МОДЕЛИРОВАНИЕ ВЛИЯНИЯ ВЫСОКОЧАСТОТНОГО (2 МГц) ЕМКОСТНОГО ГАЗОВОГО РАЗРЯДА И МАГНИТНОГО ПОЛЯ НА ПЛАЗМЕННЫЙ СЛОЙ У ПОВЕРХНОСТИ В ГИПЕРЗВУКОВОМ ПОТОКЕ ГАЗА

И. В. Швейгерт*

Институт теоретической и прикладной механики им. С. А. Христиановича Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

Поступила в редакцию 27 октября 2011 г.

Плазменный слой у поверхности гиперзвукового летательного аппарата, образованный при ассоциативной ионизации за фронтом ударной волны, экранирует передачу и прием радиосигналов. С использованием двумерного кинетического моделирования методом частиц в ячейках рассматривается изменение параметров плазменного слоя у плоской поверхности в гиперзвуковом потоке под воздействием электрического и магнитного полей. Интегральное воздействие высокочастотного (2 МГц) емкостного разряда, постоянного напряжения и магнитного поля на плазменный слой позволяет многократно уменьшить локальную концентрацию электронов.

1. ВВЕДЕНИЕ

При возвращении на Землю космические летательные аппараты входят в верхние слои атмосферы с гиперзвуковой скоростью. При этом воздух вокруг них, разогретый ударной волной, становится слабоионизованным. Ионизация газа за фронтом ударной волны имеет ассоциативный характер и происходит за счет химических реакций между фрагментами молекул [1]. Формирование слоя плазмы у поверхности летательных аппаратов вызывает серьезные проблемы, связанные с блокированием каналов связи с Землей или другими летательными аппаратами.

В конце 1960-х гг. в экспериментальных полетах [2–4] проводились исследования параметров плазмы вокруг летательных аппаратов в верхних слоях атмосферы. Было показано, что ширина плазменного слоя увеличивается по мере удаления от точки присоединения ударной волны, а концентрация плазмы уменьшается. При достаточно большой концентрации электронов плазменный слой либо отражает, либо поглощает передаваемые и принимаемые сигналы.

Одним из перспективных способов восстанов-

ления радиосвязи является применение электрических и магнитных полей для контролирования параметров плазменного слоя [5]. Известно, что при зажигании газового разряда переменного или постоянного тока в плазме у поверхности образуются слои с почти нулевой плотностью электронов и большой концентрацией ионов. Поскольку электромагнитные волны в основном взаимодействуют с электронной компонентой плазмы, уменьшение концентрации электронов обеспечивает прохождение электромагнитных волн через плазменный слой. Условие прохождения сигнала через плазму определяется соотношением частоты радиосигнала f_{rf} и плазменной частоты $f_p = \omega_p/2\pi$, где

$$\omega_p \, [\text{pag/c}] = (4\pi n_e e^2/m)^{0.5} = 5.65 \cdot 10^4 n_e^{0.5},$$

e, m — заряд и масса электрона, n_e [см⁻³] — концентрация электронов. Радиосигнал с частотой f_{rf} проходит через слой плазмы, если выполняется условие $f_{rf} > f_p$.

Плазменный слой у поверхности летательных аппаратов, закрывающий антенну, имеет толщину несколько сантиметров. Если расположить электроды на поверхности летательных аппаратов и зажечь газовый разряд, то вблизи электродов формируются слои с пониженной концентрацией электронов. При-

^{*}E-mail: ischweig@itam.nsc.ru

нимающую антенну можно поместить в этой области. Если ширина области с пониженной концентрацией электронов будет сравнима с толщиной плазменного слоя, то воздействие разряда приведет к «открытию окна» для передачи и приема радиосигналов.

В данной работе рассматривается комбинированное воздействие высокочастотного емкостного (ВЧЕ) разряда и магнитного поля на поток плазмы у плоской поверхности при низком давлении газа. Моделирование проводится с использованием двумерного метода частиц в ячейках [6]. Кинетика электронов в азоте включает упругие столкновения и возбуждение вращательных, колебательных, метастабильных уровней и ионизацию. Распределение скорости потока газа возле поверхности задается модельной функцией.

