ТЕОРЕТИЧЕСКИЙ АНАЛИЗ ДВУХЩЕЛЕВОЙ СВЕРХПРОВОДИМОСТИ ДИБОРИДОВ МАГНИЯ И ПНИКТИДОВ ЖЕЛЕЗА В ОБОБЩЕННОЙ α-МОДЕЛИ

Е. Г. Максимов^а, А. Е. Каракозов^{b*}, Б. П. Горшунов^{с,d**},

Я. Г. Пономарев^е, Е. С. Жукова^{с,d}, М. Дрессел^{f***}

^а Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

^b Институт физики высоких давлений им. Л. Ф. Верещагина Российской академии наук 142190, Троицк, Московская обл., Россия

^с Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

^d Московский физико-технический институт (Государственный университет) 141700, Долгопрудный, Московская обл., Россия

^е Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

> ^f 1. Physikalisches Institut, Universität Stuttgart 70550, Stuttgart, Germany

Поступила в редакцию 10 ноября 2011 г.

На основании исследования свойств двухзонных уравнений теории сверхпроводимости предложена обобщенная lpha-модель расчета сверхпроводящих характеристик реальных двухзонных сверхпроводников. В рамках этой модели рассчитаны теплоемкость и оптические свойства сверхпроводящего соединения ${
m Ba}({
m Fe}_{1-x}{
m Co}_x)_2{
m As}_2$, а также температурные зависимости щелей и энергий мод Леггетта в сверхпроводящей системе $Mg_{1-x}Al_xB_2$. Продемонстрировано хорошее количественное совпадение расчетных и экспериментальных результатов.

1. ВВЕДЕНИЕ

Слоистые сверхпроводники на основе MgB₂ и пниктиды/халькогениды железа представляют значительный научный интерес как промежуточные между классическими трехмерными сверхпроводниками и высокотемпературными сверхпроводниками. Открытые более десяти лет назад сверхпроводники семейства MgB₂ изучены наиболее подробно. Из-за относительной простоты кристаллической структуры, отсутствия в этих соединениях переходных элементов и достоверно установленной классической

электрон-фононной природы сверхпроводимости система MgB₂ представляет собой идеальный объект для проверки возможностей современных методов расчетов электронной структуры и теории сверхпроводимости. В настоящее время можно считать хорошо установленным, что в сверхпроводнике ${\rm MgB}_2$ существуют, по крайней мере, две значительно отличающиеся друг от друга электронные зоны: квазидвумерная, как принято называть *о*-зона, связанная со слоями атомов бора, и трехмерная, π -зона, а также две связанные с этими зонами хорошо определенные сверхпроводящие щели $\Delta_{\sigma,\pi}$.

Среди двухзонных трехмерных металлов двухщелевая сверхпроводимость наблюдается крайне редко (в очень чистых, с концентрацией дефектов

^{*}E-mail: karakozov@mtu-net.ru

^{**}E-mail: gorshunov@ran.gpi.ru

^{***}M. Dressel

менее 0.01 %, *s*-*d*-элементах: Nb, V, Ta; см., например, обзор [1] и цитированную там литературу). Проявлению двухщелевой сверхпроводимости препятствует межзонное рассеяние. Межзонное электрон-фононное рассеяние приводит к сближению щелей, так же как и межзонное примесное рассеяние, смешивающее электронные состояния разных зон (так называемая «изотропизация»), что способствует такому же эффекту. Последнее особенно существенно для трехмерных двухзонных сверхпроводников, в которых, во-первых, даже в чистых элементах щели $\Delta_{I,J}$ (и константы связи) различаются незначительно [1], и, во-вторых, матричные элементы межзонного рассеяния на примесях вследствие изотропии примесного потенциала могут оказаться существенно больше электрон-фононных [2], вследствие чего даже небольшое количество примесей полностью выравнивает величины щелей.

В слоистых сверхпроводниках с более сложной анизотропной кристаллической структурой ситуация с влиянием дефектов более сложна для теоретического анализа, так как имеется сильная зависимость от положения дефектов. В частности, в работе [3] было убедительно и наглядно показано, что в соединении MgB₂ дефекты в плоскости атомов бора (например, примеси углерода) характеризуются как и в трехмерном случае сильным межзонным примесным рассеянием. Но, в отличие от последнего, в котором щели близки по величине [1], примесная изотропизация в MgB₂ приводит к резкому уменьшению Δ_{σ} и ухудшению всех сверхпроводящих характеристик. Напротив, межзонное примесное рассеяние на дефектах в магниевой плоскости (например, Al) мало в меру малости перекрытия орбиталей таких дефектов с орбиталями подсистемы бора. (Анализ экспериментальных данных о поведении щелей $\Delta_{\sigma,\pi}(0)$ в системе $Mg_{1-x}Al_xB_2$ при разупорядочении или допинге Al [4-6] показывает, что основной эффект состоит в уменьшении внутризонной константы $\Im \Phi B \lambda_{\sigma\sigma}$ за счет уменьшения плотности электронных состояний в *о*-зоне [3, 7].) Эти результаты показывают, что для представляющих практический интерес слоистых сверхпроводников межзонное примесное рассеяние мало и при исследовании свойств таких сверхпроводников его можно не учитывать, чем мы и воспользуемся в дальнейшем.

Экспериментальные данные о величине щелей $\Delta_{\sigma,\pi}(0)$ в MgB₂, к сожалению, сильно различаются. Установленным можно считать только, что в отличие от трехмерного случая щель $\Delta_{\sigma}(0)$ существенно больше $\Delta_{\pi}(0)$. Помимо различного качества образ-

	λ_{11}^0	λ^0_{22}	λ^0_{12}	λ_{21}^0
[8]	0.96	0.29	0.17	0.23
[13]	1.02	0.45	0.16	0.21
[14]	0.78	0.21	0.11	0.15

Таблица 1. Константы ЭФВ MgB₂ по данным расчетов *ab initio* [8, 13, 14]

цов причиной большого разброса данных является также специфика экспериментальных методик, большинство из которых являются «косвенными», т. е. позволяют определить сверхпроводящие щели лишь при помощи сложных пересчетов с привлечением теоретических моделей. Это значительно снижает точность результатов, особенно при определении температурной зависимости щелей.

Расчеты сверхпроводящих свойств системы MgB_2 *ab initio* электрон-фононным взаимодействием (ЭФВ) были проведены рядом авторов, в том числе и с полным учетом анизотропии ЭФВ в рамках стандартной теории сверхпроводимости [8]. Результаты различных расчетов также довольно существенно различаются (см. табл. 1).

Сверхпроводящие соединения на основе железа являются существенно более сложными физическими объектами и исследованы пока недостаточно полно, однако определенное сходство кристаллических и зонных структур этих соединений и сверхпроводников семейства MgB2 позволяет предположить и общность их сверхпроводящих свойств. В частности, имеются прямые экспериментальные подтверждения двухщелевой сверхпроводимости как в системах $Mg_{1-x}Al_xB_2$ (обнаружение моды Леггетта в туннельных экспериментах [9]), так и в $\operatorname{Ba}(\operatorname{Fe}_{1-x}\operatorname{Co}_x)_2\operatorname{As}_2$ (наблюдение очень сильной температурной зависимости плотности сверхпроводящего конденсата в Ba(Fe_{0.9}Co_{0.1})₂As₂ в точных оптических измерениях в терагерцевом диапазоне [10]). Отметим сильные температурные зависимости малых щелей, найденные в работе [9]: малые щели начинают сильно уменьшаться уже при температурах $T \geq T^*,$ где T^* — температура, определяемая свойствами только *п*-зоны в отсутствие межзонного взаимодействия. В этом отношении результаты работы [9] заметно отличаются от результатов, полученных в упомянутых выше расчетах [8].

