассматриваются механизмы перемешивания в зависимости от параметра связи. В заключительном разделе обсуждаются полученные результаты.

2. ОПИСАНИЕ МОДЕЛИ

Гамильтониан цепочки с примесным узлом имеет вид

$$H = EQ_{0}^{\dagger}Q_{0} + E_{0}\sum_{n\neq0}Q_{n}^{\dagger}Q_{n} + \sum_{\pm}C\left(Q_{0}^{\dagger}Q_{\pm1} + Q_{0}Q_{\pm1}^{\dagger}\right) + J\sum_{n\neq0,-1}\left(Q_{n}^{\dagger}Q_{n+1} + Q_{n}Q_{n+1}^{\dagger}\right), \quad (2.1)$$

где Q_0^{\dagger} , Q_0 — операторы рождения и уничтожения возбуждения на примесном узле n = 0, Q_n^{\dagger} , Q_n операторы рождения и уничтожения возбуждения на *n*-м узле в однородной цепочке, J — одинаковые матричные элементы взаимодействия соседних узлов в цепочке, C — матричный элемент взаимодействия примеси в узле n = 0 с соседними узлами $n = \pm 1$, E — энергия возбуждения примесного узла, а энергия E_0 задает центр зоны в цепочке регулярных узлов.

Гамильтониан (2.1) принадлежит к типу гамильтонианов начального состояния (в данном случае примесного узла), связанного с резервуаром (состояниями остальной цепочки). Задача о цепочке отличается от модели Цванцига тем, что спектр (1.1) не является эквидистантным, так что циклы возврата не имеют однозначно определенного периода. Матричные элементы взаимодействия примеси с *k*-м собственным состоянием невозмущенного резервуара пропорциональны амплитудам узлов, соседних с примесным, в функции *k*-го состояния:

$$C_k = \frac{C}{\sqrt{N+1}} \sin \frac{k\pi}{N+1}.$$
 (2.2)

Несмотря на эти отличия, задача о цепочке тесно связана с задачей Цванцига. Если примесный уровень расположен в окрестности центра зоны, интервал между соседними уровнями, равный $\Delta_0 \approx 2\pi J/(N+1)$, приближенно определяет период цикла возврата, зависящий от длины цепочки:

$$T \approx \frac{N+1}{J},\tag{2.3}$$

а матричный элемент (2.2) имеет приблизительно одинаковое значение для состояний, энергия которых близка к энергии примеси. Аналогом безразмерного параметра модели Цванцига — вероятности перехода из начального состояния во все состояния резервуара ($\Gamma_Z = \pi C^2 / \Delta_0^2$) — для цепочки является константа связи

$$\Gamma \approx \frac{(N+1)C^2}{4\pi J^2} \,. \tag{2.4}$$

Оба параметра (2.3) и (2.4) пропорциональны длине цепочки и зависят от соотношения матричных элементов С и Ј. Подчеркнем, что, помимо состояний в центре зоны, в эволюции участвуют состояния с увеличивающейся плотностью спектра, расположенные на краях зоны. Вклад этих состояний увеличивается с ростом константы связи (2.4). Если в модели Цванцига переход от регулярной динамики к стохастической обусловлен различиями в сдвигах уровней невозмущенного эквидистантного резервуара, то в цепочке возникает дополнительный механизм стохастизации, обусловленный вкладом состояний более плотного спектра на границах зоны. В модели Цванцига когерентные осцилляции населенности (между начальным состоянием и резонансным с ним состоянием резервуара) превращаются в экспоненциальный распад начального состояния при $\Gamma_Z \approx 1$. В модели Цванцига переход от регулярной динамики к стохастической происходит, когда номер цикла превышает критический, $k \gg k_c^0 = \pi \Gamma_0$. При том же механизме перемешивания в цепочке критический номер цикла должен расти пропорционально N, т. е. область регулярной динамики должна расширяться с увеличением длины цепочки. Однако неэквидистантность спектра, как показано в настоящей работе, создает другой механизм перемешивания, ограничивающий рост области регулярной эволюции.

Хотя исследованию спектра цепочки посвящено большое число работ (см. [29–33] и цитированную там литературу), решению динамической задачи уделялось мало внимания, поскольку считалось, что, в силу взаимно однозначного соответствия между спектром и эволюцией во времени, знание совокупности собственных значений энергии автоматически означает возможность построения решений динамической задачи. Однако это утверждение не учитывает появление перемешивания (т. е. динамического хаоса) в системах с плотным дискретным спектром. Приведенные выше оценки показывают, что условия перемешивания выполняются в экспериментально доступной области времен.

3. ВЕКОВОЕ УРАВНЕНИЕ: БАЗИС ВОЛНОВЫХ ФУНКЦИЙ УЗЛОВ

В цепочке из 2N + 1 одинаковых узлов с номерами $n = -N, \ldots, 0, \ldots, N$ узел n = 0 заменен примесным. Энергию невзаимодействующих узлов примем за нуль энергии, а энергию их взаимодействия — за единицу шкалы. Тогда энергия примесного узла равна E, а энергия его взаимодействия с соседними уз-

лами $n = \pm 1$ равна *С*. Совокупность разностных уравнений для амплитуд узлов определяет спектр собственных значений энергии { ε }:

$$Cb_{-1} + Cb_{1} = (\varepsilon - E)b_{0},$$

$$b_{-2} + Cb_{0} = b_{-1},$$

$$b_{2} + Cb_{0} = b_{1},$$

$$b_{n-1} + b_{n+1} = \varepsilon b_{n}, \quad |n| \ge 2.$$

(3.1)

Уравнениям (3.1) соответствует (2N+1)
×(2N+1)-вековой определитель

который можно разложить по строке, относящейся к примесному узлу. Тогда вековое уравнение можно представить в виде

$$M_{2N+1}(\varepsilon) = (\varepsilon + E)D_N^2(\varepsilon) - -2C^2D_N(\varepsilon)D_{N-1}(\varepsilon) = 0, \quad (3.3)$$

где $N \times N$ -определители D_N тридиагональных матриц Якоби не зависят от C и E:

$$D_N(\varepsilon) = \begin{vmatrix} \varepsilon & 1 & 0 & 0 & \dots \\ 1 & \varepsilon & 0 & 0 & \dots \\ 0 & 1 & \varepsilon & 1 & \dots \\ 0 & 0 & 1 & \varepsilon & \dots \\ \dots & \dots & \dots & \dots & \dots \end{vmatrix} .$$
(3.4)

Уравнение (3.3) сводится к двум уравнениям, определяющим собственные значения для антисимметричных и симметричных состояний цепочки с примесью:

$$D_N = 0, \quad (\varepsilon + E)D_N - 2C^2 D_{N-1} = 0.$$
 (3.5)

Корни первого уравнения имеют вид

$$\varepsilon_k^A = 2\cos\frac{k\pi}{N+1}, \quad k = 1, \dots, N.$$
 (3.6)

