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GENERATION OF DISPLACED SQUEEZED SUPERPOSITIONSOF COHERENT STATESS. A. Podoshvedov *Department of General and Theoreti
al Physi
s, South Ural State University454080, Chelyabinsk, RussiaDepartment of Physi
s and Astronomy, Seoul National University151-742, Seoul, KoreaRe
eived April 1, 2011We study the method of generation of states that approximate superpositions of large-amplitude 
oherent states(SCSs) with high �delity in free-traveling �elds. Our approa
h is based on the representation of an arbitrarysingle-mode pure state, and SCSs in parti
ular, in terms of displa
ed number states with an arbitrary displa
e-ment amplitude. The proposed opti
al s
heme is based on alternation of photon additions and displa
ementoperators (in the general 
ase, N photon additions and N � 1 displa
ements are required) with a seed 
oherentstate to generate both even and odd displa
ed squeezed SCSs regardless of the parity of the used photon addi-tions. It is shown that the opti
al s
heme studied is sensitive to the seed 
oherent state if the other parametersare un
hanged. Output states 
an approximate either even squeezed SCS or odd SCS shifted relative to ea
hother by some value. This allows 
onstru
ting a lo
al rotation operator, in parti
ular, the Hadamard gate,whi
h is a mainframe element for quantum 
omputation with 
oherent states. We also show that three-photonadditions with two intermediate displa
ement operators are su�
ient to generate even displa
ed squeezed SCSwith the amplitude 1:7 and �delity more than 0:99. The e�e
ts deteriorating the quality of output states are
onsidered.1. INTRODUCTIONLaboratory realization of s
hemes for the genera-tion of spe
i�
 non
lassi
al quantum states is one ofthe most ex
iting 
hallenges to the resear
hes. It is wellknown that the range of appli
ations of the non
lassi-
al states of light extends from pre
ision measurements[1℄ to quantum lithography [2℄ and quantum informa-tion pro
essing [3℄. Most opti
al proposals for quan-tum information pro
essing require non
lassi
al statesin propagating opti
al modes that 
an be easily manip-ulated by means of linear opti
s su
h as beam splitters,phase shifters, and so on. The states generated in 
av-ity experiments are not so useful for the quantum in-formation pro
essing be
ause the �eld is 
on�ned and
an be probed only indire
tly.One of su
h remarkable examples of non
lassi
alstates is given by S
hrödinger-
at-like states [4℄. Weare interested in the states realized in harmoni
 os
illa-tors and often 
alled superpositions of 
oherent states*E-mail: sapo66�mail.ru

(SCSs). The superposition of two 
oherent (i. e., most
lassi
al) states with opposite phases [5℄ exhibits bothsome properties similar to those of statisti
al mixturesand typi
al interferen
e features. For example, one ofthe quadrature-
omponent distributions of SCSs showstwo peaks that 
hange their mutual distan
e depend-ing on the amplitude of 
oherent �elds, whereas an os-
illatory behavior is observed in another quadrature-
omponent distribution [5℄. We note that su
h be-havior mainly o

urs only for large amplitudes of 
o-herent states 
omposing SCSs when ma
ros
opi
allydistinguishable out
omes are observed by a homodynemeasurement [6℄. We also note negative values in theWigner fun
tions of the SCSs [7℄, whi
h are manifesta-tion of their non
lassi
al properties.In spite of the manifold usefulness of the SCSs, therehas not been mu
h progress in the generation of SCSsuntil re
ently. S
hemes have been proposed to gener-ate su
h SCSs using strong nonlinearities [8℄ or photonnumber resolving dete
tors [9℄, whi
h are hardly fea-sible with the 
urrent level of te
hnology. Re
ently,more realisti
 s
hemes have been proposed by di�er-515 7*



S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012ent authors [10�12℄. For example, the simple observa-tion that an odd SCS with a small amplitude (� 1:2)is well approximated by squeezed single photon wasmade in [10℄. It was also noted that a squeezed sin-gle photon 
an be obtained by subtra
ting (or adding)one photon from the pure squeezed va
uum [13℄. The-oreti
al analysis of added/subtra
ted squeezed va
uumstates has been performed in [14℄. Single-photon- sub-tra
ted squeezed states, whi
h are 
lose to SCSs, weregenerated in [15℄. A squeezed SCS with state size ap-proximately 1.6 was generated and dete
ted in [16℄.It may be suited for fundamental tests and quan-tum information pro
essing despite their squeezing [17℄.Subsequent steps were aimed at studying two-photonadded/subtra
ted squeezed va
uum states [18; 19℄. As
heme involving time-separated two-photon subtra
-tion to generate large-amplitude SCSs was experimen-tally demonstrated in [20℄. Another remarkable exper-imental result based on subtra
ting three photons froma squeezed va
uum was re
ently presented in [21℄.Currently, all the proposals to generate free-tra-veling S
hrödinger-
at-like states are based on use ofadded/subtra
ted squeezed va
uum states. Neverthe-less, it is interesting to develop a general method of theSCSs generation to apply it to quantum 
omputationwith 
oherent states. It was shown in [22℄ that an arbi-trary single-mode state 
an be engineered starting fromthe va
uum by applying a sequen
e of single-photonadditions and displa
ements. The idea with alternatephoton additions and displa
ements 
an be adjusted tothe SCSs generation [23℄. To extend the approa
h toquantum 
omputation, we propose to use de
omposi-tion of the wave fun
tions into series on the displa
ednumber states with arbitrary amplitudes. The de
om-position is possible be
ause the set of displa
ed statesis 
omplete and they are orthogonal with respe
t toan inner produ
t. The use of displa
ed number stateswas proposed in dense 
oding [24℄ and quantum keydistribution [25℄. We note that the displa
ed va
uumis a 
oherent state, and a displa
ed single photon wasexperimentally realized in [26℄.2. DISPLACED SQUEEZED SCSs IN TERMSOF THE DISPLACED NUMBER STATESThe even and odd regular SCSs are respe
tively de-�ned asjSCS�(�SCS)i == N�(�SCS) (j0; �SCS)i � j0;��SCS)i) : (1)