Статья организована следующим образом. В разд. 2 описана модель ВЧЕ-разряда в потоке газа и плазмы, горящем у поверхности. В разд. 3 даны результаты исследования параметров невозмущенного плазменного слоя. В разд. 4 описано влияние ВЧЕ-разряда и постоянного напряжения на распределение концентрации электронов. Комбинированное влияние переменного электрического поля, постоянного электрического и магнитного полей анализируется в разд. 5. В Заключении суммируются основные результаты и выводы.

2. КИНЕТИЧЕСКАЯ МОДЕЛЬ ВЫСОКОЧАСТОТНОГО ЕМКОСТНОГО РАЗРЯДА У ПОВЕРХНОСТИ В ПОТОКЕ ГАЗА

Система уравнений, описывающая ВЧЕ-разряд в потоке газа, включает кинетические уравнения для электронов и ионов (трехмерные по скорости и двумерные по пространству), а также уравнение Пуассона. Функции распределения по энергиям для электронов $f_e(\mathbf{r}, \mathbf{v})$ и ионов $f_i(\mathbf{r}, \mathbf{v})$ находятся из решения уравнений Больцмана

$$\frac{\partial f_e}{\partial t} + \mathbf{v}_e \frac{\partial f_e}{\partial \mathbf{r}} - \frac{e\mathbf{E}}{m} \frac{\partial f_e}{\partial \mathbf{v}_e} = J_e, \quad n_e = \int f_e \, d\mathbf{v}_e, \quad (1)$$

$$\frac{\partial f_i}{\partial t} + \mathbf{v}_i \frac{\partial f_i}{\partial \mathbf{r}} + \frac{e\mathbf{E}}{M} \frac{\partial f_i}{\partial \mathbf{v}_i} = J_i, \quad n_i = \int f_i \, d\mathbf{v}_i, \quad (2)$$

где v_e , v_i , n_e , n_i , m, M — соответственно электронные и ионные скорости, концентрации и массы, J_e , J_i — столкновительные интегралы для электронов и ионов. Столкновительный интеграл для электронов включает упругие столкновения и неупругие столкновения с молекулами азота, такие как возбуждение вращательных, колебательных, метастабильных

Рис.1. Схематичное изображение плазменного слоя, электродов и магнита

уровней и ионизацию. Сечения рассеяния электронов в азоте взяты из работ [7,8]. Столкновительный интеграл для ионов включает упругие столкновения с молекулами газа и столкновения с резонансной перезарядкой.

Зная функции распределения по энергиям для электронов и ионов, вычисляем среднюю энергию электронов и ионов, скорости упругого и неупругого рассеяния электронов и ионов на молекулах газа, а также энерговклад.

Уравнение Пуассона описывает распределение электрического потенциала:

$$\Delta \phi = 4\pi e \left(n_e - n_i \right), \quad \mathbf{E} = -\frac{\partial \phi}{\partial \mathbf{r}}.$$
 (3)

На рис. 1 схематично показаны плазменный слой, расположение электродов, магнита и направление потока газа. Расчетная область составляет 40 см по оси x и 30 см по оси y. Концентрация плазмы в слое поддерживается постоянной за счет внешней ионизации, а также благодаря поступлению модельных частиц в расчетную область через левую границу со скоростью, соответствующей невозмущенному потоку плазмы.

Синусоидальное напряжение подается на первый и второй электроды в противофазе, $U_1 = U_0 \sin(\omega t)$ и $U_2 = U_0 \sin(\omega t + \pi)$. Дополнительно первый электрод находится под отрицательным напряжением U_d . Для уравнения Пуассона используются следующие граничные условия: $\partial \phi / \partial y = 0$ на верхней границе и $\partial \phi / \partial x = 0$ на боковых границах расчетной области. Вокруг электродов при z = 0, на поверхности диэлектрика $\phi = 0$. Магнитное поле направлено вдоль оси z. Распределение скорости газа задается модельной функцией

$$\begin{aligned} v_g(y) &= 0.5 v_{max} (1 + \sin(\pi(y/y_s - 0.5))), \quad y < y_s, \\ v_g(y) &= v_{max}, \quad y > y_s, \end{aligned}$$

где $v_{max} = 2 \cdot 10^5$ см/с — максимальная скорость газа, $y_s = 1.5$ см — координата, при которой достигается максимальная скорость газа. Влияние скорости газа учитывается при моделировании движения ионов, при рассеянии на молекулах газа, а также при образовании ионов в процессе ионизации электронным ударом.