Особенно наглядным проявлением двухщелевой сверхпроводимости MgB_2 и $Ba(Fe_{1-x}Co_x)_2As_2$ является явно аномальная температурная зависимость

электронной теплоемкости $C_s(T)$ [11,12], состоящая в том, что при относительно низких температурах, $T^* < T_c$, на кривых $C_s(T)$ имеются особенности, которые естественно связать с размытыми межзонным взаимодействием скачками теплоемкости зон с малой щелью Δ_{min} (в пределе независимых зон эти скачки трансформировались бы в реальные скачки теплоемкости этих зон при температурах $T^* \sim T_{c\,min}^{(0)} = \Delta_{min}(0)/1.764$). Настоящая работа посвящена теоретическому обсуждению указанных экспериментальных результатов.

Для дальнейшего обсуждения мы приведем основные результаты расчетов *ab initio* характеристик $\Im \Phi B$ в MgB₂. Спектральная функция $\Im \Phi B$ $\alpha_{IJ}^2(\omega)F_{IJ}(\omega)$ в MgB₂ согласно расчетам *ab initio* практически полностью связана с макроскопическим колебанием плоскости атомов бора E2g и локализована в области частот $\Omega_{E2g} \approx 70$ мэВ. Величины затравочных констант $\Im \Phi B \lambda_{IJ}^0$ монокристалла MgB₂

$$\lambda_{IJ}^{0} = 2 \int_{0}^{\infty} \alpha_{IJ}^{2}(\omega) F_{IJ}(\omega) \, d\omega \, /\omega \tag{1}$$

по данным различных авторов приведены в табл. 1 из работы [8].

Гораздо менее ясна ситуация с кулоновским псевдопотенциалом. Строгая методика расчетов ab initio кулоновских псевдопотенциалов μ_{IJ}^* до настоящего времени отсутствует, поэтому в стандартной теории сильной связи величина кулоновского псевдопотенциала используется, фактически, как подгоночный параметр. В стандартной теории сильной связи дополнительная неопределенность связана еще и с тем, что на зависимость кулоновского вклада в уравнения от температуры существенно влияет произвольность энергии обрезания кулоновского интеграла. В двухзонных сверхпроводниках это приводит к существенным ошибкам, во всяком случае, в расчетах температурной зависимости малой щели при температурах $T \geq T^*$. Сравнение приведенных в табл. 1 параметров ЭФВ, полученных в расчетах ab initio разных авторов, показывает, что абсолютная точность вычисления констант $\Im \Phi B$ составляет не более 0.1, что при межзонных константах $\lambda_{I\neq J}^0 \sim \mu_{I\neq J}^*$ явно недостаточно, во всяком случае, для корректного вычисления энергий мод Леггетта $\Omega_L(T)$ [15] и поведения малой щели $\Delta_{min}(T)$ при температурах выше T^* . Так, например, на основании данных, полученных в расчетах ЭФВ ab initio, в работе [16] был сделан ошибочный вывод о том, что в соединении MgB₂ имеет место неравенство

 $\Omega_L > 2\Delta_{min}$, вследствие чего леггеттовский плазмон в MgB₂ не может быть обнаружен из-за сильного затухания, что явно противоречит экспериментальным результатам [9]. Кроме того, применять эти данные для теоретического анализа реальных поликристаллических образцов с примесями довольно затруднительно, так как межзонное рассеяние на дефектах кристаллической структуры приводит, фактически, к изменению как внутризонных, так и межзонных констант ЭФВ. В таких обстоятельствах более последовательно определять константы ЭФВ реальных слоистых сверхпроводников непосредственно из экспериментальных данных.

Для этой цели вполне достаточно использовать соотношения двухзонной теории БКШ при $T \to 0$, так как свойства сверхпроводников при низких температурах хорошо описываются формулами теории БКШ с константами ЭФВ (1) и энергией Ω_c , определяемыми реальной спектральной функцией ЭФВ $\alpha^{2}(\omega)F(\omega)$. (Подробное обсуждение см. в книге [17].) Однако при конечных температурах свойства реальных сверхпроводников могут заметно отличаться от рассчитанных в модели БКШ. В частности, известным недостатком применения теории БКШ к сверхпроводникам с сильной связью является заведомо завышенное значение Т_с. В подобных случаях для описания обычных сверхпроводников с сильной связью при конечных температурах успешно используется эмпирическая а-модель [18], позволяющая применить теорию БКШ также и для расчетов свойств сверхпроводников с сильной связью. Согласно а-модели в формулах теории БКШ следует заменить параметр $\alpha = \Delta(0)/T_c$ его экспериментальным значением, оставляя при этом зависимость приведенной щели от приведенной температуры такой же, как и в теории БКШ:

$$\delta(t) = \frac{\Delta(t)}{\Delta(0)} = \delta_0 \left(t = \frac{T}{T_c^{exp}} \right)$$

Известны также попытки применения рецепта α-модели и к двухзонному случаю (так называемая двухзонная α-модель [11]). Эта модель использовалась для расчетов электронной теплоемкости и основана на прямом применении α-модели к каждой из зон в отдельности. Однако такая модель имеет весьма ограниченную область применения, так как совершенно не учитывает принципиально важные для двухзонных сверхпроводников межзонные взаимодействия.

Сверхпроводники с сильно локализованными в области высоких энергий, $\Omega_c \gg T_c$, спектральными функциями ЭФВ, такие как MgB₂, являются наибо-

лее БКШ-подобными системами [17]. Электронные спектры таких сверхпроводников слабо размываются из-за малости рассеяния на тепловых фононах и весьма близки к спектрам БКШ. Для таких двухзонных систем вполне возможно более корректное (учитывающее межзонные взаимодействия) обобщение α-модели на двухзонный случай, основанное на анализе общих свойств двухзонных уравнений БКШ при конечных температурах и лежащего в основе эмпирической α-модели приближения.

