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CHARGED FERMIONS TUNNELINGFROM REGULAR BLACK HOLESM. Sharif *, W. Javed **Department of Mathemati
s, University of the Punjab54590, Lahore, PakistanRe
eived February 15, 2012We study Hawking radiation of 
harged fermions as a tunneling pro
ess from 
harged regular bla
k holes, i. e.,the Bardeen and ABGB bla
k holes. For this purpose, we apply the semi
lassi
al WKB approximation to thegeneral 
ovariant Dira
 equation for 
harged parti
les and evaluate the tunneling probabilities. We re
over theHawking temperature 
orresponding to these 
harged regular bla
k holes. Further, we 
onsider the ba
k-rea
tione�e
ts of the emitted spin parti
les from bla
k holes and 
al
ulate their 
orresponding quantum 
orre
tions tothe radiation spe
trum. We �nd that this radiation spe
trum is not purely thermal due to the energy and 
harge
onservation but has some 
orre
tions. In the absen
e of 
harge, e = 0, our results are 
onsistent with thosealready present in the literature.1. INTRODUCTIONClassi
ally, a bla
k hole (BH) is 
onsidered to ab-sorb all matter and energy in the surrounding regioninto it due a strong gravitational �eld. Bekenstein [1℄was the �rst to dis
uss the BH thermodynami
s. Later,Hawking [2℄ investigated BH thermodynami
al proper-ties and proposed [3℄ that a BH 
ould emit bla
k-bodyradiation. A

ording to this, a parti
le�antiparti
lepair appears near the event horizon of a BH due to va
-uum �u
tuations. In order to preserve the total energy,one member of the pair with negative energy must fallinto the BH while the other es
apes with positive en-ergy. In this pro
ess, the BH loses mass and it appearsto an outside observer that the BH has just emitted aparti
le. This semi
lassi
al pro
ess is 
alled quantumtunneling [4, 5℄. In this approa
h, parti
les follow 
las-si
ally forbidden traje
tories from inside the horizon toin�nity, for whi
h the a
tion be
omes 
omplex. Thismeans that the tunneling probability for the outgoingparti
le is governed by the imaginary part of this a
-tion. Be
ause a parti
le 
an 
lassi
ally only fall insidethe horizon, the a
tion for the ingoing parti
le must bereal.There are two di�erent methods to evaluate theimaginary part of the a
tion. One is the semi
lassi-*E-mail: msharif.math�pu.edu.pk**E-mail: wajihajaved84�yahoo.
om


al Wentzel�Kramers�Brillouin (WKB) approximationmethod, �rst used in [6, 7℄, and the other is the radialnull-geodesi
 method [5℄. These methods have beenused to evaluate the tunneling probabilities of quan-tum �elds passing through an event horizon. Di�erentsemi
lassi
al approa
hes have been adopted to evaluatetunneling of s
alar and Dira
 parti
les (
harged and un-
harged). In Refs. [8, 9℄, the tunneling of spin-1=2 par-ti
les through event horizons of the Rindler spa
etimewas investigated and Unruh temperature was obtained.In these papers fermion tunneling from the general non-rotating BH as well as the Kerr�Newman BH was alsodis
ussed and their 
orresponding Hawking tempera-tures was re
overed.Fermions tunneling from the Kerr BH were inves-tigated in [10℄ by applying the WKB approximationto the general 
ovariant Dira
 equation, whi
h allowed�nding the Hawking temperature for the Kerr BH.Charged fermion tunneling from dilatoni
 BHs, therotating Einstein�Maxwell dilaton�Axion BH, and arotating Kaluza�Klein BH were studied in [11℄ andtheir 
orresponding Hawking temperatures were re
ov-ered. Hawking radiation of spin-1=2 parti
les from theReissner�Nordström BH was investigated in [12℄ usingthe Dira
 equation for 
harged parti
les. The tunnelingof s
alar and Dira
 parti
les from the Kerr�NewmanBH was explored in [13℄ and its Hawking tempera-ture was obtained. The semi
lassi
al fermion tunnel-ing from the Kerr�Newman�Kasuya BH was studied889
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etimes [15℄.Tunneling of 
harged fermions from a