Система уравнений (1)-(3) решается самосогласованно методом частиц в ячейках с розыгрышем столкновений методом Монте-Карло (Particle in Cell with Monte Carlo Collision) [6]. Для ускорения расчетов было проведено распараллеливание РІС-МСС алгоритма. Параллельный алгоритм реализован программно с использованием стандарта OpenMP. Отметим, что созданная параллельная программа может быть использована только на вычислительных системах с общей памятью. При значительном числе модельных частиц в методе РІС-МСС производительность расчетов перестает расти при использовании более 10 процессорных ядер. Это является следствием того, что при данном числе процессорных ядер затраты времени на синхронизацию ветвей программы становятся значительными.

3. НЕВОЗМУЩЕННЫЙ ПЛАЗМЕННЫЙ СЛОЙ У ПОВЕРХНОСТИ

В экспериментах [3,4] на высоте 60–90 км проводились измерения параметров газа и плазменного слоя у поверхности конического летательного аппарата RAM-C II с закругленной головной частью. Во время полета концентрация плазмы измерялась с использованием ленгмюровского зонда. В теоретической работе [1] на основе прямого статистического моделирования методом Монте-Карло (Direct Monte Carlo Method) проводился термодинамический анализ плазменного слоя, окружающего летательный аппарат RAM-C II, для данных эксперимента [3, 4]. В наших расчетах параметры плазмы задаются в соответствии с данными, полученными в эксперименте по нормали R₄ к поверхности. Нормаль R₄ находится на расстоянии примерно 1 м от точки торможения (точки присоединения ударной волны). Температура поверхности летательных аппаратов в работе [1] полагалась равной 1500 К (0.13 эВ). Харак-

Рис.2. Распределение концентраций электронов и ионов (*a*) и распределение потенциала и напряженности электрического поля (*б*) по нормали к поверхности (разряд выключен)

терная ширина плазменного слоя в наших расчетах равна 4.5 см, максимальная концентрация плазмы $5 \cdot 10^9 \text{ см}^{-3}$ и давление газа P = 40 мТорр. Скорость внешней ионизации задается постоянной и равной $10^{17} \text{ см}^{-3} \cdot \text{c}^{-1}$. В расчетах в начальный момент времени распределение ионов и электронов задается выражением $n_i(y) = n_e(y) = n_{0e} \sin(\pi y/y_0)$.

На основе решения уравнений (1)–(3) рассмотрим сначала распределение электрического поля, концентраций электронов и ионов в плазменном слое, невозмущенном разрядом. Отметим, что в теоретической работе [1] вопросы, связанные с формированием поверхностного заряженного слоя, и распределения концентрации электронов и ионов не обсуждались.

На рис. 2 показаны распределения концентраций n_e , n_i , электрического поля E и электрического потенциала в направлении по нормали к поверхности при выключенном разряде. Как у любой поверхности в плазме, в нашем случае также наблюдается

формирование заряженного слоя шириной 1 см. Профиль концентрации электронов и ионов в плазменном слое определяется амбиполярной диффузией и потерями электронов и ионов на диэлектрической поверхности. Напряженность электрического поля на поверхности равна 1250 B/см, потенциал плазмы достигает 700 B.

4. ПЛАЗМЕННЫЙ СЛОЙ У ПОВЕРХНОСТИ ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Рассмотрим влияние 2 МГц емкостного разряда на распределение плазмы вблизи поверхности. Частота приложенного напряжения 2 МГц была выбрана по двум причинам. Во-первых, при данной частоте характерная скорость движения ионов через приэлектродный слой примерно равна скорости волны напряжения, и ионы ускоряются волной напряжения (см., например, [9]). Во-вторых, при частоте 2 МГц энергия электронов гораздо меньше, чем, например, при 13.56 МГц, и ионизация электронным ударом в разряде практически отсутствует.

