ФАЗОВЫЕ ПЕРЕХОДЫ И КРИТИЧЕСКИЕ СВОЙСТВА ФРУСТРИРОВАННОЙ МОДЕЛИ ГЕЙЗЕНБЕРГА НА СЛОИСТОЙ ТРЕУГОЛЬНОЙ РЕШЕТКЕ С ВЗАИМОДЕЙСТВИЯМИ СЛЕДУЮЩИХ ЗА БЛИЖАЙШИМИ СОСЕДЕЙ

А. К. Муртазаев a,b , М. К. Рамазанов a,c , М. К. Бадиев a

^а Институт физики Дагестанского научного центра Российской академии наук 367003, Махачкала, Россия

> ^b Дагестанский государственный университет 367025, Махачкала, Россия

^с Дагестанский государственный педагогический университет 367003, Махачкала, Россия

Поступила в редакцию 30 января 2012 г.

Репличным методом Монте-Карло выполнены исследования критического поведения трехмерной антиферромагнитной модели Гейзенберга с взаимодействием ближайших (J) и следующих за ближайшими (J_1) соседей. Обнаружены фазовый переход первого рода и псевдоуниверсальное критическое поведение этой модели для решеток малого размера в интервале значений $R = |J_1/J| = 0-0.115$. С использованием теории конечно-размерного скейлинга рассчитан полный набор основных статических магнитных и киральных критических индексов в этом интервале.

1. ВВЕДЕНИЕ

В последнее время особое внимание уделяется исследованию магнитных состояний, фазовых переходов и критических явлений в системах с фрустрациями. Это связано с тем, что эти системы зачастую проявляют поведение, существенно отличное от поведения соответствующих нефрустрированных систем. Причина такого поведения заключается в сильном вырождении в спиновой подсистеме, эффективном ослаблении связи и, как следствие, высокой чувствительности к различным возмущающим факторам — дополнительным взаимодействиям, слабым полям, тепловым и квантовым флуктуациям, анизотропии, дефектам и деформациям [1–6].

Включение этих факторов «рождает» большое разнообразие фаз в таких магнетиках, чем и обусловлен неослабевающий интерес к ним. В результате экспериментальных [4] и теоретических [7–10] исследований многих авторов установлено, что наличие фрустраций приводит к существенному изменению ряда свойств фундаментального характера. Среди них можно отметить проблемы, связанные с определением характера фазовых переходов, с особенностями и факторами, влияющими на формирование классов универсальности магнитного и кирального критического поведения фрустрированных спиновых систем и др. Изучение фрустрированных магнетиков актуально также в связи с проблемой высокотемпературной сверхпроводимости, где из-за эффектов фрустраций возможно спиновое нематическое состояние. Таким образом, вопрос о влиянии возмущений различной природы, таких как анизотропия, взаимодействие следующих за ближайшими соседей, внешнее магнитное поле и др., на такие системы имеет принципиальное значение.

На современном этапе создание последовательной и строгой микроскопической теории, которая позволила бы объяснить и описать наблюдаемые в эксперименте явления, сталкивается с трудностями как технического, так и принципиального характера. Поэтому в последние годы в физике фазовых переходов активно развивалось самостоятельное направление теоретических исследований — подход,

^{*}E-mail: sheikh77@mail.ru

основанный на численном моделировании спиновых решеточных моделей [11–19].

Одной из наиболее интенсивно исследуемых в последние годы фрустрированных моделей является антиферромагнитная модель Гейзенберга на слоистой треугольной (гексагональной) решетке с взаимодействиями ближайших соседей [4, 12–14]. Эта модель является частным случаем модели, рассматриваемой в данной работе, в которой учитываются взаимодействия ближайших (J) и следующих за ближайшими (J_1) соседей, когда $J_1 = 0$.

