ИЗМЕНЕНИЕ ТИПА СПАРИВАНИЯ С РОСТОМ УРОВНЯ ДОПИРОВАНИЯ ЦЕРИЕМ В ЭЛЕКТРОННОМ СВЕРХПРОВОДНИКЕ $Nd_{2-x}Ce_xCuO_{4+\delta}$

Т. Б. Чарикова^а^{*}, Г. И. Харус^а, Н. Г. Шелушинина^а, О. Е. Петухова^а, А. А. Иванов^b

^а Институт физики металлов Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

^b Московский государственный инженерно-физический институт 115410, Москва, Россия

Поступила в редакцию 10 марта 2011 г.

Представлены результаты исследования температурных зависимостей сопротивления электронного сверхпроводника $\operatorname{Nd}_{2-x}\operatorname{Ce}_x\operatorname{CuO}_{4+\delta}$ с x=0.14 (недодопированная область), x=0.15 (область оптимального допирования) и x=0.18 (передопированная область) и с разной степенью отжига в бескислородной атмосфере в магнитных полях до H=90 к \ni ($H\parallel c, J\parallel ab$) в интервале температур T=(0.4-300) К. Показано, что существующие различия в поведении зависимостей наклона верхнего критического поля $(dH_{c2}/dT)|_{T_c}$ от степени беспорядка в системе $\operatorname{Nd}_{2-x}\operatorname{Cex}\operatorname{CuO}_{4+\delta}$ при изменении уровня допирования церием свидетельствуют об изменении симметрии спаривания d-типа на анизотропное s-спаривание.

1. ВВЕДЕНИЕ

В настоящее время в результате многочисленных экспериментов достаточно однозначно установлено, что в допированных электронных сверхпроводниках $Nd_{2-x}Ce_xCuO_{4+\delta}$ и $Pr_{2-x}Ce_xCuO_{4+\delta}$ при оптимальном допировании симметрия куперовского спаривания соответствует симметрии $d_{x^2-y^2}$ -типа [1–3]. Однако до сих пор дискуссионным остается вопрос о симметрии спаривания в электронных сверхпроводниках при изменении уровня допирования. Температурные исследования магнитной глубины проникновения в соединениях $\Pr_{2-x} \operatorname{Ce}_x \operatorname{CuO}_{4-\delta}$ и $La_{2-x}Ce_xCuO_{4-\delta}$ [4] и в экспериментах по спектроскопии точечных контактов между нормальным металлом и электронно допированным сверхпроводником $Pr_{2-x}Ce_xCuO_4$ при исследовании андреевских связанных состояний [5] позволяют предположить возможность изменения симметрии спаривания *d*-типа на *s*-тип с ростом уровня допирования церием. Подобный переход от волновой *d*-симметрии к симметрии спаривания другого типа при изменении уровня допирования был теоретически рассмотрен в работе [6]. В настоящее время обсуждается

вопрос о немонотонном поведении сверхпроводящей щели при условии спаривания d-типа. На немонотонное поведение параметра порядка указывают результаты исследования низкоэнергетического электронного рамановского рассеяния в $Nd_{2-x} Ce_x CuO_4$ [7], результаты исследования фотоэмиссионной спектроскопии с угловым разрешением (ARPES) для $Pr_{0.89}LaCe_{0.11}CuO_4$ [8], а также теоретические расчеты оптической проводимости и интенсивности рамановского рассеяния для электронных соединений [9].

Согласно теореме Андерсона для обычного s-спаривания, введение в систему нормальных немагнитных примесей не приводит к разрушению сверхпроводимости [10]. При симметрии спаривания *d*-типа введение нормальных примесей в систему должно приводить к быстрому разрушению сверхпроводимости. Другой возможный тип анизотропного спаривания — анизотропное *s*-спаривание, при котором имеют место нули функции щели на поверхности Ферми, но параметр порядка не меняет знака. В теоретических работах [11, 12] было показано, что контролируемое введение немагнитных примесей (введение беспорядка) приводит к принципиальному различию в поведении плотности состояний на уровне Ферми для двух типов анизотропного спаривания. Изменение температурного наклона верхнего крити-

^{*}E-mail: charikova@imp.uran.ru

ческого поля $(dH_{c2}/dT)|_{T_c}$ в зависимости от степени беспорядка в системе обсуждалось в работе Посаженниковой и Садовского [13], и было теоретически показано, что в сверхпроводниках с *d*-спариванием величина наклона второго критического поля должна быстро уменьшаться с ростом степени разупорядочения, а в случае анизотропного *s*-спаривания наклон поля должен увеличиваться с ростом степени беспорядка.