elera-ting and rotating BHs with ele
tri
 and magneti

harges have been studied in [16�18℄ using the WKBapproximation. Tunneling probabilities of 
hargedfermions and the 
orresponding Hawking temperaturewere found. In re
ent papers [19℄, the tunnelingprobabilities of in
oming and outgoing s
alar and
harged/un
harged fermion parti
les from a

eleratingand rotating BHs have been investigated. Re
ently,we have examined the radiation spe
trum of anRN-like non
ommutative BH [20℄ by quantum tun-neling pro
ess (radial null geodesi
 method). Also,we have investigated quantum 
orre
tions of regularBHs [21, 22℄.In this paper, we use the pro
edure in [8℄ to inves-tigate the tunneling probabilities of 
harged fermionsfor 
harged regular BHs, i. e., the regular Bardeen andregular Ayón-Beato�Gar
ía�Bronnikov (ABGB) BHs.We re
over the 
orresponding Hawking temperaturesfor 
harged massive as well as massless fermions. Also,we explore the radiation spe
trum by using the radialnull-geodesi
 method [12℄. This paper is organized asfollows. In Se
. 2, we review the basi
 formalism forthe pure thermal spe
trum of 
harged fermions usingthe Dira
 equation for 
harged parti
les. Se
tion 3 isdevoted to the study of fermion tunneling from the reg-ular Bardeen and ABGB BHs. In Se
. 4, we dis
uss the
orre
tion spe
trum of 
harged fermions due to ba
k-rea
tion e�e
ts. Finally, Se
. 5 summarizes the results.2. REVIEW: TUNNELING OF CHARGEDFERMIONSIn this se
tion, we brie�y review some basi
 ma-terial used to evaluate the tunneling probabilities of
harged fermions. For this purpose, we apply the WKBapproximation to the general 
ovariant Dira
 equationfor 
harged parti
les. The line element of a spheri
allysymmetri
 BH 
an be written asds2 = �Fdt2 + F�1dr2 + r2d�2 + r2 sin2 � d�2; (2.1)where F = 1� 2M(r)r :This metri
 
an be redu
ed to well-known BHs for spe-
ial 
hoi
es of M(r). The Dira
 equation with ele
tri



harge q is given by [9℄i
��D� � iq~ A��	+ m~ 	 = 0;�; � = 0; 1; 2; 3; (2.2)wherem is the mass of fermion parti
les, A� is the 4-po-tential, 	 is the wave fun
tion, and 
� are the Dira
matri
es [14℄. The antisymmetri
 property of the Dira
matri
es, i. e.,[
�; 
� ℄ = ( 0; � = �;�[
�; 
�℄; � 6= �;redu
es Dira
 equation (2.2) to the formi
���� � iq~ A��	+ m~ 	 = 0: (2.3)The spinor wave fun
tion 	 has two spin states:spin-up (radially outward, i. e., in positive r-dire
tion)and spin-down (radially inward, i. e., in negative r-di-re
	tion). The solutions for spin-up and spin-down par-ti
les are respe
tively given by [8℄	"(t; r; �; �) = 266664 A(t; r; �; �)0B(t; r; �; �)0 377775�� exp� i~I"(t; r; �; �)� ; (2.4)
	#(t; r; �; �) = 266664 0C(t; r; �; �)0D(t; r; �; �) 377775�� exp� i~I#(t; r; �; �)� ; (2.5)where I"=# is the a
tion of the emitted spin-up/spin-down parti
les. In what follows, we dis
uss the spin-up
ase in detail; the spin-down 
ase follows in a similarfashion. Using Eq. (2.4) in Dira
 equation (2.3), weobtain the set of equations� " iApF (r)�tI" +BpF (r)�rI" � iApF (r)qA0#++mA = 0; (2.6)�B �1r ��I" + ir sin ���I"� = 0; (2.7)890
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k holes" iBpF (r)�tI" �ApF (r)�rI" � iBpF (r) qA0#++mB = 0; (2.8)�A �1r ��I" + ir sin � ��I"� = 0: (2.9)To �nd the a
tion from the above equations, we useseparation of variables in a