К настоящему моменту антиферромагнитная модель Гейзенберга на слоистой треугольной решетке с взаимодействиями ближайших соседей изучена достаточно хорошо, однако остаются невыясненными критические свойства слоистых антиферромагнетиков с треугольной геометрией [3, 4, 12, 13].

С одной стороны, экспериментальные, численные, а также теоретические данные, полученные методом ренормгруппы на основе *є*-разложения, представленные в работах [4-6, 13, 14, 17, 20-26], свидетельствуют о наличии фазового перехода второго рода и принадлежности антиферромагнитной модели Гейзенберга на треугольной решетке к новому киральному классу универсальности критического поведения. С другой стороны, имеются данные численных и теоретических исследований, основанных на использовании непертурбативного ренормгруппового подхода, которые показывают наличие в этой модели фазового перехода первого рода, а также слабовыраженного перехода первого рода, близкого к переходу второго рода с эффективными критическими индексами [7, 21, 27–30]. В работе [31] нами были изучены фазовые переходы трехмерной фрустрированной модели Гейзенберга на слоистой треугольной решетке с учетом взаимодействий ближайших и следующих за ближайшими соседей в диапазоне значений величины взаимодействия следующих за ближайшими соседей от 0 до 1.0.

В данной работе нами предпринята попытка более подробно исследовать фазовые переходы и критические свойства этой модели в интервале значений величины взаимодействия следующих за ближайшими соседей от 0 до 0.125, где, согласно данным работы [23], наблюдается фазовый переход второго рода.

Интерес к этой модели обусловлен тем, что многие физические свойства фрустрированных систем сильно зависят от величины взаимодействия следующих за ближайшими соседей. Антиферромагнитная модель Гейзенберга на слоистой треугольной решетке с учетом взаимодействия следующих за ближайшими соседей до сих пор является малоизученной. Исследование этой модели на основе современных методов и идей позволит получить ответ на ряд вопросов, связанных с природой фазовых переходов и критическими свойствами фрустрированных спиновых систем.

2. МОДЕЛЬ И МЕТОД ИССЛЕДОВАНИЯ

Гамильтониан фрустрированной трехмерной модели Гейзенберга на треугольной слоистой решетке может быть представлен в следующем виде [13]:

$$H = -J \sum_{\langle i,j \rangle} (\mathbf{S}_i \cdot \mathbf{S}_j) - J_1 \sum_{\langle i,j \rangle} (\mathbf{S}_i \cdot \mathbf{S}_j), \qquad (1)$$

где

$$\mathbf{S}_i = (S_i^x, S_i^y, S_i^z)$$

— трехкомпонентный единичный вектор, J < 0 и $J_1 < 0$ — константы антиферромагнитного обменного взаимодействия. Решетка состоит из двумерных треугольных слоев, сложенных по ортогональной оси. Первый член в формуле (1) характеризует взаимодействие всех ближайших соседей, которое берется одинаковым как внутри слоев, так и между слоями. Второй член характеризует взаимодействие следующих за ближайшими соседей, находящихся в том же слое.

Эта модель впервые была исследована в работе [23]. Авторы работы построили фазовую диаграмму зависимости температуры магнитного перехода T_N от отношения R обменных параметров, $R = J_1/J$. Был обнаружен фазовый переход второго рода в интервале значений $0 \le R < 0.125$ и рассчитан набор критических индексов для случая R = 0. Недавно мы в работе [31], используя гистограммный метод, показали, что в этой модели в интервале 0 < R < 1наблюдается двухпиковая структура распределения энергии для решеток больших размеров L > 60, где L — безразмерная величина в единицах межатомного расстояния. Аналогичный результат для случая R = 0 был получен в работе [30] для очень больших размеров решетки (L > 120).

В данной работе нами рассмотрен интервал $0 \le \le R < 0.125$, где для малых размеров решетки (L < < 60) наблюдается переход второго рода. При R > > 0.125 в работе [23] обнаружена двухпиковая структура распределения по энергии даже для малых размеров решетки.