На пленках YBaCuO и Nd_{1.85}Ce_{0.15}CuO₄ проводились исследования верхнего критического поля H_{c2} в зависимости от степени облучения атомами He⁺ и наблюдалось уменьшение H_{c2} с ростом беспорядка [14]. Было проведено исследование магнитосопротивления на эпитаксиальных пленках Nd_{2-x}Ce_xCuO_{4+ δ} с разным содержанием кислорода и оценена величина наклона верхнего критического поля для оптимально допированного и оптимально отожженного образца равная $dH_{c2}/dT = -3.5 \pm \pm 0.3 \text{ k}\Im/\text{K}$ [15].

Целью нашей работы было экспериментальное определение температурного наклона верхнего критического поля, а также температуры сверхпроводящего перехода в зависимости от степени нестехиометрического беспорядка в $Nd_{2-x}Ce_xCuO_{4+\delta}$ для выяснения типа анизотропного спаривания (*d*- или *s*-) в электронных сверхпроводниках при изменении уровня допирования.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Были исследованы эпитаксиальные монокристаллические пленки $Nd_{2-x}Ce_xCuO_{4+\delta}$, синтезированные методом импульсного лазерного напыления [16], с x = 0.14 (недодопированная область), x = 0.15 (область оптимального допирования) и x = 0.18 (передопированная область) с ориентацией (001) — ось с перпендикулярна подложке $SrTiO_3$. Пленки были подвергнуты термообработке (отжигу) при различных условиях для получения образцов с разным содержанием кислорода.

1. Для пленок с x = 0.14 было получено три вида образцов: без отжига; оптимально отожженные в вакууме (t = 25 мин, T = 780 °C, $p = 10^{-2}$ мм рт. ст.); неоптимально отожженные в вакууме (t = 5, 20, 30,64 мин, T = 780 °C, $p = 10^{-2}$ мм рт. ст.). Толщина пленок составляла d = 200 Å.

2. Для пленок с x = 0.15: без отжига; оптимально отожженные в вакууме (t = 60 мин, T = 780 °C, $p = 10^{-2}$ мм рт. ст.); неоптимально отожженные в вакууме (t = 40 мин, T = 780 °С, $p = 10^{-2}$ мм рт. ст.). Толщина пленок d = 1200-2000 Å.

3. Для пленок с x = 0.18: без отжига; оптимально отожженные в вакууме (t = 35 мин, T = 600 °C, $p = 10^{-5}$ мм рт. ст.); неоптимально отожженные в вакууме (t = 10, 15, 25, 60 мин, T = 600 °C, $p = 10^{-5}$ мм рт. ст.). Толщина пленок d = 3100-3800 Å.

В исследованных пленках, как уже подробно обсуждалось в работе [17], нельзя точно определить значение величины δ (содержание кислорода) в процессе обработки. Определить изменение концентрации кислорода возможно только в объемных образцах (например, в керамике) термогравиметрическим методом. Кислород — легкий элемент, его относительные изменения очень малы в ходе отжига (порядка 1 %), масса самой пленки также очень мала, поэтому невозможно зафиксировать изменения гравиметрическими методами. Параметры решетки в $Nd_{2-x}Ce_{x}CuO_{4+\delta}$, в отличие от $YBa_{2}Cu_{3}O_{7-x}$, также не зависят от кислородного индекса. Поэтому последовательно подвергая образцы отжигу в различных условиях (без отжига, неоптимальный отжиг в бескислородной атмосфере, оптимальный отжиг в бескислородной атмосфере и отжиг в кислороде), можно говорить, что происходит изменение содержания кислорода. В объемных образцах (например, в порошках) можно оценить относительное изменение кислорода гравиметрическими методами. Однако точно установить величину δ даже в объемных образцах практически невозможно. Сравнение результатов исследования транспортных свойств [17] с результатами исследования структуры методом нейтронной дифракции на отожженных и накислороженных образцах [18] подтверждает наши представления о том, что в соединении $Nd_{2-x}Ce_xCuO_{4+\delta}$, отожженном в кислороде или без отжига, кислород занимает апексные позиции O(3), а после отжига в бескислородной атмосфере данные позиции освобождаются.