Here, N�(�SCS) = 1=p2 [1� exp(�2j�SCSj2)℄ are the
orresponding normalization fa
tors for the even (+)and odd (�) SCSs and the notation j0;��SCS)i for
oherent states with amplitudes ��SCS is used. Weassume �SCS > 0 throughout the paper. �Taking�SCS > 0 real� means that the �eld is in phase withthe lo
al os
illator that is used for qubit measurementand for making the displa
ements required for some ofthe gates. We use the notation jn; �i = D(�)jni for adispla
ed n-photon state, where n is an arbitrary num-ber and D(�) = exp(�a+ � ��a) is the displa
ementoperator, a(a+) is the boson annihilation (
reation)operator, and jni is a number state. In parti
ular,j0; �SCSi = D̂(�SCS)j0i is a displa
ed va
uum stateor the same 
oherent state with the amplitude �SCS.The in�nite set of displa
ed number states jl; �i(l = 0; 1; 2; : : : ;1), where � is an arbitrary number, is
omplete, whi
h allows de
omposing any single-modestate with respe
t to the basi
 states. We 
all su
ha de
omposition the �-representation of the state. Toobtain the �-representation of a regular (even or odd)SCSs (jSCS�(�SCS ; �)i), we use formulas (A.4) and(A.5) in Appendix A:jSCS�(�SCS ; �)i = N�(�SCS)�� exp �� ��2SCS + j�j2� =2��� 1Xl=0 �lSCSpl! "exp(�SCS��)�1� ��SCS�l ++ exp(��SCS��)(�1)l�1 + ��SCS�l# jl; �i == N�(�SCS) exp �� ��2SCS + j�j2� =2���D(�) 1Xl=0 �lSCSpl! "exp(�SCS��)�1� ��SCS�l �� exp(��SCS��)(�1)l�1 + ��SCS�l# jli == N�(�SCS) exp �� ��2SCS + j�j2� =2���D(�) 1Xn=0 a�njli; (2a)where a�n are the respe
tive amplitudes of the de-
omposition for even and odd SCSs. Two variables,�SCS and �, are used in the notation for an arbitrary�-representation of the SCSs jSCS�(�SCS ; �)i in 
on-trast to the dire
t de�nition of the SCSs jSCS�(�SCS)i(Eq. (1)), where �SCS is the SCS amplitude and � isthe amplitude of the 
omplete set of displa
ed numberstates. In parti
ular, if we take � = 0, then we deal516
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ed squeezed superpositions : : :with the number state representation (or, equivalently,the 0-representation in our notation) of the SCSs [5℄:jSCS+(�SCS ; 0)i = 2N+(�SCS)�� exp ��2j�SCSj2� 1Xn=0 �2nSCSp(2n)! j2ni;jSCS�(�SCS ; 0)i = 2N�(�SCS)�� exp ��2j�SCSj2� 1Xn=0 �2n+1SCSp(2n+ 1)! j2n+ 1i: (2b)
Be
ause superpositions (2b) involve either even or oddnumber states, they are 
alled even and odd SCSs. It isnatural to use the same terms for the SCSs in a general�-representation with � 6= 0 (Eqs. (2a)), although theyinvolve both even and odd displa
ed number states.Some wave amplitudes a�n with n � 1 are presentedin Appendix B.We next de�ne displa
ed squeezed (even and odd)SCSs asjDSSCS�(�SCS ; �; r)i == D(�)S(r)jSCS�(�SCS)i == D(�)S(r)N�(�SCS)�� (j0; �SCSi � j0;��SCSi) ; (3)where S(r) = exp �r(a+2 � a2)=2� is the squeezingoperator with r being a squeezing parameter [9�21℄.If we take r = � = 0, we deal with regular SCSs(Eq. (1)), and if we 
hoose � = 0 and r 6= 0, thenwe have squeezed SCSs [10�21℄; if we use r = 0 and� 6= 0, we obtain displa
ed SCSs. It is well known itis hardly possible to generate regular large-amplitudeSCSs with the 
urrent level of te
hnology. A naturalway to over
ome this is to approximate regular (dis-pla
ed/squeezed) SCSs to any degree of a

ura
y bysome states involving N + 1 termsj	�Ni = N�N NXn=0 a�njni; (4)where N�N are the normalization fa
tors for even andodd SCSs and we set a�0 = 1 for the 
onvenien
e of 
al-
ulations. In the general 
ase, there are two main meth-ods for the 
onstru
tion of an arbitrary single-mode �-nite superposition (4). Both methods are presented inFig. 1. One is based on alternation of photon addi-tions and displa
ement operators starting with a seed
oherent state, as is shown in Fig. 1a. The general de-s
ription of the method with alternate photon additionsand displa
ement operators and some partial 
ases ofthe method are 
onsidered in Appendixes C and D.

The other approa
h to the generation of single-mode�nite superpositions of number states (4) is presentedin Fig. 1b. We 
onsider an ideal situation where mphotons are added or subtra
ted from the squeezed 
o-herent states in Fig. 1b. At the output we then havethe relationsa+mS(r)j0; �Ini = a+mS(r)D(�In)j0i == a+mS+(�r)D(�In)S(�r)S(r)j0i == a+mD(�0)S(r)j0i == D(�0)D+(�0)a+mD(�0)S(r)j0i == D(�0)(a+ + �0�)mS(r)j0i == D(�0)S(r)S+(r)(a+ + �0�)mS(r)j0i == D(�0)S(r)(a+ 
h r + a sh r + �0�)mj0i == D(�)S(r) h(a++�0�In) 
h r+(a+�In) sh rim j0i;(5a)amS(r)j0; �Ini = D(�)S(r) �� �(a+ �In) 
h r + (a+ + ��In) sh r�m j0i (5b)with � = �In 
h r + ��In sh r, where �In is an ampli-tude of the initial 
oherent state and we used the rela-tions [27℄ S+(r)a+S(r) = a+ 
h r + a sh r;S+(r)aS(r) = a 
h r + a+ sh r:It follows from (5a) and (5b) that j	�N i (Eq. (4)) hasthe formj	�N i = �(a+ + ��In) 
h r + (a+ �In) sh r�m j0i (5
)for the m-photon added squeezed 
oherent state andj	�Ni = �(a+ �In) 
h r + (a+ + ��In) sh r�m j0i (5d)for the m-photons subtra
ted squeezed 
oherent state.States (5
) and (5d) are not normalized.We espe
ially fo
us our attention on the approa
hbased on alternation of the photon additions anddispla
ement operators (Fig. 1a) to generate �half-�nished produ
ts� j	�Ni (Eq. (4)) for the SCSs inappli
ation to 
oherent quantum 
omputing, leavingthe study of the opti
al s
heme shown in Fig. 1bto a future investigation. Nevertheless, general fea-tures of the method with alternate photon addi-tions and displa
ement operators are appli
able to them-photon added/subtra
ted squeezed 
oherent statesa+mS(r)j0; �Ini and amS(r)j0; �Ini.517
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j�Ini S(r)