Собственные функции антисимметричных состояний равны нулю на примесном узле $b_0 = 0$. Уравнение для симметричных состояний имеет очевидные решения при E = 0 и $C = 0, 1, \infty$. При C = 0 цепочка разбивается на две полуцепочки, содержащие по Nузлов, и не связанный с ними примесный узел. Спектры симметричных и антисимметричных состояний полуцепочек совпадают и описываются соотношением (3.6):

$$\varepsilon_k^S \Big|_{C=0} = \varepsilon_k^A. \tag{3.7}$$

Если примесный узел расположен в центре зоны (E = 0) и N — нечетное число, примесный уровень находится в резонансе с двумя уровнями полуцепочек $k = (N \pm 1)/2$. При четных N уровень примеси E = 0 не вырожден, а остальные уровни дважды вырождены. При C = 1 цепочка становится однородной, вырождение уровней снимается. Энергии антисимметричных состояний не изменяются, а энергии симметричных состояний описываются соотношением

$$\varepsilon_k^S \big|_{C=1} = 2\cos\frac{(2k+1)\pi}{2(N+1)}, \quad k = 0, \dots, N.$$
 (3.8)

При $C = \infty$ примесный узел и два соседних узла цепочки образуют «суперузел» с собственными значениями $(0, \pm \infty)$, т. е. два собственных значения расположены вне зоны и соответствуют бесконечно удаленным локальным уровням. Оставшиеся полуцепочки содержат по N-1 узлу и их спектр имеет вид

$$\varepsilon_k^S \Big|_{C=\infty} = 2\cos\frac{k\pi}{2N}, \quad k = 1, \dots, 2N - 1.$$
 (3.9)

Пользуясь рекуррентным соотношением для определителей (3.4) (см., например, [30, 34])

$$D_N(\varepsilon) = \varepsilon D_{N-1}(\varepsilon) - D_{N-2}(\varepsilon), \qquad (3.10)$$

второе из уравнений (3.5) можно переписать в виде

$$F(\varepsilon) = D_{N+1}(\varepsilon) + ED_N(\varepsilon) + + (1 - 2C^2)D_{N-1}(\varepsilon) = 0. \quad (3.11)$$

Собственные значения тридиагональных матриц и определителей (3.4) равны

$$\varepsilon = 2\cos\kappa, \tag{3.12}$$

$$D_N(\kappa) = \frac{\sin\left((N+1)\kappa\right)}{\sin\kappa}.$$
 (3.13)

Пользуясь соотношениями (3.10), (3.12) и (3.13), перепишем вековое уравнение (3.5) в виде

$$F(\kappa) = \left(E + 2(1 - C^2)\cos\kappa\right)\sin\left((N+1)\kappa\right) + 2C^2\sin\kappa\cos\left((N+1)\kappa\right) = 0. \quad (3.14)$$

Уравнение (3.14) является точным для задачи на собственные значения. Оно имеет один корень в каждом интервале между соседними корнями (3.6). Лежащие вне зоны локальные уровни удовлетворяют аналитическому продолжению функций $\varepsilon(\kappa)$ и $D_N(\kappa)$ в комплексную область:

$$\varepsilon = 2 \operatorname{ch} \kappa, \quad D_N(\kappa) = \frac{\operatorname{sh}((N+1)\kappa)}{\operatorname{sh} \kappa},$$

$$|\varepsilon| > 2.$$
(3.15)

4. ВЕКОВОЕ УРАВНЕНИЕ: БАЗИС СОБСТВЕННЫХ ФУНКЦИЙ ПРИМЕСНОГО УЗЛА И ПОЛУЦЕПОЧЕК

При C = 0 базис симметричных собственных функций состоит из локализованной функции при-

месного узла и собственных функций полуцепочек:

$$b_{00} = 1,$$

 $b_{\pm nk} = (N+1)^{-1/2} \sin \frac{nk\pi}{N+1},$ (4.1)
 $n = 1, \dots, N, \quad k = 1, \dots, N.$

В этом базисе вековой определитель (3.2) имеет, помимо главной диагонали собственных значений (3.6), один ненулевой столбец и одну ненулевую строку из элементов связи примесного узла с собственными состояниями полуцепочек, пропорциональными амплитудам этих состояний на узлах $n = \pm 1$:

$$F(\varepsilon) = \begin{vmatrix} \varepsilon - \varepsilon_k^0 & \dots & 0 & C_k & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \varepsilon - \varepsilon_1^0 & C_0 & 0 & \dots & 0 \\ 0 & \dots & C_1 & \varepsilon - E & C_{-1} & \dots & 0 \\ 0 & \dots & 0 & C_{-1} & \varepsilon - \varepsilon_{-1}^0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & C_{-k} & 0 & \dots & \varepsilon - \varepsilon_{-k}^0 \end{vmatrix} = 0,$$
(4.2)

где

$$\varepsilon_k^0 = 2\cos\frac{k\pi}{N+1}, \quad C_k = Cb_{1k} = C\sin\frac{k\pi}{N+1}.$$
 (4.3)

Определитель (4.2) равен

$$F(\varepsilon) = \varepsilon + \sum_{k} \frac{C_k^2}{\varepsilon - \varepsilon_k^0} = 0.$$
(4.4)

Из равенства корней определителей (3.2) и (4.2) следует, что

$$\sum_{k=1}^{N} \frac{\sin^2 \left(k\pi/(N+1) \right)}{\varepsilon - 2\cos \left(k\pi/(N+1) \right)} = \frac{D_{N-1}(\varepsilon)}{2D_N(\varepsilon)}, \qquad (4.5)$$

таким образом вековой определитель (4.2) сводится к уравнению (3.14).

Для упрощения дальнейших соотношений рассмотрим случай нечетных N и E = 0. Случай четных N можно рассмотреть тем же методом. Асимметрия спектра при $E \neq 0$ мало влияет на эволюцию состояний, если введенная ниже эффективная константа связи превышает E. После замены переменной κ на λ ,

$$\kappa = \frac{\pi}{2} - \alpha \lambda, \quad \alpha = \frac{\pi}{N+1},$$
(4.6)

вековое уравнение (3.14) при нечетных N можно переписать в виде

$$F(\lambda) = f_2(\alpha \lambda) \left(\lambda - \Gamma f_1(\alpha \lambda) \operatorname{ctg}(\pi \lambda)\right) = 0, \quad (4.7)$$

где

$$\Gamma = \frac{C^2(N+1)}{\pi(1-C^2)},$$
(4.8)

$$f_1(u) = u \operatorname{ctg} u, \quad f_2(u) = \frac{\sin u}{u}.$$
 (4.9)

Собственные значения энергии связаны с корнями векового уравнения λ_n соотношением

$$\varepsilon_n = 2\alpha\lambda_n f_2(\alpha\lambda_n). \tag{4.10}$$

Как следует из поведения собственных значений при $C = 0, 1, \infty$ (см. выше), новая переменная λ в этих точках принимает целочисленные значения, а в интервалах между ними изменяется на единицу. Вековой определитель типа (4.2) с ненулевыми столбцом и строкой описывает взаимодействие выделенного состояния (в данном случае — примесного узла) с резервуаром взаимно ортогональных состояний (собственных состояний полуцепочек). Переход к новой переменной (4.6) означает отображение множества $\{\varepsilon_n\}$ с неэквидистантными интервалами в новое множество $\{\lambda_n\}$, в котором интервалы становятся эквидистантными. Этот переход позволяет свести динамическую задачу для цепочки к задаче с резервуаром.