В качестве количественной величины изменения содержания кислорода в соединении мы приняли изменения параметра $k_F \ell = (hc_0)/\rho_{ab}e^2$ — параметр беспорядка для разупорядоченных электронных систем [19]. Таким образом, мы использовали косвенный метод оценки содержания нестехиометрического кислорода по измерениям длины свободного пробега носителей заряда в кинетических экспериментах [17].

Измерения температурной зависимости сопротивления в интервале температур T = (4.2-300) К проводились 4-контактным методом на постоянном

токе. В интервале температур T = (1.8-40) К и в магнитных полях до 90 кЭ измерения $\rho(T)$ были проведены на СКВИД-магнитометре MPMS XL (ИФМ УрО РАН). Измерения зависимости сопротивления от магнитного поля в интервале температур T = (0.4-4.2) К были выполнены 4-контактным методом в соленоиде «Oxford Instruments» в магнитных полях до 120 кЭ (ИФМ УрО РАН).

На рис. 1 представлены температурные зависимости сопротивления монокристаллических пленок $Nd_{2-x}Ce_xCuO_{4+\delta}$ с x = 0.14 (рис. 1*a*), x = 0.15(рис. 1*б*) и x = 0.18 (рис. 1*a*) в интервале температур T = (1.8-300) К. Наши исследования показывают, что разное время отжига в бескислородной атмосфере приводит к изменению температурной зависимости сопротивления и соответствует различной степени беспорядка в системе [17]. Как и в случае оптимального допирования при x = 0.15 [2], поведение сопротивления и сверхпроводящий переход (СП) в

Рис. 1. Температурные зависимости удельного сопротивления $Nd_{2-x}Ce_xCuO_{4+\delta}/SrTiO_3$ (001) с разным уровнем допирования и с разной степенью беспорядка в зависимости от условий отжига. а) Область недодопирования: 🛦 — оптимальный отжиг в вакууме, $k_F\ell~=~2.47;$ неоптимальный отжиг в вакууме: $\blacksquare - k_F \ell = 2.16$, $\bullet - k_F \ell = 2.34$, \star $k_F \ell = 3.53, \ \mathbf{\nabla} - k_F \ell = 3.23; \circ -$ без отжига; б) область оптимального допирования: 🛦 — оптимальный отжиг в вакууме, $k_F \ell = 51.6$, \blacksquare — неоптимальный отжиг в вакууме, $k_F \ell = 9.1, \circ -$ без отжига, $k_F \ell = 8.6$; в) область передопирования: ■ оптимальный отжиг в вакууме, $k_F \ell = 44.4$; неоптимальный отжиг в вакууме: $\circ - k_F \ell = 5.0$, **\blacktriangle** $k_F \ell = 19.3, \bullet - k_F \ell = 25.1, \lor - k_F \ell = 13.3.$ Ha вставках приведены зависимости ho(T) в интервале температур T = (1.8-30) К

недодопированной и в передопированной областях существенно зависят от условий отжига. Наиболее резкий СП-переход в пленках $Nd_{2-x}Ce_xCuO_{4+\delta}$ с x = 0.14 и x = 0.18 наблюдается при оптимальном отжиге. Подробно поведение $\rho(T)$ в недодопированной области обсуждалось в нашей работе [3]. В передопированной области зависимость $\rho(T)$ имеет металлический характер и переход в сверхпроводящее состояние при всех температурных обработках пленок. В соединении без отжига передопированной области СП-переход отсутствует, однако зависимость $\rho(T)$ — металлическая во всем интервале температур T = (1.8-300) К. В таблице приведены значения температуры СП-перехода (T_c^{onset} — температура начального отклонения величины сопротивления от значения сопротивления в нормальном состоянии, *T_c* — температура полного перехода в сверхпроводящее состояние) и параметра $k_F \ell$ для всех исследованных эпитаксиальных пленок $Nd_{2-x}Ce_xCuO_{4+\delta}$.