Исследования критических свойств фрустрированных спиновых систем обычными методами Монте-Карло (МК) сталкиваются с серьезными и труднопреодолимыми проблемами. Это связано с тем, что для фрустрированных систем характерно существование многочисленных долин локальных минимумов энергии. Поэтому нами использовался репличный обменный алгоритм метода МК, который является наиболее мощным и эффективным в исследовании критических явлений в фрустрированных системах. Более подробно этот алгоритм описан в работах [23, 24].

К настоящему моменту времени репличные алгоритмы метода МК и теория конечно-размерного скейлинга стали основными инструментами исследования критических свойств столь сложных систем [32].

Расчеты проводились для систем с периодическими граничными условиями. Для вывода системы в состояние термодинамического равновесия отсекался неравновесный участок длиной $\tau_0 =$ $= 4.0 \cdot 10^5$ МК шагов/спин, что в несколько раз больше длины неравновесного участка. Усреднение термодинамических величин проводилось вдоль марковской цепи длиной $\tau = 500\tau_0$. Для повышения точности проводили усреднение и по данным для двадцати различных начальных конфигураций. Полученные таким образом значения термодинамических параметров усреднялись по всем двадцати конфигурациям. Эти данные затем использовались для построения графиков.

3. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Для наблюдения за температурным ходом поведения теплоемкости C и восприимчивости χ нами использовались выражения [33–35]

$$C = NK^2 \left(\langle U^2 \rangle - \langle U \rangle^2 \right), \qquad (2)$$

$$\chi = \begin{cases} NK \left(\langle m^2 \rangle - \langle |m| \rangle^2 \right), & T < T_N, \\ NK \langle m^2 \rangle, & T \ge T_N, \end{cases}$$
(3)

$$\chi_k = \begin{cases} NK \left(\langle m_k^2 \rangle - \langle |m_k| \rangle^2 \right), & T < T_k, \\ NK \langle m_k^2 \rangle, & T \ge T_k, \end{cases}$$
(4)

где $K = |J|/k_BT$, N — число частиц, U — внутренняя энергия, m и m_k — магнитный и киральный параметры порядка, χ_k и T_k — киральные восприимчивость и критическая температура.

Параметр порядка *m* системы вычислялся по формуле [13]

$$m = \frac{3}{N} \sqrt{\langle M_A^2 + M_B^2 + M_C^2 \rangle / 3}, \qquad (5)$$

где M_A , M_B и M_C — намагниченности трех подрешеток. Намагниченность подрешетки определялась следующим образом [13]:

$$\langle |\mathbf{M}_r| \rangle = \left\langle \sqrt{S_x^2 + S_y^2 + S_z^2} \right\rangle, \quad r = A, B, C.$$
(6)

Для вычисления кирального параметра порядка m_k системы использовались следующие выражения [16]:

$$m_k = \frac{1}{N} \sum_p m_{k_p},\tag{7}$$

$$m_{k_p} = \frac{2}{3\sqrt{3}} \sum_{\langle i,j \rangle} [S_i \times S_j]_p, \qquad (8)$$

где индекс «p» нумерует треугольные плакеты.

На рис. 1 представлены температурные зависимости теплоемкости и восприимчивости, полученные при одном и том же значении L = 30 (для всех рисунков погрешность данных не превышает размеры использованных на рисунках точек). Отметим, что рост значения R сопровождается сдвигом максимумов в сторону более низких температур; одновременно с этим наблюдается рост абсолютных значений максимумов как теплоемкости, так и восприимчивости. Очевидно, что это связано с усилением конкурирующих взаимодействий следующих за ближайшими соседей, вследствие чего система становится более восприимчивой.

Для определения магнитной критической температуры T_N использовался метод кумулянтов Биндера U_L четвертого порядка [36]:

$$U_L = 1 - \frac{\langle m^4 \rangle_L}{3 \langle m^2 \rangle_L^2} \,. \tag{9}$$

Согласно теории конечно-размерного скейлинга точка пересечения всех кривых $U_L(T)$ является критической точкой [36].