Рис. 1. Сдвиги корней векового уравнения (4.7) относительно целочисленных значений, $\lambda_n - n$, при матричных элементах связи $C^2 = 0.25$ (1), 0.5 (2), 0.75 (3), 0.95 (4), 1.1 (5), 1.5 (6). E = 0, N = 24

Наиболее простую форму определитель имеет в задаче Цванцига [6], где спектр резервуара эквидистантен, а константы связи одинаковы ($\varepsilon_k = k, C_k = C$), так что ряд в уравнении (4.4) суммируется:

$$F_0(\varepsilon) = \lambda - \Gamma_0 \operatorname{ctg}(\pi \varepsilon) = 0. \tag{4.11}$$

В каждом интервале [n, n+1] расположено одно собственное значение уравнения $(4.11) \lambda_n$. Зависимость сдвигов $\lambda_n - n$ от λ_n имеет вид лоренциана с полушириной Γ_0 и максимумом при n = 0. Сравнивая уравнения (4.6) и (4.11), видим, что функции f_1 и f_2 в уравнении (4.6) характеризуют неэквидистантность спектра полуцепочек и зависимость матричных элементов связи (4.3) от энергии. Сдвиги корней $\lambda_n - n$ для уровней, расположенных в зоне $(|\varepsilon_n| < 2)$, от λ_n при различных C представлены на рис. 1. Сдвиги уменьшаются с ростом λ_n при $0 < C \leq 1/2$, а в области $1/2 < C \leq 1$ становятся слабо зависящими от n для большей части узлов. Когда C > 1, сдвиги возрастают с ростом n. При $E \neq 0$ вековое уравнение имеет вид

$$E + 2\alpha(1 - C^2)f_2(\alpha\lambda)\lambda - - 2C^2f_1(\alpha\lambda)f_2(\alpha\lambda)\operatorname{ctg}(\pi\lambda) = 0. \quad (4.12)$$

Область наибольших сдвигов становится несимметричной и смещается в зависимости от E. Сдвиг максимален для уровней с энергией, близкой к E, его изменение с ростом C мало отличается от приведенного на рис. 1 для E = 0.

5. УРАВНЕНИЯ ДВИЖЕНИЯ

Волновую функцию произвольного состояния можно представить в виде суперпозиции собственных функций невзаимодействующих примесного узла и резервуара ($\varphi_0, \{\varphi_n\}$) с зависящими от времени амплитудами:

$$\Phi(t) = a_0(t)\varphi_s + \sum_k a_k(t)\varphi_k.$$
 (5.1)

Вектор состояния $[a_0, a_{\pm 1}, \ldots, a_{\pm [N/2]}]$ удовлетворяет уравнениям Гейзенберга ($\hbar = 1$)

$$i\dot{a}_0 = Ea_0 + \sum_{k=-[N/2]}^{[N/2]} C_k a_k, \quad ia_k = C_k a_0 + \varepsilon_k^0 a_k.$$
 (5.2)

При начальной населенности примесного узла

$$a_0(0) = 1, \quad a_k(0) = 0 \tag{5.3}$$

преобразование Лапласа функции $a_0(t)$ имеет вид

$$\tilde{a}_0(s) = \left(s + \sum_k \frac{C_k^2}{s + i\varepsilon_k^0}\right)^{-1}.$$
(5.4)

Обратное преобразование Лапласа определяет зависящую от времени амплитуду примесного узла:

$$a_0(t) = (2\pi i)^{-1} \times \int_{-i\infty}^{i\infty} \exp(st) \frac{ds}{s + \sum_k C_k^2 (s + i\varepsilon_k^0)^{-1}}.$$
 (5.5)

Замена переменной $s = -i\varepsilon$ преобразует интеграл (5.5) в интеграл по действительной оси, полюсами которого являются корни векового уравнения (4.7). Таким образом, амплитуда примесного узла разлагается в тригонометрический ряд

$$a_0(t) = 2 \sum_{k=0}^{(N-1)/2} \frac{\cos(\varepsilon_k t)}{dF/d\varepsilon} \Big|_{\varepsilon = \varepsilon_k}.$$
 (5.6)

Дифференцируя соотношения (4.7) и (4.10), находим

$$a_{0}(t) = 2 \sum_{k=0}^{(N-1)/2} A_{k} \cos(2t \sin(\alpha \lambda_{k})),$$

$$A_{k} = \frac{f_{1}^{2}(\lambda_{k})}{(1+\pi\Gamma)f_{1}^{2}(\lambda_{k}) + (\alpha^{2}+\pi/\Gamma)\lambda_{k}^{2}}.$$
(5.7)

Соотношение (5.7) является точным решением задачи при E = 0. Оно переходит в решение задачи

Рис.2. Эволюция амплитуды примесного узла. $C^2 = 0.1$ (a), 0.25 (b), 0.75 (c), 0.95 (c). N = 49

Цванцига, когда $\alpha^2 \Gamma \ll 1$ и поправочные функции (4.9) близки к единице. Зависимости коэффициентов A_k от номера уровня показывают, как изменяется вклад различных состояний резервуара с увеличением константы связи. При $C^2 < 1/2$ основной вклад в разложение амплитуды вносят уровни почти эквидистантного спектра, расположенные в центре зоны, $|k| \leq \Gamma \ll N/2$. В этой области C сдвиги уровней, участвующих в эволюции, уменьшаются пропорционально $1/k^2$. Состояния плотного спектра на краях зоны не участвуют в эволюции. Сдвиги уровней оказываются приблизительно такими же, как и в модели Цванцига. В области $C^2 \approx 1/2$ сдвиги уровней и амплитуды в разложении (5.7) слабо зависят от k, т.е. спектр связанных состояний примеси и резервуара в большей части зоны близок к эквидистантному, что, как мы увидим в следующем разделе, обеспечивает наибольшую область регулярной динамики. При $C^2 > 1/2$ прогрессивно возрастает вклад плотного спектра на краях зоны. С помощью соотношения (5.6) находится решение динамической задачи и при $E \neq 0$.

Эволюция амплитуды примесного узла при различных значениях C^2 представлена на рис. 2. В согласии с приближенным соотношением (2.3), период циклов постоянен во всем интервале изменения C^2 от 0.1 до 1, где форма эха резко изменяется. При $C^2 \leq 0.1$ (рис. 2*a*) эхо в первых двух циклах состоит из одной компоненты, модулированной слабо затухающими осцилляциями. С ростом номера цикла ширина эха возрастает, и оно разбивается на плохо разрешимые компоненты, число которых растет с увеличением номера цикла. Эти изменения эха характерны для модели Цванцига в области слабой связи ($\Gamma_Z \leq 1$) [7,9]. При $C^2 = 0.25$ (рис. 26) амплитуда осцилляций возрастает, а ширина основного эха уменьшается. В области C^2 от 0.2 до 0.4 эхо остается регулярным в наибольшем числе циклов. При дальнейшем росте C^2 амплитуда осцилляций продолжает увеличиваться, и осцилляции соседних циклов перемешиваются. При $C^2 = 0.75$ (рис. 2*в*) перемешивание осцилляций превращает эхо в иррегулярное. При $C^2 = 0.95$ (рис. 2*г*) перемешивание происходит уже в первом цикле возврата. Независимость периода осцилляций от C^2 , означающая, что осцилляции связаны с переходами между соседними узлами цепочки, позволяет качественно объяснить описанные изменения эволюции.