D(�)S(r)jSCS(�SCS)i
D(�)S(r1)jSCS(�SCS)i

a
b a+m (a+m) am(a+m)S(r)j�Ini

Fig. 1. Diagram of the opti
al s
heme for 
onstru
tion of the even and odd displa
ed squeezed SCSs with high �delity.(a) The opti
al s
heme involves a set of alternate photon additions and displa
ement operators with the 
orrespondingamplitudes. The output of the s
heme is sensitive to the input 
oherent state �In. The displa
ement operator D(�) isused to obtain the 
orresponding �In if the input is either j0; �HGi or j0;��HGi where �HG is the Hadamard-gate stateamplitude. (b) The opti
al s
heme 
onsists of the input squeezed 
oherent state S(r)j0; �Ini subje
t to either them-photonsubtra
tion am or the m-photon addition a+mThe �delity between arbitrary states F = jh'tj'ijis a measure of how 
lose a state j'i is to the targetstate j'ti. It is unity when the two states are identi
al,and is zero when the two states are orthogonal to ea
hother. In our 
ase, j'i 
an be j	�N i (Eq. (4)) and j'ti
an be either regular SCSs or displa
ed squeezed SCSs(DSSCSs)F�N = jhSCS�N (�SCS)S+(r)D+(�)j	�N ij2:The 
hoi
e of the input 
onditions may be determinedby the aims. The development dire
tions for the gen-eration of SCSs may be as follows. O

asionally, SCSswith a large amplitude �SCS � 2 have to be generatedfor ma
ros
opi
 tests of quantum theory. For quantuminformation pro
essing, it is important to 
onstru
tSCSs with higher �delities F > 0:99. The ideal 
aseis to seek optimal 
onditions to generate SCSs withlarger amplitudes and higher �delities.It is well known there is no fundamental rea-son for the restri
tion to physi
al systems with two-dimensional Hilbert spa
es for en
oding. It may bemore natural in some 
ontexts to en
ode logi
al statesas a superposition of a large number of basis states, asis the 
ase with quantum 
omputations involving 
o-herent opti
al states. We 
an therefore de�ne a lo
aloperation R(Q) asR(Q)j0; �i = 
osQj0; �i+ sinQj0;��i; (6a)R(Q)j0;��i = sinQj0; �i � 
osQj0;��i; (6b)whi
h is nonunitary due to the nonorthogonality ofj0; �i and j0;��i. But R(Q) be
omes approximately

unitary when the overlap between the two 
oherentstates, h0; �j0;��i = exp(�2j�j2), tends to zero. Wenote that this overlap rapidly tends to zero as � in-
reases. If we take Q = �=4, then the lo
al operationR(Q) be
omes an Hadamard gate that transforms j0; �ito the even SCS,R(Q = �=4) = j0; �i = j0; �i+ j0;��i; (6
)and j0;��i to the odd SCS,R(Q = �=4) = j0;��i = j0; �i � j0;��i: (6d)Here, we omit the normalization fa
tor. The Hadamardgate is a mainframe elementary quantum gate used forperforman
e of quantum tasks with 
oherent states.To a
hieve an arbitrary 1-bit rotation, we must applyU(�=4) and U(��=4), whi
h are respe
tive rotationsby �=2 and ��=2 around the x axis. The unitary op-erations U(�=4) and U(��=4) 
an be realized using aKerr nonlinear intera
tion [5℄. The intera
tion Hamil-tonian of a single-mode Kerr nonlinearity isHNL = ~
(a+a)2;where 
 is the Kerr nonlinearity strength. When theintera
tion time t in the medium is �=
, 
oherent statesevolve (see Eqs. (6
) and (6d)) up to a relative phaseshift by �=2. An opti
al �ber is the well-known exampleof a medium with a Kerr nonlinearity, but only statis-ti
al mixing of the states j0; �i and j0;��i (instead of(6
) and (6d)) o

urs at the output of a long �ber dueto de
oheren
e e�e
ts when opti
al beams propagate518



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displa
ed squeezed superpositions : : :inside the �ber. This may be main drawba
k for thedevelopment of quantum proto
ols with 
oherent opti-
al states. In the general 
ase, it is natural to speakabout a �rotated� superposition of 
oherent states (6a)and (6b) instead of using the terms even/odd SCSs, be-
ause the states in Eqs. (6
) and (6d) are a parti
ular
ase of the rotation operatorR(Q). In our notation, the�-representation of a rotated superposition of 
oherentstates be
omesjSCSQ(�SCS ; �)i = NQ(�SCS)�� exp �� ��2SCS + j�j2� =2�D(�) 1Xl=0 �lSCSpl! �� 
osQ exp(�SCS��)�1� ��SCS�l ++ sinQ exp(��SCS��)(�1)�1 + ��SCS�l! jli; (7)whereNQ(�SCS) = �
os2Q+ sin2Q ++ 
osQ sinQ �1 + exp ��2j�SCSj2��	�1=2is a normalization fa
tor and Q = ��=4 respe
tively
orresponds to the even and odd SCSs.3. GENERATION OF SCSs ANDAPPLICATION OF THE METHOD TO THECONSTRUCTION OF ELEMENTARYQUANTUM GATESWe analyze all possible 
ases with N = 1; 2; 3 pho-ton additions. An opti
al s
heme with only one photonaddition is the simplest as 
an be seen from Fig. 1a,and this s
heme allows generating SCSs of moderateamplitudes. Indeed, we have (see Fig. 1a)a+j0; �Ini = a+D(�In)j0i == D(�In)D+(�In)a+D(�In)j0i = D(�In)(a++��In)�� j0i = D(�In) (j1i+ ��Inj1i) ; (8a)where we used the relation D+(�)a+D(�) = a+ + ��.The �half-�nished produ
t� j	�1i (Eq. (4)) for the op-ti
al s
heme with one photon addition (Fig. 1a) is thengiven byj	�1i = j0i+ a�1j1ip1 + ja�1j2 = j0i+ j1i=��Inp1 + 1=j�Inj2 ; (8b)