06	1. 0	/l-T	Tonset V	TV		
Ооразцы	$\kappa_F \ell$	$\gamma/\kappa I_{c0}$	I_c^{onset}, K	I_c, K	H_{c2}, KS	$ aH_{c2}/aI , \ \mathrm{KS}/\mathrm{K}$
$\mathrm{Nd}_{1.85}\mathrm{Ce}_{0.15}\mathrm{CuO}_{4+\delta}$						
1	51.6	1.99	21.0	20.0	60.9	-4.5
2	9.1	11.3	16.5	15.0	48.4	-4.1
3	8.6	12.0	12.3	3.0	13.1	-0.8
$\mathrm{Nd}_{1.86}\mathrm{Ce}_{0.14}\mathrm{CuO}_{4+\delta}$						
1	2.47	66.9	12.1	8.6	28.0	-2.4
2	2.16	76.6	9.9	_	4.4	-1.8
3	2.34	70.6	11.7	_	16.3	-1.9
4	3.53	46.8	8.9	_	9.6	-1.7
5	3.23	51.2	8.7	_	10.0	-1.7
$\mathrm{Nd}_{1.82}\mathrm{Ce}_{0.18}\mathrm{CuO}_{4+\delta}$						
1	44.4	10.2	7.7	6.4	7.6	-1.4
2	5.0	89.0	9.2	4.3	10.0	-2.8
3	19.3	23.8	10.2	6.2	10.0	-2.2
4	25.1	18.3	9.7	6.1	17.0	-2.2
5	13.3	34.4	9.8	5.3	8.0	-1.4

Таблица. Основные параметры, полученные для образцов $Nd_{2-x}Ce_xCuO_{4+\delta}$ с различной степенью беспоряд-

ка

Примечание. Образцы с x = 0.15: 1 — оптимальный отжиг, 2 — неоптимальный отжиг, 3 — без отжига; образцы с x = 0.14, 0.18: 1 — оптимальный отжиг, 2, 3, 4, 5 — неоптимальный отжиг. Значение H_{c2} указано для минимальной температуры, при которой проведены измерения.

Зависимость СП-перехода в соединениях с x = 0.15 от внешнего магнитного поля рассмотрена в работе [2]. При увеличении внешнего магнитного поля СП-переход в соединении $Nd_{2-x}Ce_xCuO_{4+\delta}$ с x = 0.15 и при оптимальном отжиге, оставаясь достаточно резким, смещается в область более низких температур. В полях H > 70 кЭ мы наблюдали переход в нормальное состояние. Аналогичное поведение наблюдается и в соединении с неоптимальным отжигом, в этом случае T_c меньше и составляет 15 К. Переход в нормальное состояние происходит в поле H > 55 кЭ. В соединении $Nd_{2-x}Ce_xCuO_{4+\delta}$ без отжига с x = 0.15 наблюдается размытый СП-переход с $T_c = 3.0$ К, а переход в нормальное состояние происходит уже в полях H > 15 кЭ.

Зависимость СП-перехода в соединениях с x = 0.14 [3] и с x = 0.18 (рис. 2) от внешнего магнитного поля очень сильная, однако величина верхнего критического поля меньше по сравнению с H_{c2} для оптимально допированного соединения (см. таблицу).

Существенно различаются зависимости $H_{c2}(T)$ для разных уровней допирования (рис. 3). Используя резистивный метод определения верхнего критического поля, мы построили зависимости $H_{c2}(T)$ на уровне 0.5 ρ_n для образцов с x = 0.15, x = 0.14 и x = 0.18 и разным временем отжига. В ближайшей окрестности T_c поведение верхнего критического поля как в недодопированных, так и в передопированных соединениях отличается от поведения $H_{c2}(T)$ в оптимально допированных соединениях, независимо от степени отжига.

