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We study the method of generation of states that approximate superpositions of large-amplitude coherent states
(SCSs) with high fidelity in free-traveling fields. Our approach is based on the representation of an arbitrary
single-mode pure state, and SCSs in particular, in terms of displaced number states with an arbitrary displace-
ment amplitude. The proposed optical scheme is based on alternation of photon additions and displacement
operators (in the general case, N photon additions and N — 1 displacements are required) with a seed coherent
state to generate both even and odd displaced squeezed SCSs regardless of the parity of the used photon addi-
tions. It is shown that the optical scheme studied is sensitive to the seed coherent state if the other parameters
are unchanged. Output states can approximate either even squeezed SCS or odd SCS shifted relative to each
other by some value. This allows constructing a local rotation operator, in particular, the Hadamard gate,
which is a mainframe element for quantum computation with coherent states. We also show that three-photon
additions with two intermediate displacement operators are sufficient to generate even displaced squeezed SCS
with the amplitude 1.7 and fidelity more than 0.99. The effects deteriorating the quality of output states are
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GENERATION OF DISPLACED SQUEEZED SUPERPOSITIONS

considered.

1. INTRODUCTION

Laboratory realization of schemes for the genera-
tion of specific nonclassical quantum states is one of
the most exciting challenges to the researches. It is well
known that the range of applications of the nonclassi-
cal states of light extends from precision measurements
[1] to quantum lithography [2] and quantum informa-
tion processing [3]. Most optical proposals for quan-
tum information processing require nonclassical states
in propagating optical modes that can be easily manip-
ulated by means of linear optics such as beam splitters,
phase shifters, and so on. The states generated in cav-
ity experiments are not so useful for the quantum in-
formation processing because the field is confined and
can be probed only indirectly.

One of such remarkable examples of nonclassical
states is given by Schrodinger-cat-like states [4]. We
are interested in the states realized in harmonic oscilla-
tors and often called superpositions of coherent states

*E-mail: sapo66@mail.ru

(SCSs). The superposition of two coherent (i.e., most
classical) states with opposite phases [5] exhibits both
some properties similar to those of statistical mixtures
and typical interference features. For example, one of
the quadrature-component distributions of SCSs shows
two peaks that change their mutual distance depend-
ing on the amplitude of coherent fields, whereas an os-
cillatory behavior is observed in another quadrature-
component distribution [5]. We note that such be-
havior mainly occurs only for large amplitudes of co-
herent states composing SCSs when macroscopically
distinguishable outcomes are observed by a homodyne
measurement [6]. We also note negative values in the
Wigner functions of the SCSs [7], which are manifesta-
tion of their nonclassical properties.

In spite of the manifold usefulness of the SCSs, there
has not been much progress in the generation of SCSs
until recently. Schemes have been proposed to gener-
ate such SCSs using strong nonlinearities [8] or photon
number resolving detectors [9], which are hardly fea-
sible with the current level of technology. Recently,
more realistic schemes have been proposed by differ-
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ent authors [10-12]. For example, the simple observa-
tion that an odd SCS with a small amplitude (< 1.2)
is well approximated by squeezed single photon was
made in [10]. It was also noted that a squeezed sin-
gle photon can be obtained by subtracting (or adding)
one photon from the pure squeezed vacuum [13]. The-
oretical analysis of added /subtracted squeezed vacuum
states has been performed in [14]. Single-photon- sub-
tracted squeezed states, which are close to SCSs, were
generated in [15]. A squeezed SCS with state size ap-
proximately 1.6 was generated and detected in [16].
It may be suited for fundamental tests and quan-
tum information processing despite their squeezing [17].
Subsequent steps were aimed at studying two-photon
added/subtracted squeezed vacuum states [18,19]. A
scheme involving time-separated two-photon subtrac-
tion to generate large-amplitude SCSs was experimen-
tally demonstrated in [20]. Another remarkable exper-
imental result based on subtracting three photons from
a squeezed vacuum was recently presented in [21].