ordan
e withI" = �Et+W (r) + J(�; �); (2.10)where E and J denote the energy and angular mo-mentum of the emitted parti
le, and W is an arbi-trary fun
tion of r. Inserting this value of the a
tion inEqs. (2.6)�(2.9), we also use Taylor's expansion to ex-pand F (r) near the outer horizon r+, negle
ting squaresand higher powers. Substituting the values of A0(r+)and setting iA = B and iB = A in the above set ofequations, we obtain�B " �E � qA0p(r � r+)F 0(r+) +p(r � r+)F 0(r+)W 0#++mA = 0; (2.11)�B �1r ��J + ir sin ���J� = 0; (2.12)A" �E � qA0p(r � r+)F 0(r+) �p(r � r+)F 0(r+)W 0#++mB = 0; (2.13)�A �1r ��J + ir sin � ��J� = 0; (2.14)where the prime denotes the derivative with respe
t tor. Equations (2.12) and (2.14) yield1r ��J + ir sin ���J = 0 (2.15)

whi
h impliesJ = exp[ik�℄ �
1 Z 
s
 � d� + 
2� ; (2.16)where k, 
1, and 
2 are arbitrary fun
tions of � and �.This quantity must be same for both outgoing and in-
oming 
ases. As a result, it 
an
els from the formulafor the tunneling probability from inside to outside thehorizon (whi
h is the ratio of outgoing and in
omingmodes [8℄).In the massless 
ase (m = 0), Eqs. (2.11) and (2.13)yield the respe
tive solutionsW 0(r) = W 0+(r) = E + qA0(r � r+)F 0(r+) ; (2.17)W 0(r) =W 0�(r) = � E + qA0(r � r+)F 0(r+) ; (2.18)where W+=� 
orrespond to the outgoing/in
oming so-lutions. The tunneling probability of a parti
le goingfrom outside to inside the horizon is equal to unity [9℄.Also, Eqs. (2.17) and (2.18) lead toImW+ = � ImW�:Hen
e, the overall tunneling probability of the outgoingparti
le turns out to be� = Prob[out℄Prob[in℄ = exp[�2(ImW+)℄exp[�2(ImW�)℄ == exp[�4 ImW+℄: (2.19)We 
an re
over the Hawking temperature TH from therelation as � = exp[��E℄; � = 1TH :In the massive 
ase (m 6= 0), Eqs. (2.11) and (2.13)no longer de
ouple. We eliminate the fun
tion W 0from these two equations by respe
tively multiplyingEqs. (2.11) and (2.13) with A and B. After some ma-nipulations, it follows thatAB = �(E + qA0)�p(E + qA0)2 +m2(r � r+)F 0(r+)mp(r � r+)F 0(r+) : (2.20)The limit r ! r+ yields either A=B ! 0 orA=B ! �1, i. e., either A! 0 or B ! 0. For A! 0,we 
an evaluate the value of m from Eq. (2.13) as m = �AB "�p(r � r+)F 0(r+)W 0(r) ++ �(E + qA0)p(r � r+)F 0(r+)# : (2.21)891