На рис. 3 видно, что зависимость $H_{c2}(T)$ для соединений недодопированной и передопированной областей напоминает зависимость $H_{c2}(T)$ для обычных сверхпроводников: $dH_{c2}/dT \approx \text{const.}$ Темпе-

Рис.2. Температурные зависимости удельного сопротивления монокристаллических пленок $Nd_{2-x}Ce_xCuO_{4+\delta}$ с x = 0.18 (область передопирования) с различной степенью беспорядка во внешнем магнитном поле $0 \le H \le 90$ кЭ ($H \parallel c, J \parallel ab$): a — оптимальный отжиг в вакууме, $k_F \ell = 44.4$; неоптимальный отжиг в вакууме: $\delta - k_F \ell = 44.4$; $e - k_F \ell = 19.3$, $e - k_F \ell = 25.1$, $d - k_F \ell = 13.3$

Рис. 3. Температурная зависимость верхнего критического поля электронного сверхпроводника $Nd_{2-x}Ce_{x}CuO_{4+\delta}$ для областей с разным уровнем допирования церием: а) область оптимального допирования: • — оптимальный отжиг в вакууме, $k_F \ell = 51.6; \ \blacktriangle$ — неоптимальный отжиг в вакууме, $k_F \ell = 9.1; \blacksquare -$ без отжига, $k_F \ell = 8.6; \delta$) область недодопирования: • — оптимальный отжиг в вакууме, $k_F \ell = 2.47$; неоптимальный отжиг в вакууме: $\star - k_F \ell = 2.16, \ \blacktriangle - k_F \ell = 2.34, \ \blacklozenge - k_F \ell = 3.53,$ $\Box - k_F \ell = 3.23; e$) область передопирования: * – оптимальный отжиг в вакууме, $k_F \ell = 44.4$; неоптимальный отжиг в вакууме: $\blacktriangle - k_F \ell = 5.0, \Box$ $k_F\ell = 19.3, \, \circ - k_F\ell = 25.1, \, \Diamond - k_F\ell = 13.3.$ Линии проведены для удобства

ратурная зависимость верхнего критического поля $H_{c2}(T)$ образцов из области оптимального допирования (рис. 3) имеет более сложный вид: при $T \to T_c$ происходит уменьшение величины $(dH_{c2}/dT)|_{T \to T_c}$ и при $T = T_c$ практически невозможно определить величину dH_{c2}/dT . Аналогичные результаты были получены в работе [20] для недодопированных монокристаллов YBa₂Cu₃O_{6+x}, где существенная нелинейность зависимости $H_{c2}(T)$ при $T \to T_c$ описывалась в рамках модели биполяронной сверхпроводимости [21]. Целью нашей работы было изучить влияние беспорядка на изменение величины производной верхнего критического поля по температуре температурного наклона второго критического поля, который мы определяли вблизи Т_с. Это было теоретически рассмотрено в работе [13], и в модели примесного сверхпроводника был введен параметр беспорядка γ/kT_{c0} , где

 h^*

2

1

Рис.4. Экспериментальная зависимость наклона верхнего критического поля от параметра беспорядка в монокристаллических пленках $Nd_{2-x}Ce_xCuO_{4+\delta}$. Для сравнения приведены теоретические зависимости для случая анизотропного *s*-спаривания (зависимость 1) и для случая *d*-спаривания (зависимость 2) [13]. Линии 3, 4, 5 проведены для удобства

$$\gamma = \frac{\hbar}{2\tau} = \frac{\pi \hbar^2 n_s}{m(k_F \ell)},\tag{1}$$

т — время релаксации импульса электронов за счет
рассеяния на нормальных примесях, *n_s* — концентрация носителей в слое, *m* — масса электрона.

Для соединения $\operatorname{Nd}_{2-x}\operatorname{Ce}_x\operatorname{CuO}_{4+\delta}$ с разным уровнем допирования церием (x = 0.15, 0.18, 0.14) и разной степенью нестехиометрического беспорядка были определены параметр беспорядка γ/kT_{c0} (1) и наклон верхнего критического поля $(dH_{c2}/dT)|_{T\to T_c}$ (см. таблицу).