При малых C^2 процессом, ограничивающим скорость передачи возбуждения, является переход от примеси к узлам цепочки с характеристическим временем, приблизительно равным $2\pi/C^2$. За время этого перехода возбуждение успевает охватить большое число узлов. Образуется широкий волновой пакет, смещение которого определяет форму эха. В противоположном пределе $2\pi/C^2 \ll T$ период цикла возврата много больше времени перехода от примесного узла к цепочке, так что образуется узкий волновой пакет, скорость которого не зависит от C^2 . В промежуточной области распространение возбуждения зависит от C^2 и T.

6. ПРЕДСТАВЛЕНИЕ ПАРЦИАЛЬНЫХ АМПЛИТУД ЦИКЛОВ ВОЗВРАТА

Тригонометрический ряд (5.7) настолько медленно сходится, что при $C^2 > 0.1$ необходимо учитывать весь спектр цепочки, т.е. всю совокупность полюсов на действительной оси. При суммировании такого ряда трудно выявить циклы возврата и установить особенности обмена населенностями между примесным узлом и цепочкой. С этой целью проводится переход к представлению парциальных амплитуд циклов возврата, введенному в работах [7–10]. В модели Цванцига переход осуществляется с помощью формулы суммирования Пуассона. В задаче о цепочке удобнее использовать метод производящей функции, поскольку входящая в соотношение (5.7) функция $\exp(i2t\sin\kappa)$ является производящей для функций Бесселя первого рода и целого порядка. Подставляя равенство (см., например, [35, 36])

$$\cos(2t\sin z) = J_0(2t) + 2\sum_{m=1}^{\infty} J_{2m}(2t)\cos(2mz) \quad (6.1)$$

в разложение (5.7) и изменяя порядок суммирования, перепишем (5.7) в виде

$$a_0(t) = \sum_{m=0}^{\infty} J_{2m}(2t) S_m(\{\lambda_k\}), \qquad (6.2)$$

где

$$S_0(\lambda_k) = \frac{2}{1 - C^2} \sum_k A_k,$$

$$S_m(\lambda_k) = \frac{2}{1 - C^2} \sum_k A_k \cos(2m\alpha\lambda_k).$$
(6.3)

Суммы (6.3) подобны сумме ряда

$$\frac{2\Gamma}{\pi} \sum_{k=0}^{\infty} \frac{\cos(k\varphi)}{\Gamma^2 + k^2} = \sum_{m=-\infty}^{\infty} \exp\left(-\Gamma|\varphi - 2m\pi|\right), \quad (6.4)$$

которая отлична от нуля только в периодически повторяющихся областях шириной $\Gamma \ll N$. Это свойство коэффициентов Фурье определяет периодичность в эволюции амплитуд, т. е. является причиной появления циклов возврата. Поскольку

$$\frac{\pi k}{N+1} < \alpha \lambda_k < \frac{\pi (k+1)}{N+1} \,,$$

период появления областей, в которых коэффициенты Фурье отличны от нуля, соответствует прохождению волны возбуждения от примесного узла до концов полуцепочек туда и обратно:

$$T = N + 1.$$
 (6.5)

Соотношение (6.5) совпадает с соотношением (2.3), связывающим период циклов возврата с интервалом между уровнями резервуара в центре зоны (J = 1 в выбранной нами шкале энергий), где при E = 0 расположен примесный уровень. Если значения S_m постоянны в узких периодически повторяющихся интервалах

$$[0, m_0], [N+1, N+1+m_0], \dots, [s(N+1), s(N+1)+m_0], \dots, m_0 \ll N+1,$$
(6.6)

то $a_0(t)$ разбивается на парциальные амплитуды циклов возврата:

$$a_0(t) = \sum_s a_0^{(s)} (t - sT).$$
(6.7)

В разложении парциальной амплитуды $a_0^{(s)}$ доминируют функции Бесселя, порядок которых расположен в интервале $[s(N+1), s(N+1) + m_0]$. Поскольку $T \gg 1$, из соотношений (6.2) и (6.7) следует, что парциальные амплитуды являются суперпозициями функций Бесселя первого рода и большого целого порядка. Функции $J_{2m}(2t)$ в разложении (6.1) экспоненциально малы при t < m, имеют экстремум при $t \approx m$ и осциллируют в области t > m с периодом, который мал по сравнению с периодом циклов возврата (6.5).

При $C^2 = 0, 1/2, 1$ суммы (6.3) сводятся к известным суммам косинусов кратных углов, и, как показано в Приложении, значения S_m не зависят от номера цикла:

$$S_{m}|_{C^{2}=0} = 1,$$

$$S_{m}|_{C^{2}=1/2} = (-1)^{s} \begin{cases} (-1)^{s}, & m = s(N+2), \\ (-1)^{s}/2, & m = s(N+2) \pm 1, & s = 0, 1, \dots, \\ 0, & m = s(N+2) \pm k, & k \ge 2, \end{cases}$$

$$S_{m}|_{C^{2}=1} = \begin{cases} (-1)^{s}, & m = s(N+1), \\ 0, & m = s(N+1) \pm k, & k \ge 1. \end{cases}$$
(6.8)

Из соотношений (6.8) следует, что при малых C^2 число функций Бесселя, входящих в парциальные амплитуды, достаточно велико, их число, уменьшаясь с ростом C^2 , становится меньше 3 при $1/2 \le C^2 \le 1$. В циклах s = 0 и s = 1 число функций, дающих основной вклад в разложение (6.2), экспоненциально уменьшается с ростом константы связи (4.8):

$$S_m^{(0)} \approx \exp\left(-\frac{2mC^2}{1-C^2}\right),$$

$$S_m^{(1)} \approx \frac{4C^2}{1-C^2}(m-T)\exp\left(-\frac{2(m-T)C^2}{1-C^2}\right), \quad (6.9)$$

$$C^2 < 1/2.$$

Для последующих циклов $s \ge 2$ коэффициенты являются полиномами степени s от m - sT, умноженными на коэффициент $\exp\left(2(m - sT)C^2/(1 - C^2)\right)$.

При $C^2 > 1/2$ число функций Бесселя в разложении (6.2) уменьшается настолько, что зависимость $a_0(t)$ при $1 > C^2 > 1/2$ удовлетворительно аппроксимирует простое соотношение, содержащее только три функции Бесселя:

$$a_{0}(t) \approx \sum_{s=0}^{[t/(N+1)]} (-1)^{s} \cdot 2 \left\{ (1-C^{2}) \times \left(J_{2s(N+1)-2}(2t) + J_{2s(N+1)+2}(2t) \right) + J_{2s(N+1)}(2t) \right\} + J_{2s(N+1)}(2t) \right\}.$$
 (6.10)

В однородной цепочке (C = 1)

$$a_0^{(0)}(t) = J_0(2t), \quad a_0^{(s)} = J_{2s(N+1)}(2t).$$
 (6.11)