2. ОСНОВНЫЕ СВОЙСТВА ДВУХЗОННЫХ БКШ-СВЕРХПРОВОДНИКОВ

Двухзонные уравнения БКШ, определяющие сверхпроводящие щели $\Delta_J(T)$, имеют вид (см., например, [19])

$$\Delta_I(T) = \sum_{J=1,2} \lambda_{IJ} \Delta_J(T) \int_0^{\Omega_c} \frac{d\xi}{E_J(\xi)} \operatorname{th}\left(\frac{E_J(\xi)}{2T}\right), \quad (2)$$
$$E_J(\xi) = \sqrt{\xi^2 + \Delta_J^2(T)}, \quad (3)$$

где Ω_c — характерная фононная частота, а $E_J(\xi)$ — спектр квазичастиц в зоне *J*. Перенормированные константы ЭФВ λ_{IJ} в формуле (2) выражаются через константы спаривания $\tilde{\lambda}_{IJ}^0$:

$$\tilde{\lambda}_{IJ}^0 = \lambda_{IJ}^0 - \mu_{IJ}^*, \tag{4}$$

где λ_{IJ}^0 — затравочные константы ЭФВ, а μ_{IJ}^* — кулоновские псевдопотенциалы,

$$\lambda_{IJ} = \frac{\tilde{\lambda}_{IJ}^0}{1 + \lambda_{II}^0 + \lambda_{I\neq J}^0}.$$
 (5)

В большинстве случаев систему (2) удобно записать в виде [20]

$$\int_{0}^{\Omega_{c}} \frac{d\xi}{E_{1}(\xi)} \operatorname{th}\left(\frac{E_{1}(\xi)}{2T}\right) = \tilde{\lambda}_{22} - \tilde{\lambda}_{12}\theta(T), \qquad (6)$$

$$\int_{0}^{\Omega_{c}} \frac{d\xi}{E_{2}(\xi)} \operatorname{th}\left(\frac{E_{2}(\xi)}{2T}\right) = \tilde{\lambda}_{11} - \frac{\tilde{\lambda}_{21}}{\theta(T)}, \quad (7)$$

$$\theta(T)\ln\theta(T) = -\left[\tilde{\lambda}_{11} - \tilde{\lambda}_{22} - \delta n_{12}(T)\right]\theta(T) - \\ -\tilde{\lambda}_{12}\theta^2(T) + \tilde{\lambda}_{21}, \quad (8)$$

где $\theta(T) = \Delta_2(T)/\Delta_1(T)$ — отношение щелей, $\delta n_{12}(T) = n_1(T) - n_2(T)$ и $n_J(T)$ — нормированное число нормальных возбуждений в зоне J

$$n_J(T) = 2 \int_0^\infty \frac{d\xi}{E_J(\xi)} f\left[\frac{E_J(\xi)}{T}\right],\tag{9}$$

 $f[E_J(\xi)/T]$ — функция распределения квазичастиц со спектром $E_J(\xi)$, а $\tilde{\lambda}_{IJ}$ — эффективные константы связи:

$$\tilde{\lambda}_{IJ} = \frac{\lambda_{IJ}}{\lambda_{11}\lambda_{22} - \lambda_{12}\lambda_{21}} = \frac{\lambda_{IJ}}{\lambda_{11}\lambda_{22}} \frac{1}{1 - \lambda_{12}\lambda_{21}/(\lambda_{11}\lambda_{12})}.$$
 (10)

Для самосогласованного решения можно выбирать любую пару уравнений системы (6)–(8) из соображений удобства. Эффективные константы связи $\tilde{\lambda}_{IJ}$ (10) принципиально отличаются от привычных констант ЭФВ λ_{IJ} и оказываются весьма чувствительными к относительной величине межзонного взаимодействия, причем особенно это относится к межзонным константам. (Некоторое представление об их реальной величине дает табл. 2.)

Случай, когда детерминант системы (2) $\lambda_{11}\lambda_{22} - \lambda_{12}\lambda_{21}$ стремится к нулю, особого интереса не представляет за исключением того, что в этом случае отношение щелей не зависит от температуры, как это легко показать из формулы (2):

$$\theta(T) = \lambda_{21}/\lambda_{11} = \lambda_{22}/\lambda_{12} = \text{const}$$

В дальнейшем, учитывая данные об ЭФВ в слоистых сверхпроводниках [8], мы ограничимся рассмотрением только положительных эффективных констант связи $\tilde{\lambda}_{IJ}$ (10).

При T = 0 задача сводится к нахождению решения $\theta(0)$ уравнения (8)

$$\tilde{\lambda}_{11} - \tilde{\lambda}_{22} = -\ln\theta(0) - \tilde{\lambda}_{12}\theta(0) + \tilde{\lambda}_{21}/\theta(0), \quad (11)$$

с последующим определением щеле
й $\Delta_{1,2}(0)$ по формулам

$$\ln \frac{2\Omega_c}{\Delta_1(0)} = \tilde{\lambda}_{22} - \tilde{\lambda}_{12}\theta(0),$$

$$\ln \frac{2\Omega_c}{\Delta_2(0)} = \tilde{\lambda}_{11} - \frac{\tilde{\lambda}_{21}}{\theta(0)}.$$
(12)

Остановимся на некоторых общих свойствах двухзонных уравнений (6), (7), (8) при конечных температурах. Для определенности будем считать в дальнейшем, что $\Delta_1(0) > \Delta_2(0)$. Легко показать,

Таблица 2. Затравочные и эффективные параметры двухзонной теории БКШ слабосвязанных сверхпроводников 1, 2 и слоистого сверхпроводника $Mg_{1-x}Al_xB_2$ с $T_c \approx 32$ К (MgB₂) [20]. Пример образца MgB_2 показывает сильную зависимость параметра $\alpha_1 = \Delta_1(0)/T_c$ от межзонного взаимодействия

	λ_{11}^0	λ_{22}^0	λ^0_{12}	λ^0_{21}	μ^*	$\theta(0)$	$\tilde{\lambda}_{11}$	$\tilde{\lambda}_{22}$	$\tilde{\lambda}_{12}$	$\tilde{\lambda}_{21}$	α_1	α_1^{exp}
1	0.4	0.2	0.2	0.15	0.1	0.29	16.2	6.4	5.4	3.2	2.04	2.04
2	0.4	0.12	0.2	0.15	0.1	0.29	13.9	5.2	0.93	2.62	1.82	1.82
MgB_2	0.82	0.43	0.124	0.157	0.12	0.29	5.12	2.78	0.03	0.33	1.78	3.08
«MgB ₂ »	_	_	_	_	_	0.29	_	_	5.107	0.33	3.08	_

что в этом случае из-за различного числа квазичастиц (9) в зонах $(n_1(t) < n_2(t))$ отношение щелей $\theta(T)$ уменьшается с температурой до минимального значения

$$\theta(T_c) = \frac{1}{2\tilde{\lambda}_{12}} \times \left[-\tilde{\lambda}_{11} + \tilde{\lambda}_{22} + \sqrt{\left(\tilde{\lambda}_{11} - \tilde{\lambda}_{22}\right)^2 + 4\tilde{\lambda}_{12}\tilde{\lambda}_{21}} \right]$$
(13)

при критической температуре T_c , определяемой формулой

$$\ln \frac{2\gamma_E \Omega_c}{\pi T_c} = \frac{1}{2} \times \\ \times \left[\tilde{\lambda}_{11} + \tilde{\lambda}_{22} - \sqrt{\left(\tilde{\lambda}_{11} - \tilde{\lambda}_{22} \right)^2 + 4 \tilde{\lambda}_{12} \tilde{\lambda}_{21}} \right].$$
(14)

(Отметим, что знаки перед квадратными корнями в этих формулах соответствуют случаю $\tilde{\lambda}_{IJ} > 0$, в противном случае их следует изменить на противоположные.)