M. Sharif, W. Javed ÆÝÒÔ, òîì 142, âûï. 5 (11), 2012Inserting this value in Eq. (2.11) and simplifying, weobtain the same value of W 0+(r) as in Eq. (2.17). Sim-ilarly, for B ! 0, the same expression for W 0�(r) isfound as in (2.18). Consequently, the Hawking temper-ature turns out to be the same as in the massless 
ase.In the spin-down 
ase, for both massive and masslessfermions, the Hawking temperature remains the sameas for the spin-up 
ase. Thus, both spin-up and spin-down parti
les are emitted at the same rate, i. e., asmany spin-up fermions are emitted as spin-down. Wenote that for the tunneling of 
harged massive fermions,the tunneling probability is independent of the massbut depends only on the 
harge. This is be
ause themassive 
ase redu
es to the massless 
ase as r ! r+,and hen
e the tunneling probability is the same as inthe massless 
ase.3. REGULAR BLACK HOLESSingularities exist in all known physi
al exa
t solu-tions of BHs. In order to remove these singularities,some regular BH models have been proposed. Thesemodels represent singularity-free solutions of the �eldequations 
oupled to a suitable nonlinear ele
trody-nami
s satisfying the weak energy 
ondition. Here, we
onsider the Bardeen and ABGB regular BH solutionsto dis
uss tunneling pro
ess.3.1. Bardeen regular bla
k holeAyón-Beato and Gar
ía [23℄ gave a physi
al inter-pretation of the Bardeen regular BH [24℄ by showingthat the 
harge asso
iated with it a
ts as a magneti
monopole 
harge. This is des
ribed by metri
 (2.1)with M(r) = Mr3(r2 + e2)3=2 : (3.1)Here,M and e stand for the mass and monopole 
hargeof a self-gravitating magneti
 �eld of a nonlinear ele
-trodynami
 sour
e. This solution exhibits a BH be-havior for e2 � (16=27)m2 and has a spheri
al eventhorizon at r+ = 2M(r+). For e = 0, it redu
es to theS
hwarzs
hild solution.We 
ompute the tunneling probability of a 
hargedparti
le for this solution by using the fermion tunnel-ing approa
h developed in the previous se
tion. Thederivative of F (r+) takes the formF 0(r+) = 2Mr+(r2+ � 2e2)(r2+ + e2)5=2 : (3.2)

In the massless 
ase, using Eq. (3.2) in Eq. (2.17) leadsto W 0+(r) = [E + qA0℄(r2+ + e2)5=2(r � r+)2Mr+(r2+ � 2e2) ; (3.3)where A0 = � 3e2r2+ (r2+ + e2)1=2(see [21℄). Similarly, the solution for in
oming parti
les
an be obtained by setting the values in Eq. (2.18),W 0�(r) = � [E + qA0℄(r2+ + e2)5=2(r � r+)2Mr+(r2+ � 2e2) : (3.4)The imaginary part of W+ isImW+ = �(E + qA0)(r2+ + e2)5=22Mr+(r2+ � 2e2) : (3.5)Similarly, the imaginary part of W� be
omesImW� = ��(E + qA0)(r2+ + e2)5=22Mr+(r2+ � 2e2) : (3.6)Equations (3.5) and (3.6) imply thatImW+ = � ImW�:Consequently, tunneling probability (2.19) be
omes� = exp"�2�(E + qA0)(r2+ + e2)5=2Mr+(r2+ � 2e2) # : (3.7)Comparing this with� = exp[��E℄; � = 1TH ;we re
over the Hawking temperature of the regularBardeen BH [25℄ asTH = Mr+(r2+ � 2e2)2�(r2+ + e2)5=2 : (3.8)In the massive 
ase, Eqs. (2.11) and (2.13) pro-vide the outgoing and in
oming parti
le solutions 
or-responding to A ! 0 and B ! 0. These solutionsturn out to be the same as in the massless 
ase foroutgoing and in
oming parti
les given in Eqs. (3.5)and (3.6). Consequently, the Hawking temperature ofmassive fermion tunneling takes the same form as forthe massless fermion tunneling.892
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k holes3.2. The ABGB regular bla
k holeA solution of the 
oupled system of equations ofnonlinear ele
trodynami
s and gravity representing a
lass of BHs was formulated in [26; 27℄. It is given bymetri
 (2.1) withM(r) = M �1� th� e22Mr�� ; (3.9)where M is the mass and e is either the ele
tri
 or themagneti
 
harge. The ABGB regular BH solution has aspheri
al event horizon at F (r+) = 0 or r+ = 2M(r+).This solution des
ribes a regular stati
 spheri
ally sym-metri
 