На рис. 2 представлены характерные зависимости кумулянтов Биндера U_L от температуры для систем с размерами L = 12, 18, 24, 30 при R = 0.05. Можно отметить, что на рисунке наблюдается четко выраженная точка пересечения кривых. По нашей оценке эта точка приходится на температуру $T_N = 0.824 \pm 0.001$ (здесь и далее температуры даны в единицах $|J|/k_B$). Это значение T_N и было нами использовано в дальнейшем в качестве критической температуры. Аналогичным образом были определены значения критических температур при R = 0, 0.025, 0.075, 0.1, 0.115. Все эти данные представлены в табл. 1.

Использование кумулянтов Биндера для кирального параметра порядка для определения киральной

Рис.1. Зависимости теплоемкости C/k_B (a) и восприимчивости χ (b) от температуры $k_BT/|J|$ для системы с L = 30 при R = 0 (1), 0.025 (2), 0.050 (3), 0.075 (4), 0.100 (5), 0.115 (6)

Таблица 1. Значения магнитных критических показателей для трехмерной фрустрированной модели Гейзенберга на слоистой треугольной решетке с учетом взаимодействия вторых ближайших соседей

R	T_N	ν	α	β	γ	η	$\alpha + 2\beta + \gamma = 2$
0	0.957(1)	0.65(1)	0.18(2)	0.30(2)	1.27(2)	-0.06(6)	2.05
0.025	0.893	0.65	0.20	0.28	1.27	-0.11	2.03
0.050	0.824	0.65	0.22	0.28	1.26	-0.15	2.04
0.075	0.747	0.65	0.22	0.25	1.28	-0.24	2
0.100	0.657	0.64	0.27	0.23	1.30	-0.30	2.03
0.115	0.588	0.50	0.46	0.20	1.21	-0.15	2.07

Примечание. Здесь и в табл. 2 в скобках представлены ошибки определения соответствующих величин в последнем знаке.

критической температуры T_k по аналогичной процедуре дает существенно менее точные значения. Поэтому для определения T_k нами использовался метод пересечения кумулянтов (cumulant crossing), который считается более точным и надежным [16]. В соответствии с этим методом зависимости $U_L(T)$ для систем разных размеров строятся в приведенных масштабах $\ln^{-1}(L_1/L)$, где L_1 и L — размеры двух систем, при этом $L_1 > L$. Экстраполяция полученных значений T_k при $\ln^{-1}(L_1/L) \to 0$ соответствует критической температуре для бесконечной системы, $T_k(L \to \infty)$. Характерная зависимость T_k от $\ln^{-1}(L_1/L)$ для L = 12, 18, 24 при R = 0.05 представлена на рис. 3. Видно, что при $\ln^{-1}(L_1/L) \to 0$ все зависимости для разных L сходятся к одной точке, соответствующей киральной критической температур
е $T_k=0.825\pm 0.001.$

Используя аналогичную процедуру, мы определили значения T_k при R = 0, 0.025, 0.075, 0.10, 0.115. Эти данные представлены в табл. 2. Обращает на себя внимание тот факт, что значения магнитной T_N и киральной критической T_k температур для соответствующих значений R в пределах погрешности совпадают.