Формулы (11)–(14) позволяют определить важные параметры теории — отношения щелей $\Delta_{1,2}(0)$ к критической температуре $\alpha_J = \Delta_J(0)/T_c$:

$$\alpha_1 = \alpha_0 e^{\Lambda_1}, \quad \alpha_2 = \alpha_1 \theta(0), \tag{15}$$

$$\Lambda_1 = \tilde{\lambda}_{12}\theta(0) - \frac{1}{2} \left[\sqrt{\left(\tilde{\Lambda}_{12}\right)^2 + 4\tilde{\lambda}_{12}\tilde{\lambda}_{21}} - \tilde{\Lambda}_{12} \right], \quad (16)$$

где $\alpha_0 = \pi/\gamma_E \approx 1.764$, $\tilde{\Lambda}_{12}$ — правая часть выражения (11). Найденные выше параметры $\Lambda_{1,2}$ (и α_J) зависят только от величины $\theta(0)$ и эффективных межзонных констант $\tilde{\lambda}_{IJ}$.

Остановимся на возможной величине параметра α_1 , которой в обычных сверхпроводниках принято характеризовать тип связи. Формулу (16) удобно представить в более наглядном виде:

$$\Lambda_1 = \tilde{\lambda}_{12} \left\{ \theta(0) - \theta(T_c) \right\} > 0. \tag{17}$$

Как легко видеть, даже при относительно слабом межзонном взаимодействии, когда параметр $\theta(0)$ зависит, в основном, от внутризонных констант связи, а $\theta(T_c) \sim \lambda_{21}$, при $\lambda_{12} > \lambda_{21}$ отношение щели $\Delta_1(0)$ к критической температуре α_1 может оказаться довольно большим даже для сверхпроводников со слабой связью (табл. 2). Таким образом, в отличие от обычных сверхпроводников, значения $\alpha_1 > 1.764$ в двухзонных сверхпроводниках вовсе не свидетельствуют однозначно о сильном ЭФВ.

Параметры $\theta(0)$, $\tilde{\lambda}_{12}$, $\tilde{\lambda}_{21}$ полностью определяют и двухзонные уравнения БКШ для приведенных щелей $\delta_J(t) = \Delta_J(t)/\Delta_J(0)$ при конечных температурах:

$$\ln \delta_1(t) = -n_1(t) - \tilde{\lambda}_{12}\theta(0) \left\{ 1 - \frac{\delta_2(t)}{\delta_1(t)} \right\}, \qquad (18)$$

$$\ln \delta_2(t) = -n_2(t) - \frac{\tilde{\lambda}_{21}}{\theta(0)} \left\{ 1 - \frac{\delta_1(t)}{\delta_2(t)} \right\},$$
 (19)

$$n_J(t) = 2 \int_0^\infty \frac{d\omega}{\varepsilon_J(\omega)} f\left[\frac{\alpha_J \varepsilon_J(\omega)}{t}\right], \qquad (20)$$

$$\varepsilon_J(\omega) = \sqrt{\omega^2 + \delta_J^2(t)},$$
 (21)

где $\varepsilon_J(\omega)$ — приведенный спектр сверхпроводника, $t = T/T_c$ — приведенная температура. Уравнения (18), (19) намного проще исходной системы (2) и позволяют установить общие зависимости приведенных щелей $\delta_{1,2}(t)$ от межзонных взаимодействий. Величины $\alpha_{1,2}$ и $\tilde{\lambda}_{12}$, $\tilde{\lambda}_{21}$ характеризуют в уравнениях (18), (19) соответственно внутризонные и межзонные флуктуации. Рассмотрим вклад межзонных флуктуаций. Отношение $\delta_2(t)/\delta_1(t) = \theta(t)/\theta(0) < 1$, оно убывает с ростом температуры, поэтому вклад межзонных флуктуаций уменьшает щель $\delta_1(t)$ и увеличивает $\delta_2(t)$, но не может при этом превысить внутризонный вклад в формуле (19), вследствие чего при больших межзонных константах, $\lambda_{21} \gg \lambda_{22}$, щель $\delta_2(t) \to \delta_1(t)$, $\alpha_1 \to \alpha_0$ (17) и обе приведенные щели приближаются к $\delta_0(t)$ — решению стандартного уравнения БКШ (причем тем быстрее, чем меньше взаимодействие λ_{12}). При этом приведенные щели $\delta_{1,2}(t)$ при всех температурах меньше, чем $\delta_0(t)$, а их температурные зависимости при $t \to 1$ слабее.

В табл. 2 приведены данные расчетов параметров сверхпроводников со слабой связью (1), (2) и слоистого сверхпроводника системы $Mg_{1-x}Al_xB_2$ с $T_c = 32$ K [20] (MgB₂). Пример «MgB₂» показывает зависимость величины α_1 (и T_c) от взаимодействия $\tilde{\lambda}_{12}$.

Зависимость приведенной щели $\delta_2(t)$ от величины межзонных констант $\tilde{\lambda}_{IJ}$ показана на рис. 1a на примере сверхпроводников (A) и (B) с одинаковыми отношениями щелей к критической температуре $\alpha_{1,2}$, но с различными межзонными взаимодействиями. (Приведенные щели $\delta_1(t)$ для малых $\tilde{\lambda}_{12}$ практически совпадают с $\delta_0(t)$ и на рисунке не показаны.) Для сравнения на рисунке показана приведенная щель в $2B\alpha$ -модели, в которой обе щели полагают равными $\delta_0(t)$. На рис. 1a ясно видна основная роль межзонных взаимодействий.

В этой части работы мы исследуем зависимость свойств двухзонных сверхпроводников от межзонного взаимодействия на примере наиболее простой термодинамической функции — электронной теплоемкости. Некоторые другие свойства двухзонных сверхпроводников — оптические характеристики и свойства коллективных возбуждений (мод Леггетта [15]) — мы рассмотрим в следующей части работы.

Температурную зависимость теплоемкости сверхпроводника C_s обычно характеризуют нормированной функцией $C_s(T)/\gamma_n T_c$. Вычисление теплоемкости двухзонного сверхпроводника проводится обычным образом [1,18]. Записывая выражения для энтропии $S_J(T)$ (или нормированной энтропии $s_J(t) \equiv S_J(t)/\gamma_J T_c$) свободного ферми-газа со спектром (7), (21)

$$S_J(T) = 2N_J(0) \int_{-\infty}^{\infty} d\xi \times \left\{ \frac{E_J(\xi)}{T} f\left(E_J(\xi)\right) - \ln\left[f\left(-E_J(\xi)\right)\right] \right\}, \quad (22)$$

Рис.1. а) Зависимость приведенных щелей $\delta_2(t)$ в БКШ-сверхпроводниках А и В с межзонными взаимодействиями: $\tilde{\lambda}_{12} = 0.05$, $\tilde{\lambda}_{21} = 0.1$ для А (•), $\tilde{\lambda}_{12} = 0.22$, $\tilde{\lambda}_{21} = 0.8$ для В (•). Параметры $\alpha_{1,2} = \Delta_{1,2}(0)/T_c$ для них одинаковы: $\alpha_1 = 1.78$ и $\alpha_2 = 0.49$. Светлой сплошной линией показан вид $\delta_2(t)$ в $2B\alpha$ -модели. б) Вид нормированной электронной теплоемкости зоны с малой щелью $ds_2(t)/dt$. Параметры и обозначения те же, что и на рис. a. Пунктирной и штриховой линиями показаны изменения вида соответствующей кривой в $2B\alpha$ -модели при уменьшении и увеличении малой щели. b) Вид нормированной теплоемкости сверхпроводников А и В в тех же обозначени-