Currently, all the proposals to generate free-tra-
veling Schrodinger-cat-like states are based on use of
added /subtracted squeezed vacuum states. Neverthe-
less, it is interesting to develop a general method of the
SCSs generation to apply it to quantum computation
with coherent states. It was shown in [22] that an arbi-
trary single-mode state can be engineered starting from
the vacuum by applying a sequence of single-photon
additions and displacements. The idea with alternate
photon additions and displacements can be adjusted to
the SCSs generation [23]. To extend the approach to
quantum computation, we propose to use decomposi-
tion of the wave functions into series on the displaced
number states with arbitrary amplitudes. The decom-
position is possible because the set of displaced states
is complete and they are orthogonal with respect to
an inner product. The use of displaced number states
was proposed in dense coding [24] and quantum key
distribution [25]. We note that the displaced vacuum
is a coherent state, and a displaced single photon was
experimentally realized in [26].

2. DISPLACED SQUEEZED SCSs IN TERMS
OF THE DISPLACED NUMBER STATES

The even and odd regular SCSs are respectively de-
fined as

|SCS+(ascs)) =
= Ni(ascs) (|0,as0s)) |0, —ascs))) -

(1)
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Here, N1 (ascs) = 1/4/2[1 £ exp(—2|ascs|?)] are the
corresponding normalization factors for the even (+)
and odd (=) SCSs and the notation |0, +ascs)) for
coherent states with amplitudes +agcg is used. We
assume agscs > 0 throughout the paper. “Taking
ascs > 0 real” means that the field is in phase with
the local oscillator that is used for qubit measurement
and for making the displacements required for some of
the gates. We use the notation |n,a) = D(a)|n) for a
displaced n-photon state, where n is an arbitrary num-
ber and D(a) = exp(aa™ — a*a) is the displacement
operator, a(a®) is the boson annihilation (creation)
operator, and |n) is a number state. In particular,
|0, ascs) = D(ases)|0) is a displaced vacuum state
or the same coherent state with the amplitude agcs.

The infinite set of displaced number states |I,a)
(1=0,1,2,...,00), where a is an arbitrary number, is
complete, which allows decomposing any single-mode
state with respect to the basic states. We call such
a decomposition the a-representation of the state. To
obtain the a-representation of a regular (even or odd)
SCSs (|SCSi(ascs,®))), we use formulas (A.4) and
(A.5) in Appendix A:

|SCS+(ascs,a)) = Ni(ascs) x
[— (0dcs + 1) /2] x

lexp(asosa*) <1 S

)l +
) o

= Ni(ascs)exp [— (@es + |af?) /2] x

i leXP ascsa’™) (1 -

+ exp(—ozgcgoz*)(—l)l (

ascs

«Q

+ exp(—ascsa®)(=1)! <1 +
ascs

SCS

= Naloses)exp [ (ados +laf?) /2] x

()3 asall),
n=0

(2a)

where a4, are the respective amplitudes of the de-
composition for even and odd SCSs. Two variables,
ascs and «, are used in the notation for an arbitrary
a-representation of the SCSs |SCSy(ascs,a)) in con-
trast to the direct definition of the SCSs |SC S+ (ascs))
(Eq. (1)), where agcg is the SCS amplitude and « is
the amplitude of the complete set of displaced number
states. In particular, if we take o« = 0, then we deal
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with the number state representation (or, equivalently,
the O-representation in our notation) of the SCSs [5]:

|SCSy(ascs,0)) = 2Ny (ascs) x

><exp 2|a505| Z aSCS
(2b)
1ISCS_(ascs,0)) = 2N (asos) x
2n+1
_ %scs

x exp ( [2n 4 1).

—2|ascs|? Z \/7

Because superpositions (2b) involve either even or odd
number states, they are called even and odd SCSs. It is
natural to use the same terms for the SCSs in a general
a-representation with « # 0 (Eqgs. (2a)), although they
involve both even and odd displaced number states.
Some wave amplitudes a+,, with n > 1 are presented
in Appendix B.