on�guration that redu
es to the S
hwarzs
hildsolution for e = 0.For this BH, we �ndF 0(r+) = 2�Mr2+ � e2r3+ + e66M2r5+� : (3.10)In the massless 
ase, Eqs. (2.11) and (2.13) yieldW 0+(r) == [E + qA0℄2(r � r+) �M=r2+ � e2=r3+ + e6=6M2r5+� ; (3.11)W 0�(r) == � [E + qA0℄2(r � r+) �M=r2+ � e2=r3+ + e6=6M2r5+� ; (3.12)where A0 = � ��4:8 e5r5+ + 2:8 e3r3+ + 1:8 er+�(see [22℄). The imaginary parts ofW+ andW� be
omeImW+ = � ImW� == �(E + qA0)2 �M=r2+ � e2=r3+ + e6=6M2r5+� : (3.13)The tunneling probability turns out to be� = exp�� 2�(E + qA0)M=r2+ � e2=r3+ + e6=6M2r5+ � : (3.14)The 
orresponding Hawking temperature 
an be re
ov-ered byTH = M=r2+ � e2=r3+ + e6=6M2r5+2� : (3.15)In the massive 
ase, Eqs. (2.11) and (2.13) lead to thesame results as in the massless 
ase.

4. TUNNELING CORRECTIONSIn this se
tion, we examine the tunneling pro
ess of
harged massive fermions through the quantum hori-zon of regular BHs by using the radial null-geodesi
method [12℄. Due to va
uum �u
tuations, the massand 
harge of the BH �u
tuate as the BH a

retes asmall negative energy, whi
h de
reases its mass. If aparti
le with energy E and 
harge q tunnels throughthe horizon, the total mass and 
harge of the BH be-
ome M � E and e � q, and the radius of the horizonshrinks. Consequently, the imaginary part of the a
tionbe
omesImW+ == �14 (E;q)Z(0;0) 2� hd ~E � ~A0(M � ~E; e� ~q) d~qi�(M � ~E; e� ~q) : (4.1)Using the �rst law of BH thermodynami
s,dM = T dS �A0 de;we write this equation asImW+ = �14 Sf (M�E;e�q)ZSi(M;e) dS = ��S4 ; (4.2)where �S = S(~r+)� S(r+)is the 
hange of the Bekenstein�Hawking entropy, withS(~r+) and S(r+) being the BH entropies after and be-fore the radiation. Then the total tunneling probabilityof the emitted spin parti
le is� / exp[�S℄ = exp[S(M�E; e�q)�S(M; e)℄; (4.3)implying that the tunneling rate is related to the 
hangein the Bekenstein�Hawking entropyS = A4 = �r2+:It follows that the emission spe
trum 
annot be pre-
isely thermal. The entropy di�eren
e of the BH 
anbe expanded using Taylor's expansion as�S = dSdr+�r+ + 12! d2Sdr2+ (�r+)2 ++ 13! d3Sdr3+ (�r+)3 + : : : ; (4.4)893



M. Sharif, W. Javed ÆÝÒÔ, òîì 142, âûï. 5 (11), 2012wheredSdr+ = 2�r+; �r+ = r+(M �E; e� q)� r+(M; e):Using this value of �S in Eq. (4.3) and 
onsidering the
hanges of the BH mass and 
harge,�M = �E; �e = �q;we obtain� / exp(�S) = exp���(E + qA0) �� �1� 12!�(E + qA0) d2Sdr2+ (�r+)2�� : (4.5)When higher-order terms in (E + qA0) is ignored, thepurely thermal spe
trum of the regular BH 
an be ob-tained.We next evaluate the 
orre
tion spe
trum offermions for the Bardeen and ABGB regular BHs. Forthe Bardeen regular BH, the surfa
e gravity is� = Mr+(r2+ � 2e2)(r2+ + e2)5=2 : (4.6)Inserting this value in Eq. (4.1), we obtainImW+ = �14 (E;q)Z(0;0) 2� hd ~E � ~A0(M � ~E; e� ~q) d~qi�� " (M � ~E)~r+(~r2+ � 2(e� ~q)2)(~r2+ + (e� ~q)2)5=2 #�1 ; (4.7)where ~A0 = �3(e� q)2~r2+ (~r2+ + (e� q)2)1=2;~r+ = r+(M �E; e� q): (4.8)The equation for the spheri
al event horizon leads to�r+ = 3Mer2+�e� r2+(r2+ + e2)�MMr+(2e2 � r2+) : (4.9)Using Eqs. (4.4) and (4.9) in (4.3) and ignoring higher-order terms in (E + qA0), we �nd the emission rate� / exp [��(E + qA0)℄ �� exp h�� r2M (E + qA0)i ; (4.10)where � = 2�(r2+ + e2)5=2Mr+(r2+ � 2e2) :