Для эффективного воздействия на плазменный слой необходимо приложить напряжение, существенно превышающее потенциал плазмы относительно диэлектрика в плазменном слое, невозмущенном разрядом. Для оценки ширины приэлектродного слоя d [см], в котором отсутствуют электроны, можно использовать следующее соотношение, полученное в приближении линейного убывания электрического поля E:

$$d = \left(\frac{U_0}{2\pi e \cdot 300n_i}\right)^{1/2} \approx 10^3 \left(\frac{U_0}{n_i}\right)^{1/2}, \qquad (5)$$

где n_i измеряется в см⁻³, а напряжение U_0 — в вольтах. Для $n_i = 5 \cdot 10^9$ см⁻³ и $U_0 = 7$ кВ из выражения (5) имеем $d \approx 1.2$ см. Данная оценка дает заниженную величину d, так как обычно поле E(y) убывает нелинейно. Из выражения (5) видно, что, для того чтобы увеличить ширину приэлектродного слоя, необходимо повышать приложенное напряжение и уменьшать локальную концентрацию ионов. Рассмотрим изменение параметров плазменного слоя под воздействием переменного напряжения с амплитудой $U_0 = 3$ кВ. Для повышения эффективности выноса ионов из приэлектродной области к правому электроду дополнительно прикладывается постоянное напряжение $U_b = -4$ кВ. Постоянное отрицательное напряжение U_b подается только на правый электрод, для того чтобы обеспечить про-

Рис. 3. Распределение электрического поля (в В/см) для $U_0 = 3 \kappa$ В и $U_b = -4 \kappa$ В для $t_1 = (1/4)t_p$ (*a*) и $t_2 = (3/4)t_p$ (б), где t_p — период разряда. Численные значения записаны в виде $K E N = K \cdot 10^N$

текание электронного тока через левый электрод в анодной фазе напряжения.

На рис. З показано изменение напряженности электрического поля в различные моменты периода разряда. Верхний по потоку левый электрод имеет координаты 13 см < x < 19.5 см, нижний по потоку правый электрод располагается между 22.5 см < x < 29 см. На рис. 3a электрическое поле E показано для $t_1 = (1/4)t_p \ (t_p -$ период разряда), когда напряжение на левом электроде равно -3 кВ, а на правом U = -1 кВ. На рис. Зб электрическое поле *E* показано для $t_2 = (3/4)t_p$, и напряжение на левом электроде равно 3 кВ, а на правом U = -7 кВ. На рис. 4 даны распределения концентрации электронов при t₁ и t₂, соответствующие электрическим полям на рис. 3. Приэлектродный слой формируется у обоих электродов, но особенно хорошо он виден у правого электрода на рис. 46. В этот момент времени t_2 электронный ток на левый электрод имеет максимальное значение. На рис. 5 показаны распределения электрического поля, концентрации ионов и электронов по нормали к поверхности правого элек-

Рис. 4. Распределение концентрации электронов $n_e \cdot 10^{-9}$ см⁻³ в логарифмическом масштабе для $U_0 = 3$ кВ и $U_b = -4$ кВ при t_1 (*a*) и t_2 (*б*)

трода при x = 26 см (центр электрода). Профили электрического поля и ионов получены усреднением по периоду разряда, а концентрация электронов показана для t_1 и t_2 . Из рис. 5 видно, что под воздействием разряда ширина приэлектродного слоя по оси y увеличивается до 4 см. Концентрация плазмы в квазинейтральной области при y > 4 см уменьшается примерно в два раза по сравнению с невозмущенным плазменным слоем. Ширина приэлектродного слоя меняется по периоду разряда, но электронный ток не попадает на правый электрод, так как на нем напряжение остается отрицательным по всему периоду разряда.