if �In = 1=a��1. Hen
e, output (8a) is a single-photonadded 
oherent state (SPACS) with the amplitude �In,jSPACS(�In)i = D(�In) j0i+ j1i=��Inp1 + 1=j�Inj2 ; (8
)and is the simplest approximation of the SCSs. Indeed,the �delity between SPACS and DSSCSs is given byF�1 = ��hSCS�(�SCS)S+(r)D+(�) �� jSPACS(�In)ij2 == jhSCS�(�SCS)D(
�1)S(�r)jSPACS(�In)ij2 == jhSCS�(�SCS ; 
�1)S(�r)jSPACS(�In)ij2 ; (9)where 
�1 = 
h r(�In � �) � sh r(�In � �)� andjSCS�(�SCS ; 
�1)i is the 
�1-representation of theSCSs in Eq. (7), where Q = ��=4 is 
hosen. Here,the parameters �In, �, and r depend on the rotationangle Q (Eq. (7)), but we omit their subs
ripts in orderto not 
ompli
ate the notation. It is possible numeri-
ally to seek the parameters a�1, 
�1, and r with whi
hthe �delity in (9) takes the highest possible value. Forthe even SCS, these values are�SCS = 1; F+1 = 0:962444;�In = 1:2464i; � = 1:78864i;r = �0:445031; �SCS = 1:1;F+1 = 0:943626; �In = 1:05247i;� = 1:6373i; r = �0:491368; �SCS = 1:2;F+1 = 0:92202; �In = 0:900828i;� = 1:52202i; r = �0:537234:Wigner fun
tions of the displa
ed squeezed SPACSwith the 
orresponding parameters and the regulareven SCS with �SCS = 1 are presented in Fig. 2. Themethod of 
al
ulation is appli
able to �nding parame-ters of the opti
al s
heme in Fig. 1a to generate an oddSCS. Our 
al
ulations are in total agreement with theresults in [10; 13℄. For example, we have�SCS = 1; F�1 = 0:997109;�In � 0; � � 0; r = �0:31257;�SCS = 1:1; F�1 = 0:994411;�In � 0; � � 0; r = �0:36893;�SCS = 1:2; F�1 = 0:99085;�In � 0; � � 0; r = �0:426398:519
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Fig. 2. (a) The Wigner fun
tion W+1 of the state D(�)S(r) (j0i + j1i=��In) =p1 + 1=j�Inj2 and (b) the Wigner fun
tionW+SCS of the regular even SCS with �SCS = 1. The �delity between the states is F+1 = 0:962444Be
ause �In � 0 is taken, this means that the va
-uum as an input is used to generate the odd SCS inthe opti
al s
heme in Fig. 1a. With � � 0, the out-put approximates an odd squeezed SCS (not displa
ed)[10; 13℄. Be
ause only one photon 
reation operator a+is used to generate SPACS, the method may look at-tra
tive due to its simpli
ity. The SPACSs were exper-imentally demonstrated in [28℄. Comparing the resultsin [28℄ with those given above, it is possible to 
laim theSPACSs generated in [28℄ do not approximate DSSCSsbe
ause the amplitudes of experimental seed 
oherentstates were 
hosen out of the range needed for genera-tion of DSSCSs.For a universal gate operation, a CNOT (ControlNOT) gate is required besides the 1-bit rotation. Itwas found that the CNOT operation 
an be realizedusing a teleportation proto
ol. To apply this sugges-tion to quantum 
omputation with 
oherent states, weneed to use the Hadamard gate (HG), see Eqs. (6
) and(6d). Analysis shows that we 
an start with the statesj0; �HG = 0:6232ii and j0;��HG = �0:6232ii thatform a logi
al qubit basis in the s
heme in Fig. 1a. Wethen apply an additional displa
ement operator D(�)with � = 0:6232i (dotted re
tangle in Fig. 1a) and asingle photon addition to obtain the states that appro-ximatej0; �HGi ! D(�+)S(r)SCS+(�SCS); (10a)j0;��HGi ! D(��)S(r)SCS�(�SCS) (10b)with �delities F+1 = 0:962444 and F�1 = 0:969086,where r = �0:445031 and �+��� = 1:78864i. Hen
e,the output of this Hadamard gate is squeezed even and

odd SCSs shifted relative to ea
h other by 1:78864i. Itis worth noting that �HG 6= �SCS .The same approa
h to the generation of SCSs oflarger amplitudes and 
onstru
tion of the Hadamardgate 
an be developed in the 
ase N = 2, where the�half-�nished produ
t� j	�2i of the SCSs in Eq. (4) forthe opti
al s
heme with two photon additions (Fig. 1a)is given by j	�2i = j0i+ a�1j1i+ a�2j2ip1 + ja�1j2 + ja�2j2 : (11a)A displa
ed version of (11a) 
an be 
onstru
ted usingtwo photon additions with one intermediate displa
e-ment operator shifting by �1 (Fig. 1a) asa+D(�1)a+j0; �Ini = a+D(�1)a+D(�In)j0i == ei�D(�1 + �In)D+(�1 + �In)a+D(�1 + �In)��D+(�In)a+D(�In)j0i �� ei�D(�1+�In) �a+ + (�1 + �In)�� (a++��In)j0i == ei�D(�1 + �In) ha�In(��1+��In)j0i+(��1+2��In)j1i ++ p2 j2ii ; (11b)where � is some general phase shift and the normali-zation fa
tor is omitted. Expression (11b) is the wavefun
tion j	�2i shifted by �1 + �In ifa�1 = ��1 + 2��In��In(��1 + ��In) ; a�2 = p2��In(��1 + ��In) :The state (11b) 
an approximate DSSCSs with the �-delity520



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displa
ed squeezed superpositions : : :F�2 = ��hSCS�(�SCS)S+(r�) �� D+(��)D(�1 + �In)j	�2i��2 == jhSCS�(�SCS)D(
�2)S(�r�)j	�2ij2 == jhSCS�(�SCS ; 
�2)S(�r�)j	�2ij2 ; (12)where 
�2 = 
h r�(�In + �1 � ��)� sh r�(�In + �1 �� ��)�, with 
ertain parameters.Following the pro
edure developed forN�1, we 
annumeri
ally �nd the parameters a�1, a�2, 
�2, and r�at whi
h the �delity in (12) takes the maximum value.This allows estimating the parameters �In, �1, and ��for the opti
al s
heme in Fig. 1a as�In = �ij�Inj = �iqp2=a+2 ; (13a)�1 = �2ij�Inj; (13b)�+ = �ij�Inj (13
)for an even SCS (Q = �=4), where a+2 > 0 and a+1 = 0[16; 18℄, and ��In = a�1=p2a�2 �pD=2; (14a)��1 = �pD ; (14b)D = 2(a�1=a�2)2 � 4p2 =a�2 (14
)for an odd SCS (Q = �=4), while the amplitude of theshift �� follows from 
�2. Knowing a�1, a�2, and r�and using formulas (13) and (14), it is possible to 
al
u-late the 
orresponding parameters of the opti
al s
hemein Fig. 1a at whi
h the maximum �delity is a
hieved.These parameters are 
olle
ted in Table 1.Analysis shows that it is possible to 
hoose the shift-ing amplitude �1 of the intermediate displa
ement op-erator in Fig. 1a equal for both even and odd SCSs 
on-stru
tion with equal r+ = r� = r, and only to 
hangethe amplitude of the seed 
oherent state �In. Thenthe output of su
h a devi
e in Fig. 1a is squeezed evenand odd SCSs with equal r+ = r� = r, shifted relativeto ea
h other by some value �+ � ��. This out
omeof the devi
e in Fig. 1a is des
ribed by Eqs. (10a) and(10b). We 
olle
t the parameters that 
an be used forthe 
onstru
tion of the Hadamard gate in Table 2.For example, we 
onsider the 
ase �SCS = 1:3.It follows from Table 2 that the amplitude �1 == �2:87582i of the intermediate displa
ement opera-tor in Fig. 1a is used. Then the output of the opti-
al s
heme in Fig. 1a 
an approximate either the evenDSSCSD(� = �1:43791i)S(r = �0:351)jSCS+(�SCS = 1:3)ior

