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We study Hawking radiation of charged fermions as a tunneling process from charged regular black holes, i.e.,
the Bardeen and ABGB black holes. For this purpose, we apply the semiclassical WKB approximation to the
general covariant Dirac equation for charged particles and evaluate the tunneling probabilities. We recover the
Hawking temperature corresponding to these charged regular black holes. Further, we consider the back-reaction
effects of the emitted spin particles from black holes and calculate their corresponding quantum corrections to
the radiation spectrum. We find that this radiation spectrum is not purely thermal due to the energy and charge
conservation but has some corrections. In the absence of charge, e = 0, our results are consistent with those

already present in the literature.

1. INTRODUCTION

Classically, a black hole (BH) is considered to ab-
sorb all matter and energy in the surrounding region
into it due a strong gravitational field. Bekenstein [1]
was the first to discuss the BH thermodynamics. Later,
Hawking [2] investigated BH thermodynamical proper-
ties and proposed [3] that a BH could emit black-body
radiation. According to this, a particle-antiparticle
pair appears near the event horizon of a BH due to vac-
uum fluctuations. In order to preserve the total energy,
one member of the pair with negative energy must fall
into the BH while the other escapes with positive en-
ergy. In this process, the BH loses mass and it appears
to an outside observer that the BH has just emitted a
particle. This semiclassical process is called quantum
tunneling [4, 5]. In this approach, particles follow clas-
sically forbidden trajectories from inside the horizon to
infinity, for which the action becomes complex. This
means that the tunneling probability for the outgoing
particle is governed by the imaginary part of this ac-
tion. Because a particle can classically only fall inside
the horizon, the action for the ingoing particle must be
real.

There are two different methods to evaluate the

imaginary part of the action. One is the semiclassi-
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cal Wentzel-Kramers-Brillouin (WKB) approximation
method, first used in [6, 7], and the other is the radial
null-geodesic method [5]. These methods have been
used to evaluate the tunneling probabilities of quan-
tum fields passing through an event horizon. Different
semiclassical approaches have been adopted to evaluate
tunneling of scalar and Dirac particles (charged and un-
charged). In Refs. [8, 9], the tunneling of spin-1/2 par-
ticles through event horizons of the Rindler spacetime
was investigated and Unruh temperature was obtained.
In these papers fermion tunneling from the general non-
rotating BH as well as the Kerr-Newman BH was also
discussed and their corresponding Hawking tempera-
tures was recovered.

Fermions tunneling from the Kerr BH were inves-
tigated in [10] by applying the WKB approximation
to the general covariant Dirac equation, which allowed
finding the Hawking temperature for the Kerr BH.
Charged fermion tunneling from dilatonic BHs, the
rotating Einstein-Maxwell dilaton—Axion BH, and a
rotating Kaluza—Klein BH were studied in [11] and
their corresponding Hawking temperatures were recov-
ered. Hawking radiation of spin-1/2 particles from the
Reissner—Nordstrom BH was investigated in [12] using
the Dirac equation for charged particles. The tunneling
of scalar and Dirac particles from the Kerr—-Newman
BH was explored in [13] and its Hawking tempera-
ture was obtained. The semiclassical fermion tunnel-
ing from the Kerr-Newman—Kasuya BH was studied
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in [14] and the Hawking temperature was obtained.
Some work has also been done for three-dimensional
spacetimes [15].

Tunneling of charged fermions from accelera-
ting and rotating BHs with electric and magnetic
charges have been studied in [16-18] using the WKB
approximation. Tunneling probabilities of charged
fermions and the corresponding Hawking temperature
were found. In recent papers [19], the tunneling
probabilities of incoming and outgoing scalar and
charged/uncharged fermion particles from accelerating
and rotating BHs have been investigated. Recently,
we have examined the radiation spectrum of an
RN-like noncommutative BH [20] by quantum tun-
neling process (radial null geodesic method). Also,
we have investigated quantum corrections of regular
BHs [21, 22].