На рис. 4 приведена зависимость наклона верхнего критического поля от параметра беспорядка в монокристаллических пленках $Nd_{2-x}Ce_xCuO_{4+\delta}$ с x = 0.14 и x = 0.18. Для сравнения на этом же рисунке изображена зависимость наклона верхнего критического поля от параметра беспорядка в монокристаллических пленках $Nd_{2-x}Ce_xCuO_{4+\delta}$ с x = 0.15. Видно, что величина нормированного наклона верхнего критического поля h^* = $(dH_{c2}/dT)|_{T\to T_c}/(dH_{c2}/dT)|_{T\to T_{c0}}$ в случае = x = 0.15 уменьшается с ростом степени беспорядка таким образом, что можно говорить о существовании сильной анизотропии рассеяния на примесях с симметрией параметра порядка d-типа, что было подробно рассмотрено в нашей предыдущей работе [2]. Для пленок $Nd_{2-x}Ce_xCuO_{4+\delta}$ с x = 0.14 Изменение типа спаривания . . .

ситуация несколько иная. Величина параметра беспорядка велика и даже для оптимально отожженного образца с максимальной температурой перехода в сверхпроводящее состояние из недодопированной области γ/kT_{c0} в 30 раз больше, чем для оптимально отожженного образца из области оптимального допирования. Таким образом, наблюдается существование сверхпроводящего перехода при достаточно сильном беспорядке ($k_F \ell \approx 2$ –3). Наклон верхнего критического поля недодопированных образцов слабо зависит от параметра беспорядка, немного уменьшаясь при более сильном разупорядочении [3].

Характер зависимости наклона верхнего критического поля $(dH_{c2}/dT)|_{T \to T_c}$ OTпараметра беспорядка в передопированном соединении $Nd_{2-x}Ce_xCuO_{4+\delta}$ следующий: величина $(dH_{c2}/dT)|_{T \to T_c}$ растет с увеличением беспорядка, что соответствует теоретической зависимости наклона верхнего критического поля от параметра беспорядка для случая анизотропного s-спаривания. Теоретические расчеты были проведены в работах Посаженниковой и Садовского [13,22] при условии того, что поведение коэффициентов Гинзбурга-Ландау А и С определяет температурную зависимость верхнего критического поля вблизи критической температуры T_c и производную поля по температуре:

$$H_{c2} = \frac{\Phi_0}{2\pi\xi^2(T)} = -\frac{\Phi_0}{2\pi}\frac{A}{C},$$
 (2)

где $\Phi_0 = \pi/e^2$ — квант магнитного потока, $\xi(T)$ — длина когерентности [13, 22].

Таким образом, в наших исследованиях экспериментально наблюдается различие в поведении зависимости наклона верхнего критического поля $(dH_{c2}/dT)|_{T \to T_c}$ от параметра беспорядка в передопированном (анизотропное *s*-спаривание) и в оптимально допированном (d-спаривание с анизотропным рассеянием на примесях) соединении $Nd_{2-x}Ce_{x}CuO_{4+\delta}$. В случае недодопированного соединения невозможно однозначно сказать о характере спаривания [3]. Возможно, в этой области допирования большая величина параметра беспорядка и слабая зависимость верхнего критического поля от γ/kT_{c0} связаны с тем, что сверхпроводимость появляется довольно резко в этой области допирования, и беспорядок имеет крупномасштабный характер. В таких системах сверхпроводимость может сосуществовать с беспорядком, если характерный масштаб хаотического потенциала (радиус

Рис.5. Экспериментальная зависимость температуры СП-перехода от параметра беспорядка в монокристаллических пленках $Nd_{2-x}Ce_xCuO_{4+\delta}$: — x = 0.14, • -x = 0.15, • -x = 0.18. Для сравнения приведены теоретические зависимости температуры перехода от параметра беспорядка для случая изотропного *s*-спаривания (зависимость 1*a*), анизотропного *s*-спаривания (1*b*) [13] и для случая *d*-спаривания (зависимость 2) с анизотропным рассеянием *d*-типа при условии $\gamma_1/\gamma_0 \approx 0.92$ (γ_0 вероятность изотропного рассеяния, γ_1 — вероятность анизотропного рассеяния *d*-типа) [2]. Линии *3*, *4* проведены для удобства

локализации R_{loc}) превышает длину когерентности ξ [23].