For the ABGB regular BH, the surfa
e gravity is� = Mr2+ � e2r3+ + e66M2r5+ : (4.11)Substituting this value in Eq. (4.1) givesImW+ = �14 (E;q)Z(0;0) 2� hd ~E� ~A0(M� ~E; e�~q) d~qi�� "M � ~E~r2+ � (e� ~q)2~r3+ + (e� ~q)66(M � ~E)2~r5+#�1 ; (4.12)where~A0 = � ��4:8(e� q)5~r5+ ++ 2:8(e� q)3~r3+ + 1:8(e� q)~r+ � ; (4.13)~r+ = r+(M �E; e� q): (4.14)The spheri
al event horizon equation yields�r+ = ��r+��2 + e66M3r3+��M �� �2e� e52M2r2+��e��� �2M � 2e2r+ + e63M2r3+ ��1 : (4.15)Inserting Eqs. (4.4) and (4.15) in (4.3) and ignoringhigher-order terms in (E + qA0), we obtain� / exp [��(E + qA0)℄ �� exp ����E �1� e612m3r3+� ++ q�A01:8 + 2:8e31:8r3+��� ; (4.16)where � = 2� �Mr2+ � e2r3+ + e66M2r5+ ��1 :894
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k holes5. OUTLOOKThe �rst regular BH solution was proposed in [24℄.In this paper, the idea of the 
entral matter 
ore as asingular region, was introdu
ed, by deriving a solutionof the Einstein equations with horizons and withoutsingularities [28℄. The Bardeen model is a regular BHmodel obeying the weak energy 
ondition. All the sub-sequent regular BH solutions are based on Bardeen'ss
enario, whi
h is an in
redible development in the im-plementation and analysis of the properties of regularBH solutions. Nonlinear �elds and sour
es generatinga four-parameter solution [29℄ were found in [23℄. Forthe extremal limit of the regular BH solutions, a regularABGB BH solution was 
onstru
ted in [30℄.There exists a dire
t 
orresponden
e between thelaws of BH physi
s and the laws of thermodynami
s.The temperature, energy, and entropy of the thermo-dynami
al system respe
tively 
orrespond to the sur-fa
e gravity at the horizon, the BH mass, and the areaof the BH horizon. For a distant observer who staysat a �xed distan
e from the BH event horizon, the BHseems to radiate parti
les with the thermal spe
trum atthe Hawking temperature [31℄. In the semi
lassi
al tun-neling pi
ture (Hamilton�Ja
obi equations), the Hawk-ing temperature apparently depends on the 
oordinatesystem. The Hawking temperature obtained from theKerner and Mann te
hnique is 
oordinate independent,whi
h provides the expe
ted Hawking temperature.Bekenstein [1℄ suggested that BHs must have a �-nite temperature. Hawking found that parti
les 
ouldes
ape from BHs as they es
ape from the 
enter ofan atom. This leads to a quantum me
hani
al phe-nomenon in whi
h parti
les tunnel through the eventhorizon. The rate at whi
h parti
les es
ape is relatedto the measure of the BH temperature. Massive BHshave an extremely low surfa
e temperature while low-mass BHs (Hawking miniature BHs) are superhot. TheHawking temperature provides information about theBH mass and allows understanding behavior of the uni-verse 
ontaining 
elestial obje
ts from its birth to itsend [32℄.In quantum tunneling, virtual parti
les (
hargedfermions) fa
e a barrier regardless of whether they movefrom the inside to the outside or from the outside to theinside a
ross the barrier. Classi
ally, a parti
le 
an eas-ily 
ross the horizon, i. e., parti
les have 100% 
han
eswhen going inward. Hen
e, their probabilities are equalto 1. Semi
lassi
ally, a parti
le fa
es the barrier when
rossing the horizon in the outward dire
tion. However,in the tunneling pro
ess (in the semi
lassi
al approa
h),a pair of negative�positive-energy parti
les is 
reated