5. ОСОБЕННОСТИ ФОРМИРОВАНИЯ ПРИЭЛЕКТРОДНОГО СЛОЯ В МАГНИТНОМ И ЭЛЕКТРИЧЕСКОМ ПОЛЯХ

Рассмотрим комбинированное воздействие 2 МГц емкостного разряда, постоянного напряжения и магнитного поля на плазменный слой. Как показано на рис. 1, магнит располагается под левым электродом, на который поступает электронный ток в анодной фазе переменного напряжения.

Рис.5. Распределение поля E и концентрации электронов и ионов по нормали к поверхности при x = 26 см (центр правого электрода): 1 — поле E, усредненное по периоду, $2 - n_e$ при t_1 , $3 - n_e$ при t_2 , 4 — концентрация n_i , усредненная по периоду, $U_0 = 3$ кВ и $U_b = -4$ кВ

Для описания воздействия магнитной индукции *В* на заряженную частицу, движущуюся со скоростью *v*, добавим силу Лоренца $F = (e/c)[v \times B]$ (c - cкорость света) в кинетические уравнения движения электронов и ионов (1), (2). Известно, что в присутствии магнитного поля подвижность и коэффициент диффузии заряженных частиц уменьшаются. Для оценки влияния магнитного поля на движение электронов можно использовать следующие соотношения для эффективного электрического поля:

$$E_{e,x} = \frac{b_e E_y - E_x}{1 + b_e^2}, \quad E_{e,y} = \frac{b_e E_x + E_e}{1 + b_e^2}, \quad (6)$$

где $b_e = \omega_e/\nu_e$ — параметр Холла, $\omega_e = eB/mc$ — частота Лармора для электронов, $\nu_e = \sigma vN$ — частота соударений электронов в газе, σ — суммарное сечение рассеяния электронов на молекулах азота, v — средняя скорость движения электронов, N — плотность газа.

Рассмотрим случай частично замагниченной плазмы, когда траектории электронов замагничены, а движение ионов остается практически невозмущенным. Проведем оценку влияния магнитного поля на движение электронов, используя

Рис. 6. Распределение концентрации электронов $n_e \cdot 10^{-9} \text{ см}^{-3}$ для $U_0 = 3 \text{ кВ}$ и $U_b = -4 \text{ кВ}$ при B = 6 (*a*), 30 (*б*) Гс. P = 40 мТорр, $v_q = 2 \cdot 10^5 \text{ см/c}$

выражения (6). Для рассматриваемого давления газа P = 40 мТорр выберем значение магнитной индукции В = 6-60 Гс. Для данных параметров частота соударений электронов в газе $\nu_e = 5 \cdot 10^8 \text{ c}^{-1}$, частота Лармора $\omega_e = 10^8 \text{ c}^{-1} - 10^9 \text{ c}^{-1}$, параметр Холла для электронов $b_e = 0.2-2$, а для ионов $b_i \ll 1$. Оценка показывает, что при B = 60 Гс электроны движутся в эффективном электрическом поле $E_{e,y}$, которое примерно в 5 раз меньше, чем электрическое поле Е. Таким образом, магнитное поле удерживает электроны вблизи поверхности. При расчетах полагалось, что магнит располагается под левым электродом при 12.8 см < x < 19.7 см и вектор магнитной индукции направлен по оси z. На рис. 6 показано усредненное по периоду разряда распределение концентрации электронов при различных значениях магнитной индукции.

Для B = 6 Гс влияние магнитного поля на плазменный слой практически незаметно. Концентрация плазмы в квазинейтральной части напротив правого электрода равна $2.5 \cdot 10^9$ см⁻³. При увеличении магнитной индукции до B = 30 Гс концентрация n_e вблизи левого электрода увеличивается и электронный ток на этот электрод возрастает. За счет

Рис. 7. Распределение концентрации электронов $n_e \cdot 10^{-9}$ см⁻³ для $U_0 = 3$ кВ и B = 60 Гс при различных постоянных напряжениях на правом электроде: $U_b = -1$ (*a*), -2 (*б*), -4 (*b*) кВ

оттока электронов концентрация электронов в квазинейтральной плазме в области правого электрода уменьшается до $1.6 \cdot 10^9$ см⁻³. Отметим, что внешняя ионизация задавалась постоянной для всех рассмотренных случаев.