Зависимости температуры СП-перехода от степени беспорядка в электронном сверхпроводнике $Nd_{2-x}Ce_{x}CuO_{4+\delta}$ в недодопированной, оптимально допированной и передопированной областях представлены на рис. 5. Для оптимально допированной области температура СП-перехода уменьшается с ростом параметра беспорядка согласно зависимости, рассчитанной для систем с *d*-спариванием при наличии сильной анизотропии рассеяния на примесях [2]. В случае *d*-спаривания при изотропном рассеянии на примесях переход в сверхпроводящее состояние полностью подавляется при беспорядке $\gamma = \gamma_c = 0.88T_c$, а относительную устойчивость оптимально допированного электронного сверхпроводника к разупорядочению можно объяснить, предполагая наличие сильного анизотропного примесного рассеяния с симметрией *d*-типа.

В передопированной области электронного сверхпроводника $Nd_{2-x}Ce_xCuO_{4+\delta}$ наблюдается гораздо более слабая зависимость T_c/T_{c0} от γ/kT_{c0} , что соответствует теоретическим представлениям для *s*-спаривания: обычного изотропного [10] или анизотропного [13].

В недодопированной области электронного сверхпроводника наблюдается слабое изменение температуры СП-перехода при высокой степени беспорядка, T_c/T_{c0} не опускается ниже 0.5, однако характер зависимости T_c/T_{c0} от γ/kT_{c0} не соответствует теоретическим зависимостям ни для *d*-спаривания, ни для анизотропного *s*-спаривания [3].

Таким образом, с увеличением допирования изменяется поведение T_c/T_{c0} от γ/kT_{c0} , указывая на возможное изменение типа спаривания.

Различие в поведении верхнего критического поля от степени беспорядка в электронном сверхпроводнике $Nd_{2-x}Ce_xCuO_{4+\delta}$ с разным уровнем допирования может быть следствием немонотонного характера параметра порядка [7,9] при изменении поверхности Ферми [8] в случае допированных электронных сверхпроводников. В области недодопирования электроны собираются вблизи $(\pi, 0)$ -точек, в области оптимального допирования карманы носителей заряда появляются вблизи нодальной области (π,π) [24]. Проявление дырочной сверхпроводимости в электронных сверхпроводниках в настоящее время все чаще обсуждается исследователями [17,25]. Более слабая зависимость $(dH_{c2}/dT)|_{T \to T_c}$ и T_c/T_{c0} от степени беспорядка в недодопированной области может быть также связана с несколько иной симметрией спаривания носителей вследствие сосуществования антиферромагнетизма и сверхпроводимости в Nd-системе при данном уровне допирования. Возможно, имеет место существование короткоразмерного антиферромагнитного порядка вплоть до уровня оптимального допирования электронных сверхпроводников [26, 27].

3. ЗАКЛЮЧЕНИЕ

результате исследования температурных В зависимостей сопротивления электронного сверхпроводника $Nd_{2-x}Ce_x CuO_{4+\delta}$ с x = 0.14 (недодопированная область), x = 0.15 (область оптимального допирования) и x = 0.18 (передопированная область) и с разной степенью отжига в бескислородной атмосфере в магнитных полях до $H = 90 \text{ к} \Im (H \parallel c,$ $J \parallel ab)$ в интервале температур T = (0.4-300) К экспериментально установлено, что в электронвысокотемпературных ных сверхпроводниках $Nd_{2-x}Ce_{x}CuO_{4+\delta}$ в области оптимального допирования наклон верхнего критического поля уменьшается с ростом степени беспорядка в системе, что

характерно для систем с *d*-спариванием при условии сильного анизотропного примесного рассеяния с симметрией *d*-типа. В недодопированной области электронного сверхпроводника величина наклона верхнего критического поля $(dH_{c2}/dT)|_{T \to T_c}$ слабо зависит от параметра беспорядка, немного уменьшаясь при более сильном разупорядочении, а характер зависимости T_c/T_{c0} от γ/kT_{c0} не соответствует теоретическим расчетам ни для *d*-спаривания, ни для анизотропного *s*-спаривания. Следует отметить, что дополнительные исследования в недодопированной области сверхпроводников необходимы для выявления влияния псевдощелевого состояния на физические свойства. В области передопирования электронного сверхпроводника $Nd_{2-x}Ce_xCuO_{4+\delta}$ величина наклона верхнего критического поля растет с ростом параметра беспорядка, что указывает на возможную реализацию в данной области допирования сверхпроводимости с анизотропным спариванием s-типа. Наблюдающаяся слабая зависимость критической температуры T_c/T_{c0} от параметра беспорядка γ/kT_{c0} в области передопирования также характерна для сверхпроводников со спариванием s-типа.