We next define displaced squeezed (even and odd)
SCSs as

|IDSSCS+(ascs,a,r)) =
= D(a)S(r)|SCS+(ascs)) =
= D(a)S(r)Nx(ascs) x

X (|0,ascs) 10, —ases)) ,

(3)

where S(r) exp [r(a™® —a?)/2] is the squeezing
operator with r being a squeezing parameter [9-21].
If we take r = a = 0, we deal with regular SCSs
(Eq. (1)), and if we choose o = 0 and r # 0, then
we have squeezed SCSs [10-21]; if we use r = 0 and
a # 0, we obtain displaced SCSs. Tt is well known it
is hardly possible to generate regular large-amplitude
SCSs with the current level of technology. A natural
way to overcome this is to approximate regular (dis-
placed/squeezed) SCSs to any degree of accuracy by
some states involving N + 1 terms

N

= Nin Z aﬂ:n|n>a
n=0

|V4n) (4)

where Ny are the normalization factors for even and
odd SCSs and we set a4+ = 1 for the convenience of cal-
culations. In the general case, there are two main meth-
ods for the construction of an arbitrary single-mode fi-
nite superposition (4). Both methods are presented in
Fig. 1. One is based on alternation of photon addi-
tions and displacement operators starting with a seed
coherent state, as is shown in Fig. 1a. The general de-
scription of the method with alternate photon additions
and displacement operators and some partial cases of
the method are considered in Appendixes C and D.
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The other approach to the generation of single-mode
finite superpositions of number states (4) is presented
in Fig. 1b. We consider an ideal situation where m
photons are added or subtracted from the squeezed co-
herent states in Fig. 1b. At the output we then have
the relations

at™S(r)]0, ar,) = at™S(r)D(az,)|0) =
a*™SF (=r)D(ar,)S(~r)S(r)0) =
= a™™D(a")S(r)|0) =
D(a')D*(a')a +mD(Oé')S(T)|0>=
(@) (@™ +a")mS(r)]0) =

)
)

=D
D(')S(r)S*T(r)(a” +a’)"S(r)|0) =
D(a')S(r)(at chr +ashr + o ™m0y =
(a +041n chr+(a+a1n)shr]m|0>,
(5a)
a™S(r)|0,arn) = D(a)S(r) x
x [(a+ arn) chr + (a* +aj,)shr]™ |0y (5b)

with o = ar,chr + aj,shr, where ay, is an ampli-
tude of the initial coherent state and we used the rela-
tions [27]

ST(r)atS(r) =a" chr +ashr,

ST (r)aS(r) =achr +a* shr.

It follows from (5a) and (5b) that |¥41n) (Eq. (4)) has
the form

"10) (5¢)

for the m-photon added squeezed coherent state and

Py n) = [(a +aj,) chr + (a+ ar,)shr]

|Win) = [(a+ar)chr + (a* +aj,)shr]™[0) (5d)

for the m-photons subtracted squeezed coherent state.
States (5c) and (5d) are not normalized.

We especially focus our attention on the approach
based on alternation of the photon additions and
displacement operators (Fig. la) to generate “half-
finished products” |¥yy) (Eq. (4)) for the SCSs in
application to coherent quantum computing, leaving
the study of the optical scheme shown in Fig. 1b
to a future investigation. Nevertheless, general fea-
tures of the method with alternate photon addi-
tions and displacement operators are applicable to the
m-photon added/subtracted squeezed coherent states
at™S(r)|0,ar,) and a™S(r)|0, arn).
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D_(?Ifci)_ at D(al) + D(az) -
o) | | 1 | i D(@)S()|SCS(ases))
S(r)  a™™(a™™)
b a™(a*™)S(r)|arm)
lovrn) D(a)S(r1)|SCS(ascs))

Fig.1.

>
>

Diagram of the optical scheme for construction of the even and odd displaced squeezed SCSs with high fidelity.

(a) The optical scheme involves a set of alternate photon additions and displacement operators with the corresponding
amplitudes. The output of the scheme is sensitive to the input coherent state ar,. The displacement operator D(f3) is
used to obtain the corresponding ar,, if the input is either |0, am¢) or |0, —ame) where an¢ is the Hadamard-gate state
amplitude. (b) The optical scheme consists of the input squeezed coherent state S(r)|0, ar,) subject to either the m-photon

subtraction a™ or the m-photon addition a

The fidelity between arbitrary states F = |[{p¢|p)]
is a measure of how close a state |p) is to the target
state |p¢). It is unity when the two states are identical,
and is zero when the two states are orthogonal to each
other. In our case, |p) can be [P y) (Eq. (4)) and |¢;)
can be either regular SCSs or displaced squeezed SCSs
(DSSCSs)

F:I:N = |<SOS:4:N(C¥505)S+(T)D+(O/,)|‘If:|:N>|2.