ях

$$s_J(t) = \frac{3\alpha_J}{\pi^2} \int_{-\infty}^{\infty} d\omega \left\{ \frac{\alpha_J \varepsilon_J(\omega)}{t} f\left(\frac{\alpha_J \varepsilon_J(\omega)}{t}\right) - \ln\left[f\left(-\frac{\alpha_J \varepsilon_J(\omega)}{t}\right) \right] \right\}, \quad (23)$$

где $\gamma_J = 2\pi^2 N(0)/3$ — коэффициент нормальной электронной теплоемкости зоны J ($\gamma_n = \gamma_1 + \gamma_2$), находим

$$\frac{1}{t}\frac{C_s(t)}{\gamma_n T_c} = \frac{d}{dt}\left\{\frac{\gamma_1}{\gamma_n}s_1(t) + \frac{\gamma_2}{\gamma_n}s_2(t)\right\}.$$
 (24)

Зависимости электронной теплоемкости от межзонного взаимодействия показаны на рис. 16, в. Для сравнения на рисунках приведены соответствующие кривые в 2Ва-модели [11], согласно которой спектр $\varepsilon_J(\omega)$ в (23) положен равным $\varepsilon_J(\omega) = \sqrt{\omega^2 + \delta_0^2(t)}$. Рисунок 16 наглядно демонстрирует все особенности поведения теплоемкости двухзонного сверхпроводника. На кривой в области температуры $T^*(\alpha_2)$ имеется особенность, представляющая размытый в меру взаимодействия $\hat{\lambda}_{21}$ скачок электронной теплоемкости зоны с малой щелью. В пределе $\tilde{\lambda}_{21} \gg 1$ (в котором, как мы убедились, $\delta_2(t) \to \delta_0(t)$, что соответствует $2B\alpha$ -модели) особенность сглаживается максимально. (Таким же образом в меру взаимодействия λ_{12} вблизи T_c размывается и скачок от первой зоны.) Как следует из (24), особенность от зоны с малой щелью наиболее ясно проявляется при относительно большом весе зоны γ_2/γ_n и $\theta(0) \ll 1$ (т.е. при $T^* \ll T_c$).

В заключение этого раздела кратко остановимся на применении $2B\alpha$ для определения щелей из температурной зависимости теплоемкости. К достоинствам $2B\alpha$ относят возможность правильного определения величины малой щели (α_2) по низкотемпературному участку экспериментальной кривой, после чего большая щель (α_1) определяется по участку кривой вблизи T_c , фактически, по скачку теплоемкости. Его значение в $2B\alpha$ -модели легко найти прямым вычислением нормированной теплоемкости (23) в точке перехода \tilde{C}_s , используя известную зависимость $\delta_0(t \to 1)$ в теории БКШ [21]:

$$\tilde{C}_{sJ} = 1 + \frac{12}{7\zeta(3)} \left(\frac{\alpha_J}{\alpha_0}\right)^2, \qquad (25)$$

$$\tilde{C}_s = 1 + 1.426 \left(\frac{\alpha_1}{\alpha_0}\right)^2 \frac{\gamma_1 + \gamma_2 \theta^2(0)}{\gamma_n}.$$
 (26)

При очень низких температурах $T \ll T^*(\alpha_2)$ щели $\delta_{1,2}$, как и δ_0 , экспоненциально слабо зависят от температуры $\delta_1(t) \approx \delta_2(t) \approx \delta_0(t) \approx 1$ и согласно (18), (19) зоны действительно можно рассматривать как невзаимодействующие. Только в этом смысле $2B\alpha$ -модель «теоретически» правильно описывает температурную зависимость теплоемкости (см. рис. 2, 3, на которых символы представляют

Рис.2. Зависимости $2\Delta_{\pi}(T)$ и $\Omega_L(T) Mg_{1-x} Al_x B_2$ ($T_c = 32$ K) [9] (соответственно светлые и темные символы), рассчитанные в α' -приближении (соответственно сплошная и пунктирная линии) и в $2B\alpha$ -модели (светлая сплошная линия)

Рис.3. Зависимость нормированной плотности сверхпроводящего конденсата в сверхпроводнике $Ba(Fe_{0.9}Co_{0.1})_2As_2$ [10] (точки), рассчитанная в α' -приближении для $\tilde{\lambda}_{12} \sim \tilde{\lambda}_{21} \sim 0.1$ (сплошная линия) и в $2B\alpha$ -модели (светлая сплошная линия)

точность, которая могла быть получена в эксперименте). Однако для аппроксимации экспериментальной кривой в более широком интервале температур вплоть до $T \sim T^*$ малую щель (или α_2) в $2B\alpha$ -модели придется сместить (вообще говоря, уменьшить) относительно точного ее значения: см. рис. 2, на котором пунктирной линией показана соответствующая зависимость при уменьшении малой щели (для $\theta(0) = 0.23$). При этом даже такая аппроксимация в рамках экспериментальной точности удается только в случае относительно сильного межзонного взаимодействия (или в достаточно «грязных» сверхпроводниках).

Вследствие более слабой, по сравнению с $\delta_0(t)$, температурной зависимости $\delta_{1,2}(t)$, скачок теплоемкости в двухзонном БКШ-сверхпроводнике всегда оказывается меньше, чем в $2B\alpha$ -модели. Таким образом, для аппроксимации участка кривой вблизи T_c в $2B\alpha$ -модели придется уменьшить и большую щель относительно ее точного значения. Формально наиболее точно определить щели в $2B\alpha$ -модели можно лишь для взаимодействия $\lambda_{21} \gg \lambda_{22}$. В зависимости от экспериментальной точности $2B\alpha$ кривая может неплохо аппроксимировать экспериментальную и при более мягком условии $\lambda_{21} \sim \lambda_{22}$.

3. СВОЙСТВА СЛОИСТЫХ СВЕРХПРОВОДНИКОВ

Как уже обсуждалось во Введении, для определения параметров ЭФВ реальных сверхпроводников из экспериментальных данных достаточно использовать перенормированные уравнения БКШ при T = 0. Однако свойства реальных сверхпроводников при конечных температурах могут заметно отличаться от рассчитанных в модели БКШ. В частности, известным недостатком применения модели БКШ к сверхпроводникам с сильной связью является заведомо завышенное значение T_c (и, соответственно, заниженное значение величины α), см. табл. 2. Тем не менее для практических расчетов свойств обычных сверхпроводников с сильной связью теория БКШ успешно применяется с учетом эмпирического рецепта, известного как α -модель [18]. Например, для вычисления электронной теплоемкости в α-модели в формуле БКШ (23) следует использовать спектр $\varepsilon(\omega) = \sqrt{\omega^2 + \delta_0^2(t)}$ и положить $\alpha = \alpha^{exp}.$

Успех практического применения эмпирической α -модели, по нашему мнению, заключается в том, что ее результаты могут быть получены теоретиче-

ски формальным введением в ядро уравнения БКШ корректирующего множителя $k_{\alpha} = T_c^{exp}/T_c^0$:

$$\ln \Delta(T) / \Delta(0) = -2 \int_{0}^{\Omega_c} \frac{d\xi}{E_J(\xi)} f\left\{\frac{T_c^{exp}}{T_c^0} \frac{E_J(\xi)}{T}\right\}, \quad (27)$$

гарантирующего правильное значение $T_c = T_c^{exp}$. При этом БКШ-подобное уравнение (27) в точности сохраняет вид уравнения БКШ для приведенной щели $\delta(t)$ от приведенной температуры $t = T/T_c^{exp}$. Такой подход, в отличие от эмпирической α -модели, уместно назвать α -приближением.