In this paper, we use the procedure in [8] to inves-
tigate the tunneling probabilities of charged fermions
for charged regular BHs, i.e., the regular Bardeen and
regular Ayon-Beato-Garcia-Bronnikov (ABGB) BHs.
We recover the corresponding Hawking temperatures
for charged massive as well as massless fermions. Also,
we explore the radiation spectrum by using the radial
null-geodesic method [12]. This paper is organized as
follows. In Sec. 2, we review the basic formalism for
the pure thermal spectrum of charged fermions using
the Dirac equation for charged particles. Section 3 is
devoted to the study of fermion tunneling from the reg-
ular Bardeen and ABGB BHs. In Sec. 4, we discuss the
correction spectrum of charged fermions due to back-
reaction effects. Finally, Sec. 5 summarizes the results.

2. REVIEW: TUNNELING OF CHARGED
FERMIONS

In this section, we briefly review some basic ma-
terial used to evaluate the tunneling probabilities of
charged fermions. For this purpose, we apply the WKB
approximation to the general covariant Dirac equation
for charged particles. The line element of a spherically
symmetric BH can be written as

ds®> = —Fdt® + F~'dr® + r?d#* + r?sin? 0 d¢*, (2.1)
where
FoooMO)
r

This metric can be reduced to well-known BHs for spe-
cial choices of M(r). The Dirac equation with electric

charge ¢ is given by [9]
. iq m
iv" (D, — A >m+—\11=0,
! < oot h (2.2)
M?V - 07]‘72737
where m is the mass of fermion particles, A, is the 4-po-
tential, ¥ is the wave function, and v* are the Dirac

matrices [14]. The antisymmetric property of the Dirac
matrices, i.e.,

a .61 — 07 a:ﬂa
] { 7], a# 8,

reduces Dirac equation (2.2) to the form

i (au - %AO v+ D=0 (2.3)

h

The spinor wave function ¥ has two spin states:

spin-up (radially outward, i.e., in positive r-direction)

and spin-down (radially inward, i.e., in negative r-di-

rection). The solutions for spin-up and spin-down par-
ticles are respectively given by [§]

A(t,r,0,0)
0
B(t,r,0,¢)
0

‘IJT(ta r, 9» ¢) =

< exp {%w,r,e,@] @

0

Wy (t,,6,0) = 0“7397@ )

D(t7 T7 97 qs)
1

hji(taraea¢):| ) (25)

X exp {
where I, is the action of the emitted spin-up/spin-
down particles. In what follows, we discuss the spin-up
case in detail; the spin-down case follows in a similar
fashion. Using Eq. (2.4) in Dirac equation (2.3), we
obtain the set of equations

1A 1A
— 78tIT+B\/F(T)8rIT—7qAO +
VF(r) VF(r)
+mA=0, (2.6)
B Lo+ ——a,1,| =0 2.7)
r T sing | T ‘
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which implies

J = explikg] [cl /cscedﬂ + 02] , (2.16)

1B 1B
——0ly — AV F(r)0, [+ — —=qAo
R T AV g

+mB=0, (28)

+

where k, ¢1, and ¢ are arbitrary functions of # and ¢.
This quantity must be same for both outgoing and in-
coming cases. As a result, it cancels from the formula
for the tunneling probability from inside to outside the

To find the action from the above equations, we use  horizon (which is the ratio of outgoing and incoming
separation of variables in accordance with modes [8]).

In the massless case (m = 0), Egs. (2.11) and (2.13)

1 i
—A | =0l + ——0s11+| =0. 2.
{7’69 T+rsin08¢ T} 0 (29)

It = —Et +W(r) + (6, ¢), (2.10) yield the respective solutions
where E and J denote the energy and angular mo- E + g4
mentum of the emitted particle, and W is an arbi- W'(r) = WJIF(T) = W7 (2.17)
trary function of r. Inserting this value of the action in * M
Eqs. (2.6)—(2.9), we also use Taylor’s expansion to ex- E+gA
’ 440
pand F'(r) near the outer horizon r, neglecting squares W'(r)=W.(r) = _Wv (2.18)

and higher powers. Substituting the values of Ag(r;.)
and setting iA = B and iB = A in the above set of  where W, ,_ correspond to the outgoing/incoming so-
equations, we obtain lutions. The tunneling probability of a particle going

from outside to inside the horizon is equal to unity [9].
—F — qAO ; '
+V(r =) F'(r )W

+ Also, Eqgs. (2.17) and (2.18) lead to
V(=1 )F'(ry) B
ImWy=—-ImW_.