Как следует из соотношения (6.9) при $C^2 \ll 1/2$, интервал m_0 в соотношении (6.6) возрастает настолько, что в суперпозиции большого числа функций Бесселя подавляются осцилляции отдельной функции. Вместо осцилляций наблюдается экспоненциальное уменьшение парциальных амплитуд. В этой области более удобным становится разложение по функциям Лагерра, которое имеет место в задаче Цванцига [7,9]. Переход к парциальным амплитудам в области $C^2 < 1/2$ можно рассматривать тем же методом. Корни векового уравнения, расположенные в интервалах [n, n + 1], представим в виде

$$\lambda_k = k + \varphi_k \tag{6.12}$$

и перейдем от дискретных переменных $\{k\}$ и $\{\lambda_k\}$ к непрерывным комплексным переменным x и λ . Расположенные в комплексной плоскости стационарные точки слагаемых суммы (4.7) определяются условием dF/dx = 0. Дифференцируя вековое уравнение (4.7), находим

$$\left. \frac{d\lambda}{dx} \right|_{x=k} = \frac{\lambda^2 + \Gamma^2 f_1^2(\lambda)}{(1 + \alpha^2 \Gamma/\pi)\lambda^2 + (\Gamma^2 + \Gamma/\pi)f_1^2(\lambda)} \,, \quad (6.13)$$

$$\exp(i2\pi\varphi) = \frac{\lambda + i\Gamma f_1(\lambda)}{\lambda - i\Gamma f_1(\lambda)}.$$
 (6.14)

Если амплитуды в конечной сумме (5.7) быстро уменьшаются с ростом k, сумму можно заменить бесконечным рядом и представить его разложением по парциальным амплитудам, пользуясь формулой суммирования Пуассона (подробности см. в [9]). После замены переменной x на λ с помощью соотношения (6.12) находим

$$a_0^{(s)}(\tau_s) = \frac{1}{\pi(1-C^2)} \int_{-\infty}^{\infty} \frac{\exp(i\lambda\tau_s)}{\lambda^2 + \Gamma^2 f_1^2(\lambda)} \times \left(\frac{\lambda + i\Gamma f_1(\lambda)}{\lambda - i\Gamma f_1(\lambda)}\right)^s f_1^2(\lambda) \, d\lambda, \quad (6.15)$$

где введено локальное время *s*-го цикла

$$\tau_s = t f_2(\lambda) - 2s\pi. \tag{6.16}$$

При $C^2 = 0$, если $f_1 = f_2 = 1$, соотношение (6.15) совпадает с соответствующим выражением в модели Цванцига. Из формулы (6.15) следует, что парциальные амплитуды равны вычетам в полюсах порядка s + 1, определяемых уравнением

$$\lambda^2 + \Gamma^2 f_1^2(\lambda) = 0. (6.17)$$

Уравнение (6.17) имеет полюс в верхней полуплоскости:

$$\lambda^* = -\frac{i}{2\alpha} \ln(1 - 2C^2).$$
 (6.18)

Полюс (6.18) смещается вдоль мнимой оси с ростом C^2 и при $C^2 = 1/2$ уходит в бесконечность, так что решение существует только при $C^2 < 1/2$.

7. РАСПРОСТРАНЕНИЕ ВОЗБУЖДЕНИЯ ПО УЗЛАМ ЦЕПОЧКИ

Разложение волновой функции по ортонормированному базису собственных функций узлов $(a_0(t), \{b_n(t)\})$ приводит к уравнениям движения для амплитуд узлов цепочки:

$$i\dot{a}_0 = Cb_1 + Cb_{-1}, \quad ib_{\pm 1} = Ca_0 + b_{\pm 2}, ib_n = b_{n-1} + b_{n-1}, \quad |n| \ge 2,$$
(7.1)

с начальными условиями

$$a_0(0) = 1, \quad b_n(0) = 0.$$
 (7.2)

Преобразования Лапласа для амплитуд имеют вид

$$\tilde{a}_{0} = \frac{D_{N}}{D_{N+1} + (1 - 2C^{2})D_{N-1}},$$

$$\tilde{b}_{n} = i(-1)^{N+1-n} \frac{D_{N-n}}{D_{N}} C\tilde{a}_{0}.$$
(7.3)

Зависящие от времени амплитуды узлов находятся с помощью обратного преобразования Лапласа в виде тригонометрических рядов, аналогичных ряду (5.6).

Переход к представлению парциальных амплитуд приводит к соотношениям типа (6.2):

$$b_n(t) = \frac{1}{1 - C^2} \sum_{m=0}^{\infty} J_{2m}(2t) S_{nm}(\{\lambda_k\}), \qquad (7.4)$$

где

$$S_{nm}(\{\lambda_k\}) = i \frac{C\Gamma}{\pi(1+\alpha^2\Gamma/\pi)} \times \\ \times \sum_{k=0}^{[N/2]} \frac{\cos(2m\alpha\lambda_k)}{B^2 + \lambda_k^2/f_1^2(\lambda_k)} \times \\ \times \frac{\sin\left((N+1-n)\alpha\lambda_k\right)}{\sin\left((N+1)\alpha\lambda_k\right)}, \quad B^2 = \frac{\Gamma}{\pi} \frac{1+\pi\Gamma}{1+\alpha^2\Gamma/\pi}.$$
 (7.5)

Коэффициенты S_{nm} , как и S_m , отличаются от нуля только в узких периодически повторяющихся интервалах, так что амплитуды узлов также разделяются на парциальные амплитуды:

$$b_n(t) = \sum_{s} b_n^{(s)}(t - sT).$$
(7.6)

Поскольку суммы (7.6) зависят от углов, кратных $\pi (1 - (n \pm m)/(N + 1))$, интервал доступных значений m в *s*-м цикле равен

$$[s(N+1) + n, (s+1)(N+1) - n].$$
 (7.7)

Из асимптотик функций Бесселя следует, что этому интервалу соответствует временной интервал, уменьшающийся с ростом *n*:

$$sT + n = t_{ns}^{(1)} \le t \le t_{ns}^{(2)} = (s+1)T - n.$$
 (7.8)

Характеристические времена $t_{ns}^{(1)}$ и $t_{ns}^{(2)}$ определяют моменты прохождения фронтами возбуждения узла n. При $t = t_{sn}^{(1)}$ возбуждение распространяется от примесного узла, а при $t = t_{sn}^{(2)}$ — в противоположном направлении после отражения от конца цепочки. Зависимость парциальных амплитуд от |n - t|означает, что распространение возбуждения осуществляется волной, бегущей по цепочке.

Характерные изменения населенности узлов во времени при $C^2 \leq 0.2$ и $C^2 \geq 0.5$ показаны на рис. 3. При $C^2 = 0.1$ (рис. 3a) в цикле s = 0 наблюдаются два эха, отвечающие двум прохождениям узла в моменты времени $t_{ns}^{(1)}$ и $t_{ns}^{(2)}$. Внутри интервала (7.8) узел не населен. Интенсивность эха соответствует ширине волнового пакета, охватывающей примерно четыре узла и слабо зависящей от n, т.е. при первом прохождении полуцепочек в обоих направлениях волновой пакет почти не расплывается. В следующих циклах происходит последовательно расплывание и восстановление пакета, причем его ширина оказывается наибольшей в середине цепочки. $\begin{array}{c} & 0.10 \\ \parallel & 0.05 \\ u \end{array}$

0 1 2 3 4 5 6 *t/(N*+1) Рис. 3. Распространение возбуждения по узлам це-

почки. $C^2 = 0.1$ (a), 0.75 (б). N = 49

При $C^2 = 0.75$ (рис. 36) распространение возбуждения в цикле s = 0 сопровождается изменением его формы: основная компонента модулирована слабо затухающими осцилляциями, относительная интенсивность которых возрастает с увеличением номера узла. Благодаря модуляции узлы остаются заселенными в интервале (7.8), так что первоначально узкий пакет с ростом *n* расплывается. В следующих циклах интенсивность эха уменьшается за счет расплывания пакета на весь период. Особенность распространения при $C^2 > 0.5$ состоит в том, что заселенность узлов цепочки имеет вид иррегулярных осцилляций в течение почти всего периода. Населенность примесного узла остается регулярной, когда населенность узлов цепочки с большими номерами близка к хаотической. Это означает, что распространение возбуждения от концов цепочки к примесному