D(� = 1:43791i)S(r = �0:351)jSCS+(�SCS = 1:3)iwith �delity F+2 = 0:986582 if the input is a 
o-herent state with the amplitude �In = 1:43791i or�In = �1:43791i, or the odd DSSCSD(� = �2:87586i)S(r = �0:351)jSCS+(�SCS = 1:3)ior D(� = 0)S(r = �0:351)jSCS+(�SCS = 1:3)iwith �delity F�2 = 0:986539 if the input is a 
o-herent state with the amplitude �In = 0:344349i or�In = �2:53147i. In the 
ase, the out
ome of the op-ti
al s
heme in Fig. 1a depending on �In is given bytwo states that approximate squeezed even and oddSCSs of �SCS with high �delity and are shifted rela-tive to ea
h other by approximately 1:43791i. Be
ausethe out
ome of the opti
al s
heme in Fig. 1a dependson the seed 
oherent state, we 
an use an additionaldispla
ement operator D(�) with either � = 0:89113ior � = �1:98469i to deal with j0; �HG = 0:546781ii(j0; �HG = �0:546781ii) as the input basis of logi
alzero and one. The same 
onsideration is appli
able tothe SCSs 
onstru
tion with other values of �SCS pre-sented in Table 2. The Wigner fun
tions of the statej	�2i and odd DSSCS with the amplitude �SCS = 1:3are presented in Fig. 3. The parameters for the plotsare taken from Table 1.We 
onsider the state j	�3i in Eqs. (4) with N = 3:j	�3i = j0i+ a�1j1i+ a�2j2i+ a�3j3ip1 + ja�1j2 + ja�2j2 + ja�3j2 ; (15)whi
h 
an be the output of the opti
al s
heme in Fig. 1aif at least three single photon additions with two in-termediate displa
ement operators between them areused. This 
ase allows in
reasing the amplitude ofthe generated DSSCSs be
ause the squeezing opera-tor a
ts ampli�
ation fa
tor. We only present valuesof the parameters used, omitting their detailed studyfor future investigation. We have F+3 = 0:993875 be-tween D(�)S(r)j	+3i and the regular even SCS with�SCS = 1:6 for the following values:a+1 = 0:131109; a+2 = 0:976048; a+3 = �0:509043;r = 0:478936; � = 0:253028:The �delity F+3 = 0:990606 between D(�)S(r)j	+3iand the regular even SCS with �SCS = 1:7 is observedfor the following values:a+1 = 0:164725; a+2 = 1:02245; a+3 = �0:57829;r = 0:527901; � = 0:264123:521



S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012Table 1. Values of the initial 
oherent seed �In and the intermediate displa
ement operator �1 in Fig. 1a at whi
h theoutput approximates either the even DSSCSD(�+)S(r+)jSCS+(�SCS)i or the odd DSSCSD(��)S(r�)jSCS�(�SCS)iwith maximum �delity�SCS Q = �=4 Q = ��=41.3 F+2 = 0:998728, r+ = �0:293054, F�2 = 0:987245, r� = �0:368812,a) �In = 1:25598i, �1 = �2:251196i, a) �In = 0:344249i, �1 = �2:87582i,�+ = �1:25598i, �� = �2:87586i,b) �In = �1:25598i, �1 = 2:51196i, b) �In = �2:53147i, �1 = 2:87582i,�+ = 1:25598i �� = 01.4 F+2 = 0:997583, r+ = �0:334228, F�2 = 0:981078, r� = �0:407125,a) �In = 1:18095i, �1 = �2:3619i, a) �In = 0:373226i, �1 = �2:64328i,�+ = �1:18095i, �� = �2:64334i,b) �In = �1:18095i, �1 = 2:3619i, b) �In = �2:27005i, �1 = 2:64328i,�+ = 1:19095i �� = 01.5 F+2 = 0:995765, r+ = �0:376383, F�2 = 0:987245, r� = �0:445339,a) �In = 1:11822i, �1 = �2:23643i, a) �In = 0:399473i, �1 = �2:45894i,�+ = �1:11822i, �� = �2:45903i,b) �In = �1:11822i, �1 = 2:23643i, b) �In = �2:05947i, �1 = 2:45894i,�+ = 1:11822i �� = 01.6 F+2 = 0:993085, r+ = �0:419055, F�2 = 0:964491, r� = �0:483419,a) �In = 1:06794i, �1 = �2:13588i, a) �In = 0:423166i, �1 = �2:31033i,�+ = �1:06794i, �� = �2:31047i,b) �In = �1:06794i, �1 = 2:13588i, b) �In = �1:88716i, �1 = 2:31033i,�+ = 1:06794i �� = 0
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Fig. 3. (a) The Wigner fun
tion W�2 of the state j	�2i (11a) and (b) the Wigner fun
tion W�DSSCS of the odd DSSCSwith �SCS = 1:3. The �delity between the states is 0:987244. The 
orresponding parameters are taken from Table 1522



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displa
ed squeezed superpositions : : :Table 2. Values of the initial parameters used in the opti
al s
heme to generate output Eqs. (10a) and (10b)�SCS , r, �1,�HG, � Q = �=4 Q = ��=4�SCS = 1:3, r = �0:351,�1 = �2:87582i, F+2 = 0:986582, F�2 = 0:986539,a) �HG = 0:546781i, a) �In = 1:43791i, a) �In = 0:344349i,� = 0:89113i, � = �1:43791i, � = �2:87586i,b) �HG = 0:54678i, b) �In = �1:43791i, b) �In = �2:53147i, � = 0� = �1:98469i � = 1:43791i�SCS = 1:4, r = �0:40712,�1 = �2:64328i, F+2 = 0:986162, F�2 = 0:981078,a) �HG = 0:474207i, a) �In = 1:32164i, a) �In = 0:373226i,� = 0:847433i, � = �1:32164i, � = �2:64334i,b) �HG = 0:474205i, b) �In = �1:32164i, b) �In = �2:27005i, � = 0� = �1:79585i � = 1:32164i�SCS = 1:5, r = �0:445339,�1 = �2:45894i, F+2 = 0:985525, F�2 = 0:973453,a) �HG = 0:414998i, a) �In = 1:22947i, a) �In = 0:399473i,� = 0:8144715i, � = �1:22947i, � = �2:45903i,b) �HG = 0:415i, b) �In = �1:22947i, b) �In = �2:05947i, � = 0� = �1:64447i � = 1:22947i
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tion W+3 of the state j	+3i and (b) the Wigner fun
tion W+DSSCS of the even DSSCS with�SCS = 1:7. The �delity between the states is 0:9906. The parameters of the states are given in the textThe 
orresponding Wigner fun
tions of the state j	+3iand the DSSCS are presented in Fig. 4. Interfe-ren
e features of the states manifest in the p-dist-ribution, while separated peaks are observed in the x-distribution for both jS	+3i and the DSSCS. As re-gards the odd SCS generation, for example, we haveF�3 = 0:996303 between D(�)S(r)j	�3i and the regu-lar odd SCS with �SCS = 1:8 for the following values:523