- B

+mA=0, (2.11)
Hence, the overall tunneling probability of the outgoing

1 i particle turns out to be
-B {—69(]-% ,—6¢J] =0, (2.12)
" rsin ¢ _ Problout]  exp[—2(ImW,)]
~ Problin]  exp[-2(ImW_)]
A —E —q4o = exp[—4Tm W,]. (2.19)

(r—r)F'(re) W' +

(r—ry)F'(ry) .
We can recover the Hawking temperature Ty from the

+mB =0, (213) relation as

1
1 i = exp[—BE], 8= T_
—A {—89J+ ,—8¢J] =0, (2.14) H
r rsinf

In the massive case (m # 0), Eqs. (2.11) and (2.13)
where the prime denotes the derivative with respect to no longer decouple. We eliminate the function W'

r. Equations (2.12) and (2.14) yield from these two equations by respectively multiplying
1 i Eqgs. (2.11) and (2.13) with A and B. After some ma-
—0pJ 0pJ =0 2.15
ro? + rsing ¢ ( ) nipulations, it follows that

A _ (B +qdo) £ VE+ A+ m(r —r)F(ry) (2.20)
B my/(r—ry)F'(ry)

!
The limit » — ry yields either A/B — 0 or (r=r ) F'(re)WH(r) +

A/B — —o0, i.e., either A - 0 or B — 0. For A = 0, —(E+aA
luate the value of m from Eq. (2.13) (E + 94)
we can evaluate € value oI m 1rom . . as
a (r—r)F'(ry)

(2.21)
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Inserting this value in Eq. (2.11) and simplifying, we
obtain the same value of W (r) as in Eq. (2.17). Sim-
ilarly, for B — 0, the same expression for W' (r) is
found as in (2.18). Consequently, the Hawking temper-
ature turns out to be the same as in the massless case.
In the spin-down case, for both massive and massless
fermions, the Hawking temperature remains the same
as for the spin-up case. Thus, both spin-up and spin-
down particles are emitted at the same rate, i.e., as
many spin-up fermions are emitted as spin-down. We
note that for the tunneling of charged massive fermions,
the tunneling probability is independent of the mass
but depends only on the charge. This is because the
massive case reduces to the massless case as r — ry,
and hence the tunneling probability is the same as in
the massless case.

3. REGULAR BLACK HOLES

Singularities exist in all known physical exact solu-
tions of BHs. In order to remove these singularities,
some regular BH models have been proposed. These
models represent singularity-free solutions of the field
equations coupled to a suitable nonlinear electrody-
namics satisfying the weak energy condition. Here, we
consider the Bardeen and ABGB regular BH solutions
to discuss tunneling process.

3.1. Bardeen regular black hole

Ayon-Beato and Garcia [23] gave a physical inter-
pretation of the Bardeen regular BH [24] by showing
that the charge associated with it acts as a magnetic
monopole charge. This is described by metric (2.1)
with

Mr?

M(r) = m.

(3.1)
Here, M and e stand for the mass and monopole charge
of a self-gravitating magnetic field of a nonlinear elec-
trodynamic source. This solution exhibits a BH be-
havior for e? < (16/27)m? and has a spherical event
horizon at ry = 2M (ry). For e = 0, it reduces to the
Schwarzschild solution.

We compute the tunneling probability of a charged
particle for this solution by using the fermion tunnel-
ing approach developed in the previous section. The
derivative of F'(ry) takes the form

2Mry(r3 — 2e?)

! _
F(r+) - (74_2i_+€2)5/2

(3.2)

892

In the massless case, using Eq. (3.2) in Eq. (2.17) leads
to

[E + qAo](r3 + e2)5/2

w: = 3.3
+(r) (r—ry)2Mry(ri —2e2)’ (3:3)
where
3
Ao = g )

(see [21]). Similarly, the solution for incoming particles
can be obtained by setting the values in Eq. (2.18),

(B + qAo)(r} + %)

w’ = — . 3.4
- (r—ry)2Mry(ri — 2e?) (34)
The imaginary part of W is
m(E + qAo)(r + €2)%/?
I = .
m Wy 2Mry(r3 — 2e?) (3:5)
Similarly, the imaginary part of W_ becomes
E 4 aA) (12 2\5/2
ImW_ — _ﬂ-( + q 0)(T+ +e ) (36)

2Mry(rl —2e?)
Equations (3.5) and (3.6) imply that
ImWy=—-ImW_.