В двухзонном случае α -приближение (27) также обеспечивает правильную величину T_c , сохраняя вид уравнений (18), (19). Однако такой подход не является универсальным из-за разной величины поправок сильной связи в зонах. Это легко показать на примере почти независимых ($\lambda_{12} \rightarrow 0, \lambda_{21} \rightarrow 0$) зон сильной и слабой связи $\Delta_1(0) \gg \Delta_2(0)$. В этом случае $\alpha_1 \to \alpha_0, \, \alpha_2 \to \alpha_0 (T^0_{c2}/T^0_{c1})$. Это означает, что для приведенных температур $t \ge t^* = T_{c2}^0/T_{c1}^0 < 1$ щель $\delta_2(t) \to 0$. Таким образом, в реальном масштабе температур критические температуры независимых зон T_{c1} и $T_{c2} \approx T^*$ принимают значения $T_{c1} = T_c^{exp}$ и $T_{c2} = T_c^0 (T_c^{exp}/T_{c1}^0) \ll T_{c2}^0$. Этот пример показывает, что в уравнениях (2) в духе α-приближения необходимо учитывать два поправочных коэффициента вида $k_{1,2} = \beta_{1,2}(\lambda_{IJ})k_{\alpha}$, с одной стороны, обеспечивающих правильное значение $T_{c} = T_{c}^{exp}$, а, с другой стороны, обеспечивающих правильное поведение зоны слабой связи в пределе независимых зон. В уравнениях для приведенных щелей (18), (19) это приведет к переопределению $\alpha_{1,2}$, при этом параметры $\alpha_{1,2}$ уже не будут иметь смысла отношения щелей к критической температуре, так как $\alpha_2/\alpha_1 \neq \theta(0)$, и должны определяться самосогласованно. Спектральные функции $\varepsilon_J(\omega) = \sqrt{\omega^2 + \delta_I^2(t)}$, найденные с помощью двухзонных БКШ-подобных уравнений, могут быть использованы для обобщения а-модели на случай двух зон. В общем случае такую программу реализовать довольно сложно. Однако для зон сильной и слабой связи в пределе $\lambda_{12} \ll 1$ поправочные коэффициенты легко находятся: $k_1 = k_{\alpha}, k_2 = 1$. При этом $\alpha_1 = \alpha_0, \ \alpha_2 = \alpha_2^{exp}$ и критические температуры в пределе независимых зон оказываются равными $T_{c1} = T_c^{exp}$ и $T_{c2} = T_{c2}^0$. (Такой подход мы применяли при расчете температурных зависимостей плотности сверхпроводящего конденсата и лондоновской глубины проникновения в сверхпроводнике $Ba(Fe_{0.9}Co_{0.1})_2As_2$ [22].)

⁶ ЖЭТФ, вып.2(8)

Рассмотренный пример легко обобщить и на конечные $\tilde{\lambda}_{12}$, переопределяя параметры в уравнениях (18), (19): $\alpha_2 = \alpha_2^{exp}$ и $\alpha_1 \to \alpha'$, где α' определяется уравнением (15) и условием самосогласования $\alpha'_1 \theta'(0) = \alpha_2^{exp}$. При этом преобразовании параметр t сохраняет смысл приведенной температуры ($\delta_{1,2}(t = 1) = 0, t = T/T_c^{exp}$). (Отметим, что уравнения в α - и α' -приближениях сохраняют вид уравнений БКШ, свойства которых подробно рассмотрены в разд. 2.) БКШ-подобные уравнения в α' -приближении описывают двухзонные сверхпроводники, в которых связь в одной из зон можно считать слабой. К таким системам как раз и относятся практически все слоистые сверхпроводники.

Обобщенную α -модель в α' -приближении мы применили для теоретического анализа результатов туннельного исследования двухщелевой сверхпроводимости в системе $Mg_{1-x}Al_xB_2$ [9]. Затравочные константы ЭФВ λ_{IJ}^0 были вычислены нами для $\Omega_c = 67.76$ мэВ и $\mu_{IJ}^* \approx 0.12$ по экспериментальным значениям $\Delta_{1,2}(0)$, $\theta(T \to T_c)$ и энергии леггеттовского плазмона Ω_L , определяемой уравнением Леггетта [15] (28), (29) при $T \to 0$

$$\Omega_L^2(t) = 4\Delta_1(0)\Delta_2(0)\delta_1(t)\delta_2(t) \times \\ \times \left\{ \tilde{\lambda}_{12}I_1^{-1}(\Omega_L, t) + \tilde{\lambda}_{21}I_2^{-1}(\Omega_L, t) \right\}, \quad (28)$$

 $I_J(\Omega_L, t) =$

$$=\delta_J^2(t)\int_0^\infty \frac{d\omega}{\varepsilon_J(\omega)} \frac{\operatorname{th}\left(\alpha_J\varepsilon_J(\omega)/2t\right)}{\varepsilon_J^2(\omega) - \left(\Omega_L/2\Delta_J(0)\right)^2} \quad (29)$$

практически однозначно [20]. (Затравочные константы ЭФВ λ_{IJ}^0 для образцов системы Mg_{1-x}Al_xB₂ с $T_c \approx 32$ К и $T_c \approx 40$ К приведены в табл. 2, 4.) Расчеты в α' -приближении показали очень хорошее совпадение с экспериментом [9] не только температурных зависимостей обеих щелей $\Delta_{1,2}(T)$, но и энергии моды Леггетта $\Omega_L(T)$, чрезвычайно чувствительной как к межзонному, так и к внутризонному взаимодействиям (см. рис. 2).