S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012a�1 = �20:6595; a�2 � 0; a�3 = �15:1713;r = 0:364104; � = �0:012192:Our approa
h is based on the use of single photonadditions. It is well known that a single photon addi-tion 
an be obtained probabilisti
ally with the help ofa parametri
 down 
onverter. The probability of su
han event is low. Nevertheless, SPACSs were experimen-tally generated in [28℄ and the probability to registeronly one photon in the an
illary mode at the outputof the down 
onverter prevails over the probabilities toregister more than one photon. This 
an mean that theproblem of resolving number states be
omes negligibleand we 
an therefore use sili
on avalan
he photodiodesoperating in the visible wavelength having a relativelyhigh e�
ien
y and a small dark 
ount rate. If the dark
ount rate of a photodete
tor is negligible, then theoutput state 
an be in a mixed state represented as(1� P )WSPACS(�) + PW0(�);where WSPACS(�) is the Wigner fun
tion of theSPACS and W0(�) is the Wigner fun
tion of the va
-uum and P is the probability to register an o

asionalphoton. The 
onstru
tion of higher-order states j	�2irequires an intermediate displa
ement operator and anextra single-photon addition that de
reases the su

essprobability of the devi
e in Fig. 1a. The displa
ementoperator D(�) with the amplitude � 
an be approx-imated by a beam splitter with high transmittivityT ! 1 mixing the input �eld with the an
illary strong
oherent �eld j0; �i (� � 1). Then the output 
an beevaluated as (1� P )W�2(�) + PW�(�);where W�2(�) is the Wigner fun
tion of j	�2i andW�(�) is the Wigner fun
tion of the 
oherent state,if we negle
t the probability to register two o

asionalphotons. Hen
e, the �delity of the generated states inpra
ti
e depends on the dark 
ount rate and the su

essprobability of the method de
reases as N in
reases.4. CONCLUSIONThe ability to investigate the elementary a
tions ofthe boson 
reation operators on a seed 
oherent stateis of interest both as a tool to take a 
loser look atfundamental events in quantum physi
s and as a nat-ural extension toward exoti
 quantum entities, su
h asSCSs. For this, we proposed a new representation ofthe SCSs in terms of displa
ed number states with ar-bitrary amplitudes (�-representation). We were able

to show that the type of generated SCSs (even or odd)is independent of the photon parity in the �-represen-tation. A photon parity 
an be de�ned only for SCSsin the 0-representation. The main motivation to usethis representation is to 
onsider problems of genera-tion and rotation (Eqs. (10a) and (10b)) of SCSs ingeneral position, involving di�erent methods of gener-ation and measurements [9�21℄, and to apply this toquantum 
omputation with 
oherent states. This al-lows determining the range of parameters of the opti-
al s
hemes with whi
h output states 
an approximateSCSs with high �delity.We used a method developed in [22℄, as is shownin Fig. 1a, to 
onstru
t the states that approxi-mate DSSCSs. Another possible method is to usephoton added/subtra
ted squeezed 
oherent statesa+mS(r)j0; �Ini and amS(r)j0; �Ini (Fig. 1b), 
onsid-ering whi
h deserves a separate analysis. Our analysisshows that it is possible to 
hoose the parameters ofthe opti
al s
heme in Fig. 1a su
h that the output be-
omes sensitive to the seed 
oherent state, whi
h allows
onstru
ting lo
al rotations of qubits, in parti
ular theHadamard gate, 
onsisting of 
oherent states with high�delity. We note that these are not rotations be
ausethey are de�ned by expressions (6a) and (6b). The out-
omes are the squeezed SCSs shifted relative to ea
hother by some quantity along the p-axis (Eqs. (10a)and (10b)). Moreover, the amplitudes of input qubitsare not equal to those of output qubits. Nevertheless,we 
an supply the opti
al s
heme in Fig. 1a addition-ally by a phase shifter by �=2 and an absorbing medium(not shown in Fig. 1a) to make the amplitude of the ini-tial qubit equal to the amplitude of the output qubit,j0; �SCSi ! j0; i�SCSi ! j0; i�SCSe��i == j0; �HGi;j0;��SCSi ! j0;�i�SCSi ! j0;�i�SCSe��i == j0;��HGi;where � is the absorbing fa
tor of the medium. TheHadamard gate that e�e
ts a transformation as inFig. 1a 
annot be unitary. Possible use of theHadamard gate for quantum 
omputations with 
oher-ent states deserves a separate investigation [17℄. Allparameters needed to 
onstru
t either even or oddDSSCSs depending on seed 
oherent states are pre-sented in Tables 1 and 2. It was also shown that theSPACS generated in [28℄ does not approximate the evenDSSCS be
ause the amplitudes of the seed 
oherentstate were 
hosen outside the required range. An opti-
al s
heme with three single photon additions and with524



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displa
ed squeezed superpositions : : :two intermediate displa
ement operators between themallows 
onstru
ting an even DSSCS with the amplitude1.7 and �delity more than 0.99. Consideration of pho-ton added/subtra
ted squeezed 
oherent states may bepreferable from the pra
ti
al standpoint, whi
h may be-
ome the subje
t of a future study. In the short term,this approa
h extends the set of the states that may beused for quantum information pro
essing and adds newmethods for manipulations with 
oherent state qubits.APPENDIX ADe
omposition in terms of displa
ed numberstatesWe use the 
oherent state representationj0; �SCSi = D(�SCS)j0i = exp ��j�SCS j2=2��� exp(�SCSa+) exp(�SCSa)j0i == exp ��j�SCSj2=2� exp(�SCSa+)j0i == exp ��j�SCS j2=2� exp �(�+ �)a+� j0i == exp �� �j�SCS j2 � j�j2� =2� exp(�a+)�� exp ��j�j2=2� exp(�a+)j0i == exp �� �j�SCS j2 � j�j2� =2� exp(�a+)j0; �i == exp �� �j�SCS j2 � j�j2� =2��� 1Xn=0 (�a+)nn! j0; �i; (A.1)where �SCS = �+ � (� = �SCS � �) and � and � arearbitrary numbers. We 
onsider a+nj0; �i using thewell known formulas [27℄. Thena+nj0; �i = D(�)D+(�)a+nD(�)j0i == D(�)(a+ + ��)nj0i == D(�) nXk=0Cknpk!��n�kjki == nXk=0 n!pk!��n�kk!(n� k)! jk; �i: (A.2)Using (A.2), it is possible to transformP1n=0 ((�a+)n=n!) j0; �i to