Consequently, tunneling probability (2.19) becomes

2m(E + qAo)(r2 + €2)%/2
Mry (r — 2e?)

['=exp (3.7)

Comparing this with
1
erXp[—BE], B: T_7
H

we recover the Hawking temperature of the regular
Bardeen BH [25] as

_ Mry(ry —2e?)

Ty =—5—"———F—7"
n 2r(rd + e2)5/2

(3.8)

In the massive case, Eqs. (2.11) and (2.13) pro-
vide the outgoing and incoming particle solutions cor-
responding to A — 0 and B — 0. These solutions
turn out to be the same as in the massless case for
outgoing and incoming particles given in Eqs. (3.5)
and (3.6). Consequently, the Hawking temperature of
massive fermion tunneling takes the same form as for
the massless fermion tunneling.
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3.2. The ABGB regular black hole

A solution of the coupled system of equations of
nonlinear electrodynamics and gravity representing a
class of BHs was formulated in [26,27]. It is given by
metric (2.1) with

=3 [i- ()]

where M is the mass and e is either the electric or the
magnetic charge. The ABGB regular BH solution has a
spherical event horizon at F(r) =0 or ry = 2M(ry).
This solution describes a regular static spherically sym-
metric configuration that reduces to the Schwarzschild

(3.9)

solution for e = 0.
For this BH, we find

M 2 6
P =2 (7 -5+ g )

_— 3.10
i ord  6M%r ( )

In the massless case, Egs. (2.11) and (2.13) yield

Wi(r)=
2(r —ry) [M/r} —e2/r3 + e85 /60M?r5 ]’ '
W' (r)=
—_ [E + qAo] (3.12)
2(r —ry) [M/r2 —e?/r3 + €5 /60M>r5 ]’
where
5 3
Ap = — |-485 +285 +18=
ri ri Ty

(see [22]). The imaginary parts of W and W_ become

ImWy =—-ImW_ =

7T(E + qu)
= 5 . (3.13)
2 [M/r2 —e2/rd +eb/6M2r7 ]
The tunneling probability turns out to be
27 (E + qA
T =exp |- m(E + ¢Ao) (3.14)

M/r3 —e?[r} + €8 /6 M}

The corresponding Hawking temperature can be recov-
ered by

_ M/rf_ — 62/7“_3’_ —|—66/6M27'3_

T
A 2T

(3.15)

In the massive case, Egs. (2.11) and (2.13) lead to the
same results as in the massless case.

4. TUNNELING CORRECTIONS

In this section, we examine the tunneling process of
charged massive fermions through the quantum hori-
zon of regular BHs by using the radial null-geodesic
method [12]. Due to vacuum fluctuations, the mass
and charge of the BH fluctuate as the BH accretes a
small negative energy, which decreases its mass. If a
particle with energy E and charge ¢ tunnels through
the horizon, the total mass and charge of the BH be-
come M — E and e — ¢, and the radius of the horizon
shrinks. Consequently, the imaginary part of the action
becomes

ImW+ =
L B2 [dE—AO(M—E,e—q) dq]
= —— = . (41
4 / k(M —E,e—q) (1)
(0,0)

Using the first law of BH thermodynamics,
dM =T dS — Apde,

we write this equation as

Sy(M—E,e—q)

ImW+:—i s =-=2,

- (4.2)

Si(M7E)

where

AS = S(is) - S(ry)

is the change of the Bekenstein—Hawking entropy, with
S(74) and S(ry) being the BH entropies after and be-
fore the radiation. Then the total tunneling probability
of the emitted spin particle is

I’ x exp[AS] = exp[S(M—E,e—q)—S(M,e)], (4.3)
implying that the tunneling rate is related to the change
in the Bekenstein-Hawking entropy

A
S = Z = 7T’I“i.

It follows that the emission spectrum cannot be pre-
cisely thermal. The entropy difference of the BH can
be expanded using Taylor’s expansion as

ds 1 @S ,
AS = EATUF + 5 dri (Ar+) +
1d3S
O Ar )P, (1)
3ldr
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where
ds

— =27y,

Ary =1 (M — E,e—q) —ry(M,e).
d’l"+

Using this value of AS in Eq. (4.3) and considering the
changes of the BH mass and charge,

AM = —-E, Ae=—q,

we obtain
I x exp(AS) = exp [—B(E + qAg) X

1 S, Ar+)2)

When higher-order terms in (E + ¢Ag) is ignored, the
purely thermal spectrum of the regular BH can be ob-
tained.