Такой же метод мы использовали в расчете температурной зависимости плотности сверхпроводящего конденсата в сверхпроводнике $Ba(Fe_{0.9}Co_{0.1})_2As_2 c T_c \approx 20 K [10]: \rho_s(t) = \rho_{s1}(t) + \rho_{s2}(t)$, где $\rho_{sJ}(t)$ — плотность сверхпроводящего конденсата в зоне J [22]:

$$\rho_{sJ}(t) = \left(\omega_{pl}^2\right)_J \left\{ \frac{\delta_J(t)}{\tilde{\gamma}_{imp}^J} \operatorname{th} \frac{\alpha_J \delta_J(t)}{2t} - \frac{2}{\pi} \delta_J^2(t) \int_0^\infty \frac{d\omega}{\varepsilon_J(\omega)} \frac{\operatorname{th} \left(\alpha_J \varepsilon_J(\omega)/t\right)}{\omega^2 + \left(\tilde{\gamma}_{imp}^J\right)^2} \right\}, \quad (30)$$

 $(\omega_{pl}^2)_J$ — квадрат плазменной частоты и $\tilde{\gamma}_{imp}^J$ = $= \gamma_{imp}^J / \Delta_J(0)$ — нормированная скорость релаксации в зоне Ј. Как мы уже упоминали, пниктиды/халькогениды железа изучены еще недостаточно полно. Для них данные о виде взаимодействия в настоящее время практически отсутствуют. Оптические измерения [10] позволяют надежно определить только величину малой щели $\Delta_2(0) \approx 15 \text{ см}^{-1}$. Большая щель определяется гораздо менее точно: $\Delta_1(0) \approx 30$ –35 см⁻¹. Однако из-за относительной малости $(\omega_{nl}^2)_1$ [22] это обстоятельство не сильно влияет на вид температурной зависимости плотности сверхпроводящего конденсата. Результаты расчетов показаны на рис. 3. Наши расчеты показали, что в сверхпроводнике $Ba(Fe_{0.9}Co_{0.1})_2As_2$ имеет место очень слабое межзонное взаимодействие $\lambda_{12} \sim \lambda_{21} \sim 0.1$, вследствие чего в этом сверхпроводнике возможно обнаружение низкочастотного леггеттовского плазмона с энергией $\Omega_L(0) > 12$ см⁻¹. К сожалению, из-за сильной чувствительности Ω_L к величине щели $\Delta_1(0)$ (см. (28)) сделать более точную оценку энергии плазмона не удается.

Большинство слоистых сверхпроводников исследовано еще менее подробно, и их характеристики определяют косвенными методами с использованием теоретических моделей; в частности, для определения щелей $\Delta_{1,2}(0)$ по известной зависимости $C_s(T)$ применялась $2B\alpha$ -модель [11, 12]. В этих работах было продемонстрировано хорошее соответствие экспериментальных зависимостей $C_s(T)$ сверхпроводников $Mg^{11}B_2$ (T_c = 38.7 K) [11] и $Ba(Fe_{0.95}Co_{0.075})_2As_2$ ($T_c = 21.4$ K) [12] с рассчитанными в 2Ва-модели во всем диапазоне температур. Как уже обсуждалось в разд. 2, такое хорошее соответствие в двухзонной модели БКШ (и в обобщенной α-модели) может наблюдаться при условии $\lambda_{21} > \lambda_{22}$, т. е. заведомо в некотором диапазоне констант ЭФВ. Расчет электронной теплоемкости таких сверхпроводников позволяет оценить возможности применения обобщенной α-модели для анализа реальных экспериментальных зависимостей $C_s(T)$.

Результаты наших расчетов теплоемкости $Mg^{11}B_2$ и $Ba(Fe_{0.95}Co_{0.075})_2As_2$ (в табл. 3, 4 для краткости Ba(FeCo)As) в обобщенной α -модели показаны на рис. 4 и также приведены в табл. 3, 4.

Образец	Приближение	$\tilde{\lambda}_{12}^{max}$	$\tilde{\lambda}_{21}^{min}$	$\alpha_1\left(\tilde{\lambda}_{12}^{max},\tilde{\lambda}_{21}^{min}\right)$	$\alpha_2\left(\tilde{\lambda}_{12}^{max},\tilde{\lambda}_{21}^{min}\right)$	Δ_1 , мэВ	Δ_2 , мэВ
$Mg^{11}B_2$	α'	1.9	2.75	2.3088	0.5997	7.77	2.0
[11]	$2B\alpha$	_	_	2.2	0.6	7.337	2.0
Ba(FeCo)As	α'	0.45	0.25	2.4875	0.9748	4.587	1.797
[12]	$2B\alpha$	_	_	2.2	0.95	4.057	1.752

Таблица 3. Параметры сверхпроводников $Mg^{11}B_2$ и $Ba(Fe_{0.95}Co_{0.075})_2As_2$ (Ba(FeCo)As), определенные по температурной зависимости электронной теплоемкости соответственно в обобщенной α -модели (α') и двухзонной α -модели ($2B\alpha$) [11, 12]

Таблица 4. Затравочные константы ЭФВ сверхпроводников $Mg^{11}B_2$ и $Ba(Fe_{0.95}Co_{0.075})_2As_2$ (Ba(FeCo)As), определенные по температурной зависимости электронной теплоемкости в обобщенной α-модели. Для сравнения в таблице представлены данные, полученные из туннельных измерений MgB_2 [20]

Образец	Аппроксимация	λ_{11}^0	λ_{22}^0	λ_{12}^0	λ_{21}^0	μ^*	$\Omega_c,$ мэВ	$\theta(0)$	T_c, \mathbf{K}
MgB_2 [20]	_	0.921	0.43	0.124	0.157	0.12	67.76	0.25	40.5
$Mg^{11}B_2$ [11]	1	0.78	0.228	0.205	0.209				
	2	0.767	0.204	0.124	0.22	0.12	67.76	0.26	38.7
Ba(FeCo)As [12]	1	0.889	0.531	0.204	0.157				
	2	0.85	0.289	0.128	0.275	0.12	≈ 30.0	0.39	21.4

В пределах экспериментальных погрешностей кривые теплоемкости, представленные в работах [11] и [12], хорошо аппроксимируются семейством кривых с эффективными константами взаимодействия $\tilde{\lambda}_{12} \leq \tilde{\lambda}_{12}^{max}, \tilde{\lambda}_{21} \geq \tilde{\lambda}_{21}^{min}$ и параметрами $\alpha_{1,2}$, изменяющимися от указанных в табл. 3 (аппроксимация 1) до их значений в $2B\alpha$ -модели. Последние практически достигаются при межзонном взаимодействии $\tilde{\lambda}_{12} \sim 0.1 \ll \tilde{\lambda}_{21} \sim 3.5$ (аппроксимация 2). По формальным критериям аппроксимации параметры аппроксимации 2 близки к оптимальным. На рис. 4 значения аппроксимации 2 показаны светлыми символами. Кривые аппроксимации 1, тождественно совпадающие с результатами $2B\alpha$ -модели (светлые кривые), на этом рисунке не показаны.

Сравнение щелей (табл. 3) $\Delta_{1,2}(0)$ в Mg¹¹B₂ ($T_c = 38.7$ K) и в MgB₂ ($T_c = 40.5$ K), $\Delta_1(0) \approx \approx 10$ мэВ, $\Delta_2(0) \approx 2.6$ мэВ [9] указывает на различную степень дефектности сравниваемых образцов. Однако такое различие не может быть объяснено упругим межзонным рассеянием на примесях, которое должно увеличивать величину малой щели [3]. Скорее это можно связать с изменением электрон-фононного рассеяния из-за дефектов кристаллической структуры. Малая щель в Ва(Fe_{0.925}Co_{0.075})₂As₂ с $T_c = 21.4$ К хорошо согласуется с надежно определенной из оптических измерений [10] Ва(Fe_{0.9}Co_{0.1})₂As₂ с $T_c \approx 20$ К $\Delta_2(0) \approx$ ≈ 15 см⁻¹ (1.85 мэВ). Большая щель в оптических измерениях определяется менее точно: $\Delta_1(0) \geq$ > 30 см⁻¹ (3.9 мэВ).