1Xn=0 (�a+)nn! j0; �i = j0; �i+� (j1; �i+ ��)+(�2=2!)�� �p2 j2; �i+ 2��j1; �i++��2j0; �i�+ : : :: : :+ �nn! nXk=0Cknpk!��n�kjki+ : : : == �1 + ��� + �2��22! + : : :+ �n��nn! + : : :� j0; �i++ �(1 + ��� + : : :+ C1n�n�1��n�1=n! + : : : )�� j1; �i+ ��2=p2!��� (1+���+ : : :+C2n�n�2��n�22!=n!+ : : : )j2; �i+ : : :: : :+ ��l=pl!� (1 + : : :+ Cln�n�l��n�l=n! + : : : )�� jl; �i+ : : : == (1+���+�2��2=2!+ : : :+�n��n=n!+ : : : )j0; �i++ �(1 + ��� + : : :+ �n�1��n�1=(n� 1)! + : : : )�� j1; �i+ (�2=p2! )�� (1+���+ : : :+�n�2��n�2=(n�2)!+ : : : )j2; �i+ : : :: : :+ (�l=pl! )(1 + : : :+ �n�l��n�2=(n� l)! + : : : )�� jl; �i+ : : : = exp(���) 1Xl=0 �lpl! jl; �i: (A.3)Finally, we havej0; �SCSi = exp��j�SCS j2 � j�j22 ��� exp(���) 1Xl=0 �lpl! jl; �i == exp���2SCS + j�j22 � exp(�SCS��)�� 1Xl=0 (�SCS � �)lpl! jl; �i == exp���2SCS + j�j22 � exp(�SCS��)�� 1Xl=0 �lSCSpl! �1� ��SCS �l jl; �i: (A.4)The same is appli
able to the state j0;��SCSi:j0;��SCSi == exp���2SCS + j�j22 � exp(��SCS��)�� 1Xl=0 �lSCSpl! (�1)l�1 + ��SCS �l jl; �i: (A.5)525



S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012Therefore, if we take � = 0 in (A.4), then we havethe following de
omposition of the va
uum state withrespe
t to the basis of displa
ed number states:j0i = j0; �SCS = 0i == exp��j�j22 � 1Xl=0(�1)l �lpl! jl; �i: (A.6)APPENDIX BWave amplitudes of several �rst terms of theSCSsExpressions for the wave amplitudes of the SCSs inan arbitrary �-presentation are given by Eqs. (2a). Ifwe take �SCS = a�SCS + i", where a and " are somereal numbers, then the �rst several wave amplitudes ofthe even SCS are given bya+1(�SCS ; �) = �CSSp1! A+(�CSS ; �) == �SCSp1! �G2(�SCS ; a; ")G1(�SCS ; a; ") � a� i"�SCS� ; (B.1)a+2(�SCS ; �) = �2SCSp2! B+(�CSS ; �) == �2SCSp2! ��1 + a2 � "2�2SCS + i 2"a�SCS� �� �2a+ i 2"�SCS� G2(�SCS ; a; ")G1(�SCS ; a; ")� ; (B.2)a+3(�SCS ; �) = �3SCSp3! C+(�CSS ; �) = �3SCSp3! ���� 3a"2�2SCS�3a�a3+i � "3�3SCS� 3"�SCS� 3a2"�SCS �� ++�1 + 3a2 � 3"2�2SCS + i 6ar�SCS��� G2(�SCS ; a; ")G1(�SCS ; a; ")� ; (B.3)whereG1(�SCS ; a; ") = 2 �
os(�SCS") 
h(a�2SCS) �� i sin(�SCS") sh(a�2SCS)� ; (B.4)G2(�SCS ; a; ") = 2 �
os(�SCS") sh(a�2SCS) �� i sin(�SCS") 
h(a�2SCS)� : (B.5)The wave amplitudes of the odd SCS fol-low from the expressions for the even SCSs ifwe substitute G2(�SCS ; a; ")=G1(�SCS ; a; ") ontoG1(�SCS ; a; ")=G2(�SCS ; a; ") in Eqs. (B.1)�(B.3).

APPENDIX CAlternation of photon additions anddispla
ements as a method of generation of anarbitrary single-mode �nite superposition ofnumber statesThe method of 
onstru
ting an arbitrary single-mo-de superposition of number states was proposed in [22℄.We brie�y re
all it. An arbitrary wave fun
tionj	i = NXn=0'njni = NXn=0 'npn! a+nj0i; (C.1)
an be rewritten asj	i = 'npn! (a+ � ��N )(a+ � ��N�1) : : : (a+ � ��2)�� (a+ � ��1)j0i;where ��1; ��2; : : : ; ��N are the N 
omplex roots of the
hara
teristi
 polynomialNXn=0 'n��npn! = 0:The relation a+ � ��i 
an be ensured by applying the
reation operator a+ to j0;��ii = D(��i)j0i [27℄:a+j0;��ii = D(��i)D+(��i)a+D(��i)j0i == D(��i)(a+ � ��i )j0i:Hen
e, an arbitrary single-mode superposition of thenumber states 
an be obtained by a sequen
e ofalternate single-photon additions and displa
ementsstarting with j�Ini with the 
orresponding amplitude�In [22℄:j	i = �'n=pn!�D+(��N )�� a+D(��N )D+(��N�1)a+D(��N�1) : : :: : :�D(��3)D+(��2)a+D(��2)��D+(�In)a+j�Ini: (C.2)We 
an use the relation D(�)D(�) = exp [i Im(���)℄��D(�+ �) to simplify the expression (C.2):j	i = ei' �'n=pn!�D+(��N )�� a+D(�N�1 � �N )a+D(�N�2 � �N�1) : : :: : :�D(�2 � �3)a+D(��2 � �In)a+j�Ini; (C.3)where ' is the total phase shift.526



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displa
ed squeezed superpositions : : :In parti
ular, in the 0-representation or the samenumber state representation (Eqs. (3a) and (3b)), forthe even SCSs, we havejSCS+N (�SCS ; 0)i = N+N(�SCS ; 0)(�2nSCS=n!)�� (a+2 � ��2N )(a+2 � ��2N�1) : : : (a+2 � ��22 )�� (a+2 � ��21 )j0i; (C.4)where ��21 ; ��22 ; : : : ; ��2N are the roots of the polynomialNXn=0 �2nSCS(2n)! (��2)n = 0: (C.5)The same is appli
able to the generation of the oddSCS if we start with the input state j1; �InijSCS�N (�SCS ; 0)i == N�N(�SCS ; 0)(�2nSCS=(n+ 1)!)(a+2 � ��2N ) : : :: : :� (a+2 � ��22 )(a+2 � ��21 )j1i; (C.6)with the roots of the equationNXn=0 �2nSCS(2n+ 1)! (��2)n = 0: (C.7)APPENDIX DSome parti
ular 
ases of the use of the methodof alternate single-photon additions anddispla
ementsThe roots of the 
hara
teristi
 polynomials given inAppendix C 
an be obtained in the general 
ase onlynumeri
ally. Nevertheless, some parti
ular solutions
an be found analyti
ally. We show this with the exam-ples of 
onstru
ting the SCSs in the 0-representation.We then havea+D(�2�In)a+j0; �Ini = a+D(��In)�� (a+ + ��In)j0i == D(��In)D+(��In)a+D(��In)(a+ + ��In)j0i == D(��In)(a+ � ��In)(a+ + ��In)j0i == D(��In)(a+2 � ��2In)j0i == D(��In)�p2 j2i � ��2Inj0i� == D(��In)j�Inj2 �j0i+ �2SCS j2i=p2!� ; (D.1)if �In = ij�Inj and �2SCS = 2=j�Inj2. The output of(D.1) is a state that approximates the even SCS dis-