узлу приводит как к расплыванию, так и к восстановлению волнового пакета. Распределение населенности по узлам цепочки в момент времени t определяет (2N + 1)-мерный вектор

$$U(n,t) = \left[a_0^2(t), \{b_n^2(t)\}\right].$$
 (7.9)

Длина вектора (7.9), определяемая условием нормировки волновой функции, постоянна,

$$a_0^2(t) + \sum_n b_n^2(t) = 1.$$
 (7.10)

По аналогии с классической механикой непрерывный аналог вектора U(n,t) можно рассматривать как решение волнового уравнения, описывающего распространение волнового пакета, состоящего из волн с различными частотами и волновыми векторами. Волны, бегущие с различными скоростями в противоположных направлениях, диспергируют, вследствие чего групповая скорость и ширина пакета зависят от времени. Групповая скорость пакета, его смещение и ширина пакета определяются соотношениями

$$\overline{V}(t) = \frac{d\overline{n}}{dt}, \quad \overline{n} = \sum_{n} nU(n,t),$$
$$D(t) = \left(\sum_{n} (n-\overline{n})^{2} U(n,t)\right)^{1/2}.$$
(7.11)

Ряды (7.11) можно найти, исходя из соотношений (7.4)-(7.6). Результаты численных расчетов $\overline{n}(t)$ и D(t) представлены на рис. 4. При $C^2 = 0.1$ (рис. 4*a*) смещение пакета в цикле s = 0 возрастает со временем. Максимальное смещение не превышает N/3 и сопровождается расплыванием пакета почти по всей длине цепочки. Помимо основного периода циклов наблюдается дополнительный период, который примерно в 2 раза больше T. В конце цикла s = 0 ширина в несколько раз больше, чем в конце цикла s = 1. При T/2 < t < T пакет после отражения от конца цепочки смещается к примесному узлу и лишь незначительно сужается, поскольку населенность продолжает поступать от примесного узла. При $t \approx T$ его населенность составляет приблизительно 0.7 от начальной (верхняя панель рис. 3а), тогда как остальная населенность распределена почти по всем узлам цепочки (рис. 4a). В конце цикла s = 1 пакет сужается до $\overline{n}(2T) \approx 3$. Эта картина повторяется, постепенно смазываясь, в последующих парах циклов. При $C^{2} = 0.25$ максимальное смещение пакета в циклах s = 0 и s = 1 возрастает, а его уширение уменьшается. В последующих циклах смещения уменьшаются,

Рис. 4. Смещение (сплошные линии) и изменение ширины (пунктирные линии) волнового пакета в циклах возврата. $C^2 = 0.1$ (*a*), 0.25 (*b*), 0.5 (*b*), 0.95 (*c*). N = 49

ширина пакета изменяется в окрестности N/2. Когда $C^2 = 0.5$ (рис. 4*в*), в каждом цикле происходят регулярные смещения пакета от $\overline{n} \approx 3$ до $\overline{n} \approx N/2$ с синхронным изменением его ширины в том же интервале. Узкий пакет, расширяясь, движется от примесного узла и сужается при обратном движении. С ростом номера цикла смещение уменьшается, пакет перестает сужаться. Смещение становится меньше ширины при $s \ge 5$. При дальнейшем увеличении C^2 регулярные уширения и сужения пакета происходят в каждом цикле вплоть до s = 10. Ширина пакета становится меньше смещения, которое уменьшается с ростом номера цикла. На рис. 4г показано регулярное расплывание и восстановление пакета в каждом цикле при $C^2 = 0.95$. Узкий пакет, расширяясь, движется от примесного узла и сужается при обратном движении.

8. МЕХАНИЗМ ПЕРЕМЕШИВАНИЯ

Если амплитуда примесного узла разлагается по функциям Лагерра или Бесселя, при малых C^2 и $C^2 = 1$ эти разложения содержат только одну функцию, а в промежуточной области C^2 число входящих в разложение функций увеличивается. При малых C^2 механизм перемешивания аналогичен описанному в работах [7,9] для задачи Цванцига и определяется свойствами функций Лагерра в области осцилляций. Пока область осцилляций меньше периода цикла, компоненты эха соседних циклов не перекрываются ($4s < T = 4s_c = 4\pi\Gamma$), парциальные амплитуды предыдущих циклов в сумме (6.7) экспоненциально малы и эхо зависит только от парциальной амплитуды *s*-го цикла. Когда области осцилляций соседних циклов перекрываются, компоненты эха, расположенные на концах соседних циклов, перемешиваются: в интервал [sT, (s + 1)T] переходит часть нулей из предыдущих циклов, а часть нулей *s*-го цикла покидает его. Полное число нулей *s*-й амплитуды n_s и число нулей в *s*-м цикле n_{ss} равны

$$n_{ss} \approx \frac{2}{\pi} \sqrt{ss_c}, \quad n_s \approx n_{ss} \sqrt{\frac{s}{s_c}}, \quad s \ge s_c.$$
 (8.1)

Поскольку нули функций Лагерра рационально независимы от T, в *s*-м цикле появляются дополнительные нули предыдущих циклов. Полное число нулей за период цикла равно

$$N_{s} = n_{ss} \left(1 + f(s/s_{c}) \right), \qquad (8.2)$$
$$f = \sum_{k=1}^{s/s_{c}} \left(\sqrt{k} + \sqrt{k+1} \right)^{-1}.$$

Соотношение (8.2) показывает, что при незначительном увеличении полного числа нулей (при изменении s/s_c от 2 до 6 значение f увеличивается в 1.5 раза) перемешивание приводит к замене регулярной последовательности нулей *s*-й парциальной амплитуды последовательностью нулей суммы (6.7) со случайным распределением интервалов между соседними нулями. Процесс аналогичен перемешиванию арифметических прогрессий $a_n^{(p)} = a_0^{(p)} + n\Delta_p$ с рационально независимыми разностями Δ_p . Эта модель описывает, в частности, эволюцию системы, в которой резервуар состоит из K подрешеток с рационально независимыми периодами $1, 1 \pm \delta_1, \ldots$:

$$\varepsilon^{0}(nK) = nK,$$

$$\varepsilon^{0}(nK \pm 1) = (nK \pm 1)(1 \pm \delta_{1}),$$

$$\varepsilon^{0}(nK \pm 2) = (nK \pm 2)(1 \pm \delta_{2}), \dots$$

(8.3)

В работе [10] показано, что в резервуаре (8.3) происходит спектральное перемешивание, вследствие которого эволюция амплитуды начального состояния становится иррегулярной.