В работе [26] нами было показано, что в модели, не учитывающей взаимодействия следующих за ближайшими соседей, для систем с малыми размерами решетки наблюдается фазовый переход второго рода. Оказалось, что в исследуемой модели в интервале $0 \le R < 0.125$ для решеток с размерами, при кото-

Таблица 2. Значения киральных критических показателей для трехмерной фрустрированной модели Гейзенберга на слоистой треугольной решетке с учетом взаимодействия вторых ближайших соседей

R	T_k	$ u_k$	α	β_k	γ_k	η_k	$\alpha + 2\beta_k + \gamma_k = 2$
0	0.957(1)	0.65(2)	0.18(2)	0.52(4)	0.83(4)	0.70(12)	2.05
0.025	0.893	0.65	0.20	0.49	0.89	0.50	2.06
0.050	0.825	0.65	0.22	0.46	0.92	0.44	2.06
0.075	0.747	0.65	0.22	0.43	0.98	0.33	2.06
0.100	0.657	0.64	0.27	0.36	1.07	0.11	2.06
0.115	0.588	0.50	0.46	0.35	1.26	0.03	2.4

Рис. 2. Зависимости кумулянта Биндера U_L от температуры $k_B T/|J|$ для R = 0.05 при L = 12 (1), 18 (2), 24 (3), 30 (4). Стрелкой отмечено значение $T_N = 0.824 \pm 0.001$

Рис. 3. Зависимости температуры T_k от $\ln^{-1}(L_1/L)$ при L = 12 (1), 18 (2), 24 (3) для R = 0.05. Стрелка указывает на значение $T_k = 0.825 \pm 0.001$

Рис.4. Гистограмма распределения энергии для случая R = 0 для L = 30 (1), 90 (2)

рых эффекты фазовых переходов первого рода еще не проявляются, наблюдается псевдоуниверсальное критическое поведение. Аналогичное поведение было обнаружено для модели Гейзенберга на кубической решетке с тремя конкурирующими обменными взаимодействиями в слое и в модели Гейзенберга на слоистой треугольной решетке с двумя конкурирующими антиферромагнитными взаимодействиями между слоями [35]. В обеих моделях авторы нашли переход первого рода и псевдоуниверсальное поведение для решеток малого размера (L < 36).

Для исследуемой модели была построена гистограмма распределения энергии для случая R = 0. Более подробно эта процедура была описана нами ранее [31]. Из рис. 4 видно, что на кривой зависимости вероятности P от энергии U эффекты перехода первого рода (наличие двух пиков) наблюдаются уже для решеток с размерами L = 90. По-

Рис.5. Зависимость параметра порядка m от линейных размеров решетки L при $T=T_N$ и R=0.1, $\beta/\nu=0.359,\ \beta=0.23$

этому для исследования псевдокритического поведения использовались системы с линейными размерами L = 12, 18, 21, 27, 36, 42.

Для расчета статических киральных и магнитных критических индексов теплоемкости (α), восприимчивости (γ , γ_k), намагниченности (β , β_k) и радиуса корреляции (ν , ν_k) применялись соотношения теории конечно-размерного скейлинга. Из этой теории следует, что для системы размерами $L \times L \times L$ при $T = T_N$ и достаточно больших L справедливы следующие выражения [16, 34]:

$$m \propto L^{-\beta/\nu}, \quad m_k \propto L^{-\beta_k/\nu_k},$$

$$\chi \propto L^{\gamma/\nu}, \quad \chi_k \propto L^{\gamma_k/\nu_k},$$

$$V_n \propto L^{1/\nu} g_{V_n}, \quad V_{k_n} \propto L^{1/\nu_k} g_{V_n},$$
(10)

где g_{V_n} — некоторая постоянная, а в качестве V_n и V_{k_n} могут выступать величины (n=1,2,3,4)

$$V_{n} = \frac{\langle m^{n} E \rangle}{\langle m^{n} \rangle} - \langle E \rangle,$$

$$V_{k_{n}} = \frac{\langle m_{k}^{n} E \rangle}{\langle m_{k}^{n} \rangle} - \langle E \rangle.$$
(11)

Эти выражения были нами использованы для определения β , β_k , γ , γ_k , ν и ν_k . Для аппроксимации температурной зависимости теплоемкости от Lиспользовалось выражение [37]

$$C_{max}(L) = A_1 - A_2 L^{\alpha/\nu},$$
(12)

где A_1 и A_2 — некоторые коэффициенты.