pla
ed by �In up to a normalization fa
tor. A furtherextension of (D.1) is given bya+D(�2�1)a+D(�1+�In)a+D(�2��In)a+j0; �Ini == a+D(�2�1)a+D(�1+�In)D(��In)(a+2���2In)j0i == D(��1)(a+2���21 )(a+2���2In)j0i == D(��1)�p4! j4i�p2 (a�21 +��2In)j2i+��21 ��2Inj0i� == j�1j2j�Inj2D(��1)�� �j0i+ �2SCS j2i=p2! + �4SCS j4i=p4!� ; (D.2)where the roots of 
hara
teristi
 polynomial (C.5) are��21;2 = �2�3�p3� =�2SCS:Be
ause �SCS > 0, it follows that �In = ij�Inj, �1 == ij�1j, where j�Inj2 = 2 �3 +p3 ��2SCS ;j�1j2 = 2 �3�p3 ��2SCS ; �2SCS = 2j�Inj2 :Finally, the output operator D(�1) is applied to gen-erate a trun
ated version of the even SCS with threeterms.For the odd SCS, we havea+D(�2�In)a+j1; �Ini == D(��In)(a+ � ��In)(a+ + ��In)j1i == ��2InD(��In)��j1i+p3! j3i=��2In� == ���2InD(��In)�j1i+ �2SCS j3i=p3!� (D.3)if �In = ij�1j and �2SCS = 6=j�Inj2. The output of(D.3) is a two-level approximation of the odd SCS dis-pla
ed by �In. If we extend (D.3), thena+D(�2�1)a+D(�1+�In)a+D(�2�In)a+j1; �Ini == D(��2)D+(��2)a+D(��2)D+(�2)a+D(�2)ei �� ei D(��1)(a+2 � ��2In)(a+2 � ��2In)j1i == ei ��2In��21 D(��1)"j1i � 3!(��21 + ��2In)j3ip3!��21 ��2In ++ 5!j5ip5!��21 ��2In # = ei ��21 ��2InD(��1)���j1i+ �2SCS j3ip3! + �4SCS j5ip5! � ; (D.4)527



S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012where ��2In = �5 + ip5 � =�2SCS and ��21 == �5� ip5 � =�2SCS. The output state is a three-levelapproximation of the odd SCS displa
ed by ��1.Higher-order 
hara
teristi
 polynomials (C.5) and(C.7) 
an be solved numeri
ally. Numeri
al values ofthe �delities areF+1(�0:99SCS+1 = 0:861557) == F�1(�0:99SCS�1 = 1:04403) == F+2(�0:99SCS+2 = 1:27247) == F�2(�0:99SCS+2 = 1:45741) = 0:99;where �0:99SCS+N is the size of the SCS for whi
h the�delity takes the value 0.99 (F�N (�0:99SCS�N ) = 0:99).Comparing the �delities, we see that �0:99SCS�1 == 1:04403 > �0:99SCS+1 = 0:861557 and �0:99SCS�2 == 1:45741 > �0:99SCS+2 = 1:27247.APPENDIX EWigner fun
tionsWe have 
onsidered the presentation of SCSs andtheir approximations on the phase plane. The Wignerfun
tions of even/odd SCSs 
an be expressed asW�SCS(�) = N�(�SCS)�� [W0(�) +W�0(�)� 2X�SCS(�)℄ ; (E.1)where � = x+ ip, �SCS = xSCS + ipSCS andW0(�) = 2� �� exp ��2(x� xSCS)2 � 2(p� pSCS)2� ; (E.2)W�0(�) = 2� �� exp ��2(x+ xSCS)2 � 2(p+ pSCS)2� ; (E.3)X�SCS (�) = 2� �� exp(�2x2 � 2p2) 
os [4(xpSCS � pxSCS)℄ : (E.4)The Wigner fun
tion of a two-level superposition(N = 1, Eq. (8b)), being the simplest approximationof the DSSCSs, is given byW�1(�) = 11 + ja�1j2 �� �W0(�) + ja�1j2W1(�) +X�01(�)� ; (E.5)

W0(�) = Y (�); (E.6)W1(�) = Y (�)(4x2 + 4p2 � 1); (E.7)X�01(�) = 2Y (�) �a��1(x + ip) + a�1(x� ip)� ; (E.8)Y (�) = 2� exp(�2x2 � 2p2): (E.9)The Wigner fun
tion of a three-level superposition(N = 2, Eq. (11a)), being the next approximation ofthe SCSs, is given byW�2(�) = 11 + ja�1j2 + ja�2j2 �� �W0(�) + ja�1j2W1(�) + ja�2j2W2(�) ++ X�01(�) +X�02(�) +X�12(�)℄ ; (E.10)whereW2(�) = Y (�) �1 + 4(2x2 + 2p2 � 1) + 3 ++ 4(2x2 � 3)x2 + 4(2p2 � 3)p2 ++ (1� 4x2)(1� 4p2)� ; (E.11)X02(�) = 2p2Y (�) �a�2(x� ip)2 + 
.
.� ; (E.12)X12(�) = 2p2Y (�)�� �a�1a��2 �(x+ ip)(2x2 + 2p2 � 1)�+ 
.
.	 : (E.13)Higher-order Wigner fun
tions W�N (�) with N > 2
an be 
al
ulated only numeri
ally be
ause of their
omplexity. Marginal distributions for the momentumand position are given by R W (x; p) dx = hpj�jpi andR W (x; p) dp = hxj�jxi, where � is a density matrix.If the Wigner fun
tions of the SCSs are given byW�SCS(�), then it is possible to show that the Wignerfun
tion transforms asW�SCS(�)!W�DSSCS �� [
h r(� � �)� sh r(�� � ��)℄ (E.14)for the DSSCSs, where r is the squeezing parameterand � is the displa
ement amplitude. Then, the Wignerfun
tions of the even/odd DSSCSs 
an be expressed asW�DSSCS(�) = N�(�SCS)�� [W0(�) +W�0(�) � 2X�DSSCS(�)℄ ; (E.15)where � = x+ ip, �SCS = xSCS + ipSCS, � = x� + ip�andW0(�) = 2� exp"�2�x� x�er � xSCS�2 �� 2�p� p�e�r � pSCS�2# ; (E.16)528
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ed squeezed superpositions : : :W�0(�) = 2� exp"�2�x� x�er + xSCS�2 �� 2�p� p�e�r + pSCS�2# ; (E.17)X�DSSCS (�) = 2� exp��2(x� x�)2e2r � 2(p� p�)2e�2r ��� 
os�4�pSCS x� x�er � xSCS p� p�e�r �� : (E.18)This work was supported by the KOSEF grantR11-2008-095-01000-0 funded by the Korea government(MEST) and by the Program of reprodu
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