Авторы благодарны М. В. Садовскому и Э. З. Кучинскому за плодотворное обсуждение экспериментальных результатов.

Работа выполнена в рамках Программы фундаментальных исследований Президиума РАН «Квантовая физика конденсированных сред» (проект № 09-П-2-1005 УрО РАН) и при частичной финансовой поддержке РФФИ (грант № 11-02-00102).

ЛИТЕРАТУРА

- N. P. Armitage, P. Fournier, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010).
- Т. Б. Чарикова, Н. Г. Шелушинина, Г. И. Харус, А. А. Иванов, Письма в ЖЭТФ 88, 132 (2008).
- Т. Б. Чарикова, Н. Г. Шелушинина, Г. И. Харус и др., ФТТ 51, 2102 (2009).
- J. A. Skinta, Mun-Seog Kim, T. R. Lemberger et al., Phys. Rev. Lett. 88, 207005 (2002).
- A. Biswas, P. Fournier, M. M. Qazilbash et al., Phys. Rev. Lett. 88, 207004 (2002).
- V. A. Khodel, V. M. Yakovenko, M. V. Zverev et al., Phys. Rev. B 69, 144501 (2004).

- G. Blumberg, A. Koitzsch, A. Gozar et al., Phys. Rev. Lett. 88, 107002 (2002).
- H. Matsui, K. Terashima, T. Sato et al., Phys. Rev. Lett. 95, 017003 (2005).
- I. Eremin, E. Tsoncheva, and A. V. Chubukov, Phys. Rev. B 77, 024508 (2008).
- **10**. П. де Жен, Сверхпроводимость металлов и сплавов, Мир, Москва (1968), с. 159.
- R. Fehrenbacher and M. R. Norman, Phys. Rev. B 50, 3495 (1994).
- 12. L. S. Borkowski and P. J. Hirschfeld, Phys. Rev. B 49, 15404 (1994).
- А. И. Посаженникова, М. В. Садовский, Письма в ЖЭТФ 63, 347 (1996).
- 14. V. S. Nosdrin, S. I. Krasnosvobodtsev, N. P. Shabanova et al., Physica C 341–348, 1909 (2000).
- J. Herrman, M. C. de Andrade, C. C. Almasan et al., Phys. Rev. B 54, 3610 (1996).
- 16. A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov et al., Physica C 180, 69 (1991).
- **17**. Т. Б. Чарикова, А. И. Пономарев, Г. И. Харус, ЖЭТФ **132**, 712 (2007).
- A. J. Schultz, J. D. Jorgensen, J. L. Peng et al., Phys. Rev. B 53, 5157 (1996).
- P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Rhys. 57, 287 (1985).
- 20. В. Ф. Гантмахер, Г. Э. Цыдынжапов, Л. П. Козеева, А. Н. Лавров, ЖЭТФ 115, 268 (1999).
- A. S. Alexandrov and N. F. Mott, Rep. Progr. Phys. 57, 1197 (1994).
- 22. А. И. Посаженникова, М. В. Садовский, ЖЭТФ
 112, 2124 (1997).
- 23. M. V. Sadovskii, Superconductivity and Localization, World Scientific (2000), p. 78.
- 24. N. P. Armitage, F. Ronning, D. H. Lu et al., Phys. Rev. Lett. 88, 257001 (2002).
- 25. Y. Dagan and R. L. Green, Phys. Rev. B 76, 024506 (2007).
- 26. Tanmoy Das, R. S. Markiewicz, and A. Bansil, Phys. Rev. Lett. 98, 197004 (2007).
- 27. W. Yu, J. S. Higgins, P. Bach, and R. L. Green, Phys. Rev. B 76, 020503 (2007).