На рис. 5 в двойном логарифмическом масштабе представлена характерная зависимость магнитного параметра порядка m от линейных размеров решетки L при R = 0.1. Отметим, что наблюдается линейная зависимость, все точки в пределах погрешности

ложатся на прямую. Угол наклона этой прямой определяет значения β/ν . По этой схеме, используя значения теплоемкости и восприимчивости, мы определили значения α/ν , γ/ν , β_k/ν_k и γ_k/ν_k . Для получения величин $1/\nu$ и $1/\nu_k$ использовались зависимости (11). На основе данных по ν и ν_k вычислялись все основные статические магнитные и киральные критические индексы: α , β , γ , β_k и γ_k . Эта процедура использовалась для расчета индексов при значениях R = 0, 0.025, 0.05, 0.075, 0.1, 0.115. Обратим внимание на то, что индексы ν и ν_k , используемые для расчета других индексов, вычислены нами в рамках единого исследования, тогда как очень часто в качестве ν и ν_k используют значения, полученные для простых модельных систем при R = 0 (например, для модели Гейзенберга). Все значения магнитных и киральных критических индексов, полученные таким образом, представлены в табл. 1 и 2.

Отметим, что значения магнитных и киральных критических индексов для $0 < R \leq 0.115$ вычислены впервые. Кроме того, впервые вычислены критические индексы Фишера η и η_k . Для этого использовалась зависимость между восприимчивостью χ и радиусом корреляции ξ [38],

$$\chi \propto \xi^{\gamma/\nu},\tag{13}$$

а также соотношение $\eta = 2 - \gamma/\nu$, связывающее индексы η и ν . Из (13) получаем

$$\ln(\chi/\xi^2) = c - \eta \ln \xi, \tag{14}$$

где c — некоторая константа. Для систем с конечными размерами имеем $\xi = L$ и при $T = T_N$ выражение (14) можно записать

$$\ln(\chi/L^2) = c - \eta \ln L. \tag{15}$$

Значения магнитного и кирального критических индексов Фишера, рассчитанные на основе выражения (15), приведены в табл. 1 и 2. Из данных, представленных в таблицах, следует, что трехмерная антиферромагнитная модель Гейзенберга с взаимодействием следующих за ближайшими соседей в пределах значений R = 0 - 0.1 практически не меняет характер своего псевдокритического поведения. При значении R > 0.1 наблюдается довольно резкое изменение значений магнитных и киральных критических индексов. Кроме того, при R = 0.115 соотношения Рашбрука для киральных критических индексов не выполняется совсем. Все эти особенности при R > 0.1, по-видимому, связаны с близостью к мультикритической точке, где сосуществуют геликоидальная, коллинеарная и парамагнитная фазы.

4. ЗАКЛЮЧЕНИЕ

Исследование фрустрированной антиферромагнитной модели Гейзенберга с взаимодействием следующих за ближайшими соседей репличным методом Монте-Карло позволило обнаружить, что в интервале $0 \le R \le 0.115$ система проявляет псевдоуниверсальное критическое поведение в случае решеток малого размера. Для систем с большими линейными размерами показано, что в системе имеет место переход первого рода. Об этом свидетельствует как отрицательное значение индекса Фишера, так и двухпиковая структура распределения энергии. Рассчитаны значения всех основных статических магнитных и киральных критических индексов и установлены закономерности их изменения в пределах интервала $0 \le R \le 0.115$.

Работа выполнена при финансовой поддержке РФФИ (грант № 10-02-00130) и Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (госконтракт № П554).