Использованный нами метод расчета позволяет определить не только эффективные межзонные константы, но и все константы ЭФВ в исследованных образцах. Полагая $\Omega_c = 67.76 \text{ мэВ} (\text{Mg}^{11}\text{B}_2),$ $\Omega_c \approx 30$ мэВ (Ba(FeCo)As) [23], $\mu^* = 0.12$ и используя формулы (10), (8), (2), мы можем определить все константы ЭФВ λ_{IJ}^0 (см. табл. 4). В табл. 4 для сравнения приведены данные образца MgB₂ с $T_c = 40.5 \text{ K}$, определенные нами из туннельных экспериментов [20]. Отметим, что найденные нами константы $\Theta \Phi B \ \mathrm{Mg}^{11} B_2$ весьма близки к полученным в расчетах ab initio (см. табл. 1). Сравнение констант ЭФВ, найденных по аппроксимациям 1, 2, показывает, что минимальная точность определения констант ЭΦВ обобщенной α-модели оказывается, во всяком случае, не хуже максимальной точности расчетов ab initio, что следует признать очень хорошим результатом. Сравнение же $\Im \Phi B$ в $Mg^{11}B_2$ [11] с образцом MgB₂ [20] действительно указывает на их

Рис. 4. Электронные теплоемкости $Mg^{11}B_2$ [11] (*a*) и $Ba(Fe_{0.925}Co_{0.075})_2As_2$ [12] (*б*) (темные точки), их вид в $2B\alpha$ -модели (светлые сплошные линии) и в α' -приближении (светлые точки) для указанных в табл. 3 параметров (аппроксимация 1)

значительные различия. Такое сравнение указывает, во-первых, на существенное увеличение межзонного $\Im \Phi B$, особенно заметное для констант спаривания (4): соответственно $\tilde{\lambda}^0_{12} = 0.085, \, \tilde{\lambda}^0_{12} = 0.089$ и $\tilde{\lambda}^0_{12} = 0.004, \, \tilde{\lambda}^0_{12} = 0.037.$ Во-вторых, оно указывает на сильное увеличение (практически, выравнивание по отношению к внутризонному, как и в трехмерном случае) межзонного рассеяния в *π*-зоне. К подобным эффектам могли бы привести дефекты в магниевой плоскости [3]. Рассчитанная величина внутризонной константы $Ba(Fe_{0.925}Co_{0.075})_2As_2, \lambda_{22}^0 \leq 0.53$, хорошо согласуется с оцененной ранее из оптических измерений нормального состояния $\mathrm{Ba}(\mathrm{Fe}_{0.9}\mathrm{Co}_{0.1})_2\mathrm{As}_2$ $\lambda_{22}^0 \approx 0.45$ [22]. Заметим также, что найденные нами «оптимальные» межзонные константы ЭФВ (аппроксимация 2), как и можно было ожидать, удовлетворяют сформулированным в разделе двум критериям применимости 2Вα-модели.

4. ЗАКЛЮЧЕНИЕ

В настоящей работе проведен последовательный теоретический анализ общих свойств двухзонных сверхпроводников. На основе предложенного нами корректного обобщения а-модели для двухзонных сверхпроводников рассчитаны температурные зависимости щелей и энергий мод Леггетта в сверхпроводящей системе Mg_{1-x}Al_xB₂ и плотности сверхпроводящего конденсата в сверхпроводнике Ва(Fe_{0.9}Co_{0.1})₂As₂. Указано на очень слабое межзонное взаимодействие в этом соединении и на возможность обнаружения в нем леггеттовского коллективного возбуждения. Рассчитана температурная зависимость теплоемкости двухщелевых слоистых сверхпроводников Mg¹¹B₂ и $Ba(Fe_{0.925}Co_{0.075})_2As_2.$ Определены величины щелей и констант электрон-фононного взаимодействия этих сверхпроводников. Показано хорошее совпадение всех рассчитанных нами характеристик с экспериментальными данными и имеющимися расчетами ab initio. Также показано, что часто использующаяся для определения щелей по экспериментальной зависимости электронной теплоемкости $C_s(T)$ эмпирическая двухзонная α -модель применима только к сверхпроводникам с относительно сильным межзонным рассеянием, причем значения щелей, определяемых с применением этой модели, оказываются заниженными. Проведенный нами теоретический анализ свойств слоистых сверхпроводников показал, что они последовательно описываются в рамках стандартной теории сверхпроводимости, основанной на электрон-фононном взаимодействии.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 09-02-00560, 10-02-00614, 11-02-00199, 11-02-00615) и в рамках Программы фундаментальных исследований Отделения физических наук РАН «Сильно коррелированные электроны в твердых телах и структурах».

ЛИТЕРАТУРА

- G. Gladstone, M. A. Jensen, and J. R. Schrieffer, in *Superconductivity*, ed. by R. D. Parks, New York (1969).
- 2. J. J. Hopfield, Phys. Rev. 186, 443 (1969).
- J. Kortus, O. V. Dolgov, and R. K. Kremer, Phys. Rev. Lett. 94, 027002 (2005).

- M. Putti, C. Ferdegrini, M. Monni et al., Phys. Rev. B 71, 144505 (2005).
- P. Szabo, P. Samuely, Z. Pubalova et al., Phys. Rev. B 75, 144507 (2007).
- D. Daghero, D. Delaude, A. Galzolani et al., J. Phys.: Condens. Matter 20, 085225 (2008).
- G. A. Ummarino, R. S. Gonnelli, S. Massida, and A. Bianconi, Physica C 407, 121 (2004).
- J. A. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).
- Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev et al., Sol. St. Comm. 129, 85 (2004).
- B. Gorshunov, D. Wu, A. A. Voronkov et al., Phys. Rev. B, Rap. Comm. 81, 060509 (2010).
- 11. R. A. Fisher, F. Bouquet, N. E. Phillips et al., Europhys. Lett. 56, 856 (2001).
- 12. F. Hardy, T. Wolf, R. A. Fisher et al., Phys. Rev. B 81, 060501(R) (2010).
- A. A. Golubov, J. Kortus, O. V. Dolgov et al., J. Phys.: Condens. Matter 14, 1353 (2002).

- 14. H. J. Choi, D. Roundy, H. Sun et al., Phys. Rev. B 66, 020513 (2002).
- 15. A. J. Leggett, Progr. Theor. Phys. 36, 901 (1966).
- 16. S. G. Sharapov, V. P. Gusynin, and H. Beck, Eur. Phys. J. B 30, 45 (2002).
- 17. Проблема высокотемпературной сверхпроводимости, под ред. В. Л. Гинзбурга, Д. А. Киржница, Наука, Москва (1977).
- 18. H. Padamsee, J. E. Neighbor, and C. A. Shiffman, J. Low Temp. Phys. 12, 387 (1973).
- 19. E. J. Nicol and J. P. Carbotte, Phys. Rev. B 71, 054501 (2005).
- **20**. А. Е. Каракозов, Е. Г. Максимов, Я. Г. Пономарев, Письма в ЖЭТФ **91**, 26 (2010).
- 21. А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической механике, ГИФМЛ, Москва (1962).
- 22. E. G. Maksimov, A. E. Karakozov, B. P. Gorshunov et al., Phys. Rev. B 83, 140502(R) (2011).
- L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. 101, 026403 (2008).