Увеличим значение магнитной индукции до 60 Гс и рассмотрим влияние отрицательного постоянного напряжения U_b на систему при постоянной амплитуде переменного напряжения на разряде $U_0 = 3$ кВ. На рис. 7 показана усредненная по периоду концентрация электронов при различных значениях напряжения U_b при $U_0 = 3$ кВ и B = 60 Гс. Отметим, что суммарное воздействие постоянного напряжения и магнитного поля в случаях 1) $U_b = -1$ кВ, B = 60 Гс и 2) $U_b = -4$ кВ, B = 6 Гс дает примерно одинаковый эффект уменьшения концентрации n_e в квазинейтральной области около правого электрода. Для случаев 1) и 2), показанных на рис. 6a и 7a, наблюдается уменьшение концентрации электронов в два раза. Возрастание электрического и магнитного полей в случаях 3) $U_b = -2$ кВ, B = 60 Гс и 4) $U_b = -4$ кВ, B = 30 Гс приводит к уменьшению концентрации n_e в 3 раза. Варианты 3) и 4) показаны на рис. 66 и 76. Комбинированное воздействие в случае 5) $U_b = -4$ кВ, B = 60 Гс позволяют уменьшить концентрацию n_e в 6–7 раз и существенно увеличить размер окна в электронной компоненте плазмы (см. рис. 7e).

6. ЗАКЛЮЧЕНИЕ

На основе двумерного кинетического моделирования методом частиц в ячейках (PIC–MCC) рассмотрена возможность локального управления параметрами плазменного слоя у плоской поверхности в гиперзвуковом потоке. Показано, что комбинированное воздействие 2 МГц емкостного разряда, постоянного напряжения и магнитного поля на плазменный слой позволяет многократно уменьшить локальную концентрацию электронов. Максимальный эффект достигается при комбинированном воздействии электрических и магнитных полей. Полученное в расчетах локальное понижение концентрации электронов до 10^9 см⁻³ допускает прохождение радиоволн с частотами $f_{rf} > 0.3$ ГГц.

В работе не рассматривался эффект ускорения потока газа при передаче импульса от ионов к молекулам газа при резонансной перезарядке. Распределение скорости потока газа задается модельной функцией. В дальнейшем планируется рассмотреть влияние разряда на поток газа.

Отметим, что коэффициент вторичной эмиссии поверхности электродов должен быть маленьким. В противном случае электроны, эмитированные поверхностью при ионной бомбардировке, приобретают киловольтные энергии, проходя приэлектродный слой в катодной фазе. Ионизация в объеме, вызванная эмитированными электронами, повышает концентрацию электронов в квазинейтральной части разряда. Таким образом, вместо открытия «окна» в плазменном слое наблюдается обратный эффект повышения концентрации плазмы.

Работа выполнена при финансовой поддержке Интеграционного проекта СО РАН № 113-2009.

ЛИТЕРАТУРА

- 1. I. D. Boyd, Phys. Fluids 19, 096102-1 (2007).
- N. D. Akey and A. E. Cross, Radio Blackout Alleviation and Plasma Diagnostic Results from a 25000 Foot per Second Blunt-Body Reentry, NASA TN D-5615 (1970).
- W. L. Grantham, Flight Results of a 25000 Foot per Second Reentry Experiment Using Microwave Reflectometers to Measure Plasma Electron Density and Standoff Distance, NASA TN D-6062 (1970).
- 4. W. Linwood, A. E. Jones, and Cross, Electrostatic Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Foot per Second, NASA TN D-6617 (1972).
- M. Keidar, M. Kim, and I. D. Boyd, J. of Spacecraft and Rockets 45, 445 (2008).
- 6. Ч. Бэдсел, А. Ленгдон, Физика плазмы и численное моделирование, Энергоатомиздат, Москва (1989).
- L. S. Frost and A. V. Phelps, Phys. Rev. 127, 1621 (1962).
- A. V. Phelps and L. C. Pitchford, Phys. Rev. 31, 2932 (1985).
- 9. I. V. Schweigert, Appl. Phys. Lett. 92, 261501 (2008).