We next evaluate the correction spectrum of
fermions for the Bardeen and ABGB regular BHs. For
the Bardeen regular BH, the surface gravity is

_ Mry(ry —2e?)

(r2 +e*)5/? (46)
Inserting this value in Eq. (4.1), we obtain
) (E.q)
Wy = — / o [dE— Ag(M — E,e— q)dq] x
(0,0)
. —1
M — E)ip (72 — 2(e — §)?
% ( _ )T+(T+ ~2(€ q) ) , (47)
(77 + (e = 4)%)5/2
where
i 3e—4q), » 2\1/2
Ag= -2 4 (e —q)*)'/?,
0 2’1“2+ ( + ( ) ) (48)

T+ =r4(M —E,e—q).
The equation for the spherical event horizon leads to

3MeriAe —r3(ri + e’ )AM
Mry(2e? —r3)

AT+ = (49)
Using Eqs. (4.4) and (4.9) in (4.3) and ignoring higher-
order terms in (E + qAp), we find the emission rate

[ o exp[=B(E + qAo)] ~

(B+q4)]. (410)

r
~oxp Ay

where
_ 2r(rl + e2)5/2
 Mry(r? —2e?)’

For the ABGB regular BH, the surface gravity is

M e N el (411)
e rioord o 6M=ryT '
Substituting this value in Eq. (4.1) gives
(E,q)
mW, =— [ 2r [dE—AO(M—E",e—q) dg] x
(0,0)
. -1
M—-FE —q)? — )8
« | Mo (e ~3(1) R Gld) _ @12)
= T 6(M — E)*7
where
- _ )5
Ag = - {—4.8(6 9,
Tt
—q)3 _
+ 28! ~3Q) Y Gk V1 VR PY
’I"+ [
7~'+ =’I“+(M—E,€—q). (414)
The spherical event horizon equation yields
6
A’I"+ = |—T+ <—2 + W) AM —
&5
— (26 — W) A€:| X
2¢2 S 17"
2M — — + —— 4.15
X { Ty * 3M2r3 (4.15)

Inserting Eqs. (4.4) and (4.15) in (4.3) and ignoring
higher-order terms in (E + ¢Ap), we obtain

I xexp[-B(E + qAp)] =~

66
~exp |—B(E(1- ——
o[- (£ (1= ) +

AO 2.863
2o 4.1
+ q<1.8+1.8r3+>>]’ (4.16)

M €2 b ]1

where

B =2r

__+7
2 3 2,5
rioorp o 6MEry
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5. OUTLOOK

The first regular BH solution was proposed in [24].
In this paper, the idea of the central matter core as a
singular region, was introduced, by deriving a solution
of the Einstein equations with horizons and without
singularities [28]. The Bardeen model is a regular BH
model obeying the weak energy condition. All the sub-
sequent regular BH solutions are based on Bardeen’s
scenario, which is an incredible development in the im-
plementation and analysis of the properties of regular
BH solutions. Nonlinear fields and sources generating
a four-parameter solution [29] were found in [23]. For
the extremal limit of the regular BH solutions, a regular
ABGB BH solution was constructed in [30].

There exists a direct correspondence between the
laws of BH physics and the laws of thermodynamics.
The temperature, energy, and entropy of the thermo-
dynamical system respectively correspond to the sur-
face gravity at the horizon, the BH mass, and the area
of the BH horizon. For a distant observer who stays
at a fixed distance from the BH event horizon, the BH
seems to radiate particles with the thermal spectrum at
the Hawking temperature [31]. In the semiclassical tun-
neling picture (Hamilton—Jacobi equations), the Hawk-
ing temperature apparently depends on the coordinate
system. The Hawking temperature obtained from the
Kerner and Mann technique is coordinate independent,
which provides the expected Hawking temperature.