due to va
uum �u
tuations near the horizon. For a pairof parti
les inside the horizon, the positive-energy par-ti
le must tunnel out of the horizon while the negative-energy 
omponent goes inward. For a pair outside thehorizon, the negative-energy 
omponent must tunnelinto the horizon, with the positive-energy 
omponentgoing outward. In this approa
h, the horizon repre-sents a two-way barrier for the pairs of virtual parti
lesand 
ontradi
ts the 
lassi
al approa
h. We have 
on-sidered both the in
oming and outgoing parti
les andthe horizon as the tunneling barrier.Hawking radiation 
an be de�ned as a semi
lassi-
al quantum tunneling phenomenon of BHs. We haveused the formulation in [8℄ to study quantum tunnel-ing of 
harged fermions from 
harged regular BHs. Toapply the WKB approximation, we used the assump-tion of spin-up parti
les in the general 
ovariant Dira
equation for 
harged parti
les. We have 
omputed thetunneling probabilities for the outgoing and in
oming
harged fermion parti
les a
ross the horizon. Also, wehave obtained Hawking temperature 
orresponding tothese BHs. Interestingly, the tunneling probabilities of
harged fermions are independent of the mass of thefermions but depend only on its 
harge. The Hawkingtemperature depends on the mass and ele
tri
 
harge ofthe BH. The equations for the spin-down 
ase are of thesame form as for the spin-up 
ase ex
ept for a negativesign. In both massive and massless 
ases, the Hawkingtemperature implies that both spin-up and spin-downparti
les are emitted at the same rate. The temper-atures of these BHs 
oin
ide with the 
orrespondingtemperatures given in [21, 22, 25℄. In the absen
e of
harge, the temperature of the Bardeen and ABGBBHs redu
es to the S
hwarzs
hild temperature [33℄.Finally, we have used the radial null-geodesi
method to explore tunneling probabilities. For this,we took gravitational self-intera
tion and ba
k-rea
tione�e
ts of the emitted spin 
harged fermions into a
-
ount. We note here that when the ba
k rea
tion e�e
tsare taken into a

ount, the tunneling probability for
harged massive fermions is related to the Bekenstein�Hawking entropy. This radiation spe
trum is not pre-
isely thermal. When higher-order terms in E + qA0are ignored, we 
an obtain the pure thermal spe
trumsimilar to that for the Bardeen and ABGB regular BHs.This tunneling approa
h provides new physi
al in-sight into the emission of spin-1/2 fermions as the BHradiation. Also, this o�ers an e�e
tive way to 
om-pute the surfa
e gravity for a wide range of BH solu-tions. The s
attering of spin-1/2 parti
les 
ould leadto a violation of the weak 
osmi
 
ensorship 
onje
-ture [34℄. For example, the results in [35℄ show the 
re-895



M. Sharif, W. Javed ÆÝÒÔ, òîì 142, âûï. 5 (11), 2012ation of a naked singularity by the quantum tunnelingof spin-1/2 
harged fermions. Within the semi
lassi
alWKB approa
h, the tunneling probability refers to lo-
al aspe
ts and is also more general than the standardone [36℄. In this paper, the tunneling probability of
harged fermions and the Hawking temperature at thehorizon are 
orrelated with the energy of post-radiatingregular BHs.There are subtle te
hni
al issues involved in 
hoos-ing an appropriate ansatz for the Dira
 �eld 
onsistentwith the 
hoi
e of gamma matri
es, and the failure tomake su
h a 
hoi
e makes the method break down.Some di�
ulties must also be over
ome in 
al
ulat-ing the real radiation spe
trum. The �rst is how tounderstand an ele
tromagneti
 �eld with a sour
e ofele
tri
 and magneti
 
harges. The se
ond is related tothe formation of the Dira
 equation a

ording to thetunneling nature of the 
harged parti
les. In order totake the e�e
ts of an ele
tromagneti
 �eld into a

ount,we 
an 
onsider the BH and the ele
tromagneti
 �eldoutside it as a system [14℄.We thank the Higher Edu
ation Commission, Is-lamabad, Pakistan, for its �nan
ial support throughthe Indigenous Ph.D. 5000 Fellowship ProgramBat
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