В однородной цепочке ($C^2 = 1$) число нулей *s*-й парциальной амплитуды за период цикла уменьшается с ростом его номера пропорционально $1/\sqrt{s}$. Перемешивание происходит во всех циклах $s \ge 1$. Поскольку нули функций Бесселя различных порядков

рационально независимы, полное число нулей в 2*s* раз больше n_{ss} :

$$n_{ss} = \frac{N+1}{\pi\sqrt{2s}}, \quad N_s = 2sn_{ss}.$$
 (8.4)

Из соотношений (8.2) и (8.4) следует, что в однородной цепочке механизм перемешивания отличается от модели Цванцига: число нулей возрастает пропорционально s, а критический номер цикла $s_c = 1$. Период цикла заполняется нулями всех предыдущих циклов, подобно заполнению окружности совокупностью точек $\{n\phi\}$, угол между которыми ϕ рационально независим от 2π и $n \gg 2\pi/\phi$ [37, 38].

Следует отметить, что определение критического номера цикла, характеризующего начало перемешивания, определяет только масштаб появления хаоса. Эволюция становится стохастической при $s/s_c \gg 1$. Кроме этого «внутреннего» условия в реальных системах возникают «внешние» причины стохастичности: точность измерительного прибора [10] и взаимодействие с резервуаром, имеющим непрерывный спектр (в частности, с фононами) [39, 40]. При достаточно большом числе перекрывающихся парциальных амплитуд (т.е. $s > s_c$) их нули настолько плотно заполняют весь цикл возврата, что существует такой номер цикла, при котором разрешающая способность измерительного прибора оказывается недостаточной, чтобы воспроизвести эволюцию населенности. По аналогии с классическим динамическим хаосом, вызываемым перемешиванием (см., например, [37]), указанное перекрывание парциальных амплитуд с рационально независимыми периодами вызывает квантовый динамический хаос. Взаимодействие с низкочастотными фононами, период которых много больше периода цикла возврата, вызывает распад и дефазировку состояний цепочки.

В модели Цванцига о начале перемешивания свидетельствует резкий экстремум усредненных за цикл характеристик населенности: степеней населенности, ее четных моментов и корреляционных функций [9, 10]. Это свойство позволяет определить критический номер цикла. Численные расчеты показали, что экстремумы присущи и усредненным характеристикам амплитуды примесного узла в цепочке. Значение s_c , отождествленное с первым минимумом усредненных степеней населенности

$$\langle |a_0|^{2l} \rangle_s = T^{-1} \int_{sT}^{(s+1)T} |a_0(t)|^{2l} dt, \quad l = 2, 3, \dots, \quad (8.5)$$

Рис.5. Зависимость от C^2 критического номера цикла s_c , характеризующего начало перемешивания. Штриховая кривая — зависимость (8.6), сплошная кривая — $s_c = (N+1)(1-C^2)/C^2$. Значения s_c определены по максимуму усредненного за цикл квадрата населенности примесного узла (8.5)

зависит от C^2 , как показано на рис. 5. При 0.1 $\leq C^2 \leq 0.25$ значение s_c увеличивается, как и в модели Цванцига, пропорционально константе связи (4.8):

$$s_c \approx (N+1) \frac{C^2}{1-C^2}, \quad C^2 < \frac{1}{4}.$$
 (8.6)

Дальнейший рост C^2 вызывает уменьшение s_c . Для однородной цепочки, в согласии с указанным выше механизмом перемешивания, $s_c \approx 1$. Рисунок 5 показывает, что механизм перемешивания изменяется в области $C^2 \approx 1/4$, где критический номер цикла максимален.

9. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В настоящей работе установлено, что вместо ожидаемого монотонного перехода от начальной населенности примесного узла к распределению по всем доступным нормальным колебаниям существует конечное число циклов возврата, в которых происходит накопление энергии на локальных колебаниях нескольких узлов, периодически повторяющееся в каждом цикле. Подобное поведение было обнаружено Ферми, Паста и Уламом (ФПУ) [41] в классической динамической задаче о цепочке с ангармонической связью между соседними узлами. Решение задачи ФПУ показывает, что энергия не распределяется между всеми нормальными колебаниями, а обменивается с определенной периодичностью между ограниченным числом мод. В дальнейшем было установлено, что этот эффект тесно связан с циклами возврата и восстановлением волновых пакетов и характерен для ряда простых систем (одномерный ангармонический осциллятор, ридберговский атом, двумерный ротатор и т. д.) с неэквидистантным спектром [42, 43]. Представление собственных значений в виде ряда

$$\varepsilon_n = E_0 + \frac{n}{T} + \frac{n^2}{T_1} + \dots \tag{9.1}$$

определяет период цикла возврата T и более длинные дополнительные периоды T_1, T_2, \ldots :

$$T^{-1} = (2\pi)^{-1} \left. \frac{dE}{dn} \right|_{n=0},$$

$$T_1^{-1} = (4\pi)^{-1} \left. \frac{d^2E}{dn^2} \right|_{n=0}, \dots$$
(9.2)

Наличие дополнительных периодов приводит к неполному восстановлению населенности начального состояния, усложнению формы эха с ростом номера цикла и распределению населенности по всему спектру в долговременной эволюции, т.е. к эффектам, характерным для динамики цепочки. Причина сходства объясняется тем, что разложение (9.1) справедливо и для векового уравнения цепочки (3.11). Различие состоит в том, что в цепочке периоды (9.2) связаны не с ангармонизмом одномерного потенциала, а с неэквидистантностью спектра цепочки (1.1).

Особенностью цепочки по сравнению с перечисленными выше системами, в которых рассматривались циклы возврата, является связь собственных состояний с состояниями узлов (см. разд. 4), благодаря чему возбуждение распространяется по узлам цепочки в виде волнового пакета, который расплывается и сужается в каждом цикле возврата. Поскольку $T \ll T_1 \ll T_2 \ldots$, распространение происходит баллистически (время переноса пропорционально длине цепочки). Равномерное распределение населенности по узлам достигается только при глубоком перемешивании, когда $s/s_c \gg 1$.

При $C^2 \ge 0.5$ в каждом цикле происходит сужение пакета при его движении от конца цепочки к примесному узлу. Волны с более высокой групповой скоростью проходят до отражения большее расстояние, чем волны с меньшими скоростями. При обратном движении они возвращаются приблизительно в тот же момент времени, что более медленные волны, проходящие меньшее расстояние. Поскольку $T \ll T_1$ с ростом C^2 ширина пакета на конце цепочки уменьшается. При $C^2 \leq 0.2$ значение T_1 приближается к T, так что в эволюции проявляется удвоенный период, определяемый скоростью поступления населенности от примесного узла. Стохастичность эволюции населенности, обусловленная отражениями от концов цепочки, обнаружена в спиновых цепочках с взаимодействием ближайших соседей [44].

Баллистическое распространение возбуждения обеспечивает возможность бездиссипативной передачи колебательной энергии по молекулярной цепочке на большие расстояния. Такая передача энергии между реактивными центрами является необходимым условием высокой эффективности фундаментальных биологических процессов, в том числе фотосинтеза и энергообмена в клетках. Предполагалось, что такая передача осуществляется солитонами, образование которых обусловлено высоким ангармонизмом внутримолекулярных колебаний (в частности, колебаний в α -спиралях из молекул белков) [32, 45-47]. Настоящая работа показывает, что для направленной передачи энергии сильный ангармонизм не является необходимым условием. Баллистическая передача энергии может происходить и в молекулах, состоящих из СН₂-фрагментов, в которых ангармонизм колебаний мал [26]. Этот результат открывает возможность более широкого поиска новых фоточувствительных материалов и молекулярных проводов, эффективность которых, как и биологических структур определяется возможностью бездиссипативной передачи энергии между реакционно-способными группами.