Bekenstein [1] suggested that BHs must have a fi-
nite temperature. Hawking found that particles could
escape from BHs as they escape from the center of
an atom. This leads to a quantum mechanical phe-
nomenon in which particles tunnel through the event
horizon. The rate at which particles escape is related
to the measure of the BH temperature. Massive BHs
have an extremely low surface temperature while low-
mass BHs (Hawking miniature BHs) are superhot. The
Hawking temperature provides information about the
BH mass and allows understanding behavior of the uni-
verse containing celestial objects from its birth to its
end [32].

In quantum tunneling, virtual particles (charged
fermions) face a barrier regardless of whether they move
from the inside to the outside or from the outside to the
inside across the barrier. Classically, a particle can eas-
ily cross the horizon, i.e., particles have 100 % chances
when going inward. Hence, their probabilities are equal
to 1. Semiclassically, a particle faces the barrier when
crossing the horizon in the outward direction. However,
in the tunneling process (in the semiclassical approach),
a pair of negative—positive-energy particles is created

895

due to vacuum fluctuations near the horizon. For a pair
of particles inside the horizon, the positive-energy par-
ticle must tunnel out of the horizon while the negative-
energy component goes inward. For a pair outside the
horizon, the negative-energy component must tunnel
into the horizon, with the positive-energy component
going outward. In this approach, the horizon repre-
sents a two-way barrier for the pairs of virtual particles
and contradicts the classical approach. We have con-
sidered both the incoming and outgoing particles and
the horizon as the tunneling barrier.

Hawking radiation can be defined as a semiclassi-
cal quantum tunneling phenomenon of BHs. We have
used the formulation in [8] to study quantum tunnel-
ing of charged fermions from charged regular BHs. To
apply the WKB approximation, we used the assump-
tion of spin-up particles in the general covariant Dirac
equation for charged particles. We have computed the
tunneling probabilities for the outgoing and incoming
charged fermion particles across the horizon. Also, we
have obtained Hawking temperature corresponding to
these BHs. Interestingly, the tunneling probabilities of
charged fermions are independent of the mass of the
fermions but depend only on its charge. The Hawking
temperature depends on the mass and electric charge of
the BH. The equations for the spin-down case are of the
same form as for the spin-up case except for a negative
sign. In both massive and massless cases, the Hawking
temperature implies that both spin-up and spin-down
particles are emitted at the same rate. The temper-
atures of these BHs coincide with the corresponding
temperatures given in [21, 22, 25]. In the absence of
charge, the temperature of the Bardeen and ABGB
BHs reduces to the Schwarzschild temperature [33].

Finally, we have used the radial null-geodesic
method to explore tunneling probabilities. For this,
we took gravitational self-interaction and back-reaction
effects of the emitted spin charged fermions into ac-
count. We note here that when the back reaction effects
are taken into account, the tunneling probability for
charged massive fermions is related to the Bekenstein—
Hawking entropy. This radiation spectrum is not pre-
cisely thermal. When higher-order terms in E + ¢4y
are ignored, we can obtain the pure thermal spectrum
similar to that for the Bardeen and ABGB regular BHs.

This tunneling approach provides new physical in-
sight into the emission of spin-1/2 fermions as the BH
radiation. Also, this offers an effective way to com-
pute the surface gravity for a wide range of BH solu-
tions. The scattering of spin-1/2 particles could lead
to a violation of the weak cosmic censorship conjec-
ture [34]. For example, the results in [35] show the cre-
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ation of a naked singularity by the quantum tunneling
of spin-1/2 charged fermions. Within the semiclassical
WKB approach, the tunneling probability refers to lo-
cal aspects and is also more general than the standard
one [36]. In this paper, the tunneling probability of
charged fermions and the Hawking temperature at the
horizon are correlated with the energy of post-radiating
regular BHs.

There are subtle technical issues involved in choos-
ing an appropriate ansatz for the Dirac field consistent
with the choice of gamma matrices, and the failure to
make such a choice makes the method break down.
Some difficulties must also be overcome in calculat-
ing the real radiation spectrum. The first is how to
understand an electromagnetic field with a source of
electric and magnetic charges. The second is related to
the formation of the Dirac equation according to the
tunneling nature of the charged particles. In order to
take the effects of an electromagnetic field into account,
we can consider the BH and the electromagnetic field
outside it as a system [14].

We thank the Higher Education Commission, Is-
lamabad, Pakistan, for its financial support through

the Indigenous Ph.D. 5000 Fellowship Program
Batch-IV.
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