ЛИТЕРАТУРА

- С. С. Сосин, Л. А. Прозорова, А. И. Смирнов, УФН 175, 92 (2005).
- **2**. Вик. С. Доценко, УФН **165**, 481 (1995).
- **3**. С. Е. Коршунов, УФН **176**, 233 (2006).
- **4**. С. В. Малеев, УФН **172**, 617 (2002).
- Л. Е. Свистов, А. И. Смирнов, Л. А. Прозорова и др., Письма в ЖЭТФ 80, 231 (2004).
- 6. Л. Е. Свистов, Л. А. Прозорова, Н. Бюттген и др., Письма в ЖЭТФ 81, 133 (2005).
- M. Tisser, B. Delamotte, and D. Mouhanna, Phys. Rev. Lett. 84, 5208 (2000).
- P. Calabrese, P. Parruccini, A. Pelissetto et al., Phys. Rev. B 70, 174439-1 (2004).
- 9. G. Zumbach, Nucl. Phys. B 413, 771 (1994).
- 10. A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B
 63, 140414(R) (2001).
- Д. Дойсон, А. И. Соколов, Б. Деламотт и др., Письма в ЖЭТФ 72, 487 (2000).
- 12. H. Kawamura, J. Phys. Soc. Jpn. 56, 474 (1987).
- 13. H. Kawamura, J. Phys. Soc. Jpn. 61, 1299 (1992).
- 14. А. К. Муртазаев, И. К. Камилов, М. К. Рамазанов, ФНТ 32, 323 (2006).

- А. К. Муртазаев, И. К. Камилов, М. К. Рамазанов, ФТТ 47, 1125 (2005).
- 16. A. Mailhot, M. L. Plumer, and A. Caille, Phys. Rev. B 50, 6854 (1994).
- 17. А. К. Муртазаев, М. К. Рамазанов, ФТТ 53, 1004 (2011).
- 18. А. К. Муртазаев, М. К. Рамазанов, М. К. Бадиев, ФНТ 35, 663 (2009).
- 19. А. К. Муртазаев, М. К. Рамазанов, М. К. Бадиев, Изв. РАН, сер. физ. 75, 1103 (2011).
- 20. L. E. Svistov, A. I. Smirnov, L. A. Prozorova et al., Phys. Rev. B 67, 094434 (2003).
- 21. A. Peles and B. W. Southern, Phys. Rev. B 67, 184407 (2003).
- 22. D. Loison and H. T. Diep, Phys. Rev. B 50, 16453 (1994).
- 23. А. К. Муртазаев, М. К. Рамазанов, М. К. Бадиев, ЖЭТФ 132, 1152 (2007).
- 24. A. K. Murtazaev and M. K. Ramazanov, Phys. Rev. B 76, 174421 (2007).
- 25. А. К. Муртазаев, М. К. Рамазанов, М. К. Бадиев, ФТТ 52, 1157 (2010).
- 26. A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 65, 020403(R) (2001).
- 27. S. A. Antonenko, A. I. Sokolov, and V. B. Varnashev, Phys. Lett. A 208, 161 (1995).
- 28. A. Peles, B. W. Southern, B. Delamotte et al., Phys. Rev. B 69, 220408 (2004).
- 29. M. Itakura, J. Phys. Soc. Jpn. 72, 74 (2003).
- 30. V. Thanh Ngo and H. T. Diep, Phys. Rev. E 78, 031119 (2008).
- **31**. М. К. Рамазанов, Письма в ЖЭТФ **94**, 335 (2011).
- **32**. А. К. Муртазаев, УФН **178**, 1001 (2008).
- 33. K. Binder and J.-Sh. Wang, J. Stat. Phys. 55, 87 (1989).
- 34. P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 43, 6087 (1991).
- **35**. А. О. Сорокин, А. В. Сыромятников, ЖЭТФ **139**, 1148 (2011).
- 36. К. Биндер, Д. В. Хеерман, Моделирование методом Монте-Карло в статистической физике, Наука, Москва (1995).
- 37. А. К. Муртазаев, И. К. Камилов, М. А. Магомедов, ЖЭТФ 120, 1535 (2001).
- 38. Ch. Holm and W. Janke, Phys. Rev. B 48, 936 (1993).