Участие Е. К. в этой работе было частично выполнено в рамках программ FTP S & SPPIR и TOD Isaak Newton Institute for Mathematical Sciences.

приложение

Разложение парциальных амплитуд по функциям Бесселя при $C^2 = 1/2$ и $C^2 = 1$

При $C^2 = 1/2$ изображение парциальной амплитуды примесного узла (5.4) имеет вид

$$\tilde{a}_0(\varepsilon) = \frac{D_N(\varepsilon)}{D_{N+1}(\varepsilon)}.$$
 (A.1)

Вычисляя вычеты в простых полюсах функции (A.1), находим

$$\kappa = \frac{n\pi}{N+2}, \quad \frac{dF}{d\varepsilon} = \frac{N+2}{2\sin^2(n\pi/N+2)}.$$
(A.2)

Из соотношений (5.6) и (A.2) следует, что в цикле s = 0 отличны от нуля два коэффициента

...

$$S_{0} = \frac{2}{N+2} \sum_{n=1}^{N+1} \sin^{2} \frac{n\pi}{N+2} = 1,$$

$$S_{1} = \frac{2}{N+2} \sum_{n=1}^{N+1} \sin^{2} \frac{n\pi}{N+2} \cos \frac{2n\pi}{N+2} = \frac{1}{2}.$$
(A.3)

В циклах $s \ge 1$ отличны от нуля три коэффициента, определенные вторым из соотношений (6.8).

В однородной цепочке при $C^2 = 1$ имеем

$$\tilde{a}_0(\varepsilon) = \frac{\sin\left((N+1)\kappa\right)}{2\sin\kappa\cos\left((N+1)\kappa\right)}.$$
 (A.4)

Сумма (6.3) отлична от нуля только при m = s(N+1).

ЛИТЕРАТУРА

- 1. T. User and W. H. Miller, Phys. Rep. 199, 73 (1991).
- V. M. Kenkre, A. Tokmakoff, and M. D. Fayer, J. Chem. Phys. 101, 10618 (1994).
- 3. S. Mukamel, *Principles of Nonlinear Optical* Spectroscopy, Oxford Univ. Press, Oxford (1995).
- C. J. Fesko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, Science **301**, 1698 (2003).
- 5. D. M. Leitner, Adv. Chem. Phys. B 130, 205 (2005).
- 6. R. Zwanzig, Lect. Theor. Phys. 3, 106 (1960).
- В. А. Бендерский, Л. А. Фальковский, Е. И. Кац, Письма в ЖЭТФ 86, 221 (2007).
- В. А. Бендерский, Е. И. Кац, Письма в ЖЭТФ 88, 387 (2008).
- В. А. Бендерский, Л. Н. Гак, Е. И. Кац, ЖЭТФ 135, 176 (2009); 136, 589 (2009).
- В. А. Бендерский, Е. И. Кац, Письма в ЖЭТФ 92, 410 (2010).
- 11. R. G. Snyder, J. Chem. Phys. 47, 1316 (1967).
- 12. T. Ishioka, W. Yan, H. L. Strauss, and R. G. Snyder, Spectrochimica Acta A 59, 671 (2003).

- K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, J. Chem. Phys. 121, 8671 (2004).
- 14. H. Kuzmany, B. Burger, A. Thess, and R. E. Smalley, Carbon 36, 709 (1998).
- 15. O. P. Charkin and N. M. Klimenko, Private Communication (2009).
- 16. O. P. Charkin, N. M. Klimenko, and D. O. Charkin, Adv. Quant. Chem. 56, 69 (2009).
- 17. M. Ben-Nun, F. Molnar, H. Lu, J. C. Phillips, T. J. Martinez, and K. Schulten, Farad. Discuss. 110, 447 (1998).
- 18. S. Hayashi, E. Tajkhorshid, and K. Schulten, Biophys. J. 85, 1440 (2003).
- 19. G. K. Paramonov, H. Naundorf, and O. Kuhn, Europ. J. Phys. D 14, 205 (2001).
- 20. H. Fujisaki, Y. Zhang, and J. E. Straub, J. Chem. Phys. 124, 14491 (2006).
- S. Sporlein, H. Carstens, H. Satzger et al., Proc. Nat. Acad. Sci. USA 99, 7998 (2002).
- 22. J. Bredenbeck, A. Ghosh, M. Smits, and M. Bonn, J. Amer. Chem. Soc. 130, 2152 (2008).
- 23. J. A. Carter, Z. Wang, and D. D. Dlott, Acc. Chem. Res. 42, 1343 (2009).
- 24. I. V. Rubtsov, Acc. Chem. Res. 42, 1385 (2009).
- 25. C. Keating, B. A. McClure, J. J. Rack, and I. V. Rubtsov, J. Chem. Phys. 133, 144513 (2010).
- 26. Z. Lin, P. Keiffer, and I. V. Rubtsov, J. Phys. Chem. B 115, 5347 (2011).
- 27. M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys. Condens. Matter 19, 103201 (2007).
- 28. В. А. Бендерский, Е. И. Кац, Письма в ЖЭТФ 94, 494 (2011).

- 29. P. Mazur and E. Montroll, J. Math. Phys. 1, 70 (1960).
- 30. C. Domb, Proc. Roy. Soc. A 276, 418 (1963).
- **31**. А. С. Ковалев, ТМФ **37**, 135 (1978).
- **32**. D. Hennig, Phys. Rev. E **61**, 4550 (2000).
- 33. Z. Lin and B. Li, J. Phys. Soc. Jpn. 76, 074003 (2008).
- 34. Ф. Р. Гантмахер, М. Г. Крейн, Осцилляционные матрицы и ядра и малые колебания механических систем, Гостехиздат, Москва (1950).
- H. Bateman and A. Erdelyi, *Higher Transcendental Functions*, Vol. 2, McGraw Hill, New York (1953).
- 36. F. W. J. Olver, Asymptotics and Special Functions, Acad. Press, New York (1974).
- 37. Г. М. Заславский, Стохастичность динамических систем, Наука, Москва (1984).
- 38. М. Табор, Хаос и интегрируемость в нелинейной динамике, УРСС, Москва (2001).
- 39. W. H. Zurek, Phys. Rev. D 26, 1862 (1982).
- P. Grigolini, Quantum Mechanical Irreversibility, World Sci., Singapore (1993).
- 41. E. Fermi, J. R. Pasta, and S. M. Ulam, Los Alamos Technical Rep. (1940).
- 42. Р. Додд, Д. Эйлбек, Д. Гиббон, Х. Моррис, Солитоны и нелинейные волновые уравнения, Мир, Москва (1988).
- 43. R. W. Robinett, Phys. Rep. 392, 1 (2004).
- 44. E. B. Fel'dman, R. Brushweiler, and R. R. Ernst, Chem. Phys. Lett. 294, 297 (1998).
- A. S. Davydov, Solitons in Molecular Systems, Kluwer, Dordrecht (1985).
- 46. D. Hochstrasser, F. G. Mertens, and H. Buttner, Phys. Rev. A 40, 2602 (1989).
- 47. A. Campa, A. Giansanti, A. Tenenbaum, D. Levi, and O. Ragnisco, Phys. Rev. B 48, 10168 (1993).