The choice of the input conditions may be determined
by the aims. The development directions for the gen-
eration of SCSs may be as follows. Occasionally, SCSs
with a large amplitude ascs > 2 have to be generated
for macroscopic tests of quantum theory. For quantum
information processing, it is important to construct
SCSs with higher fidelities F' > 0.99. The ideal case
is to seek optimal conditions to generate SCSs with
larger amplitudes and higher fidelities.

It is well known there is no fundamental rea-
son for the restriction to physical systems with two-
dimensional Hilbert spaces for encoding. It may be
more natural in some contexts to encode logical states
as a superposition of a large number of basis states, as
is the case with quantum computations involving co-
herent optical states. We can therefore define a local
operation R(Q) as

R(Q)|07a> = COSQ|07Q> +SinQ|07_a>a (6&)
R(Q)|0, —a) = sin Q]0, &) — cos Q|0, —av), (6b)

which is nonunitary due to the nonorthogonality of
|0, ) and |0,—a). But R(Q) becomes approximately

+m

unitary when the overlap between the two coherent
states, (0, |0, —a) = exp(—2|al?), tends to zero. We
note that this overlap rapidly tends to zero as a in-
creases. If we take Q = m/4, then the local operation
R(Q) becomes an Hadamard gate that transforms |0, «)
to the even SCS,

R(Q = 7T/4) = |07 a> = |07 a> + |07 —O/,>, (6C)
and |0, —a) to the odd SCS,
R(Q =m/4) =[0,—a) =0,a) = 10,=a).  (6d)

Here, we omit the normalization factor. The Hadamard
gate is a mainframe elementary quantum gate used for
performance of quantum tasks with coherent states.
To achieve an arbitrary 1-bit rotation, we must apply
U(r/4) and U(—n/4), which are respective rotations
by 7/2 and —7/2 around the z axis. The unitary op-
erations U(m/4) and U(—n/4) can be realized using a
Kerr nonlinear interaction [5]. The interaction Hamil-
tonian of a single-mode Kerr nonlinearity is

HNL = hQ(a*a)2,

where () is the Kerr nonlinearity strength. When the
interaction time ¢ in the medium is 7/, coherent states
evolve (see Egs. (6¢) and (6d)) up to a relative phase
shift by /2. An optical fiber is the well-known example
of a medium with a Kerr nonlinearity, but only statis-
tical mixing of the states |0, «) and |0, —«) (instead of
(6¢) and (6d)) occurs at the output of a long fiber due
to decoherence effects when optical beams propagate
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inside the fiber. This may be main drawback for the
development of quantum protocols with coherent opti-
cal states. In the general case, it is natural to speak
about a “rotated” superposition of coherent states (6a)
and (6b) instead of using the terms even/odd SCSs, be-
cause the states in Eqs. (6¢) and (6d) are a particular
case of the rotation operator R(Q). In our notation, the
a-representation of a rotated superposition of coherent
states becomes

|SCSq(ascs,a)) = No(ascs) %

x exp [~ (a%0s +[af?) /2] D(a) Y —5C5 x

1
X (cosQexp(asosa*) <1— @ ) +

1
+ sin Q exp(—ascsa®)(—1) <1+ a )>|z>, (7)
where

Ng(ascs) = {cos2 Q+sin?Q +
+ cosQsinQ [1+ exp (—2|ascs|?)] }_1/2

is a normalization factor and ) = +m/4 respectively
corresponds to the even and odd SCSs.

3. GENERATION OF SCSs AND
APPLICATION OF THE METHOD TO THE
CONSTRUCTION OF ELEMENTARY
QUANTUM GATES

We analyze all possible cases with N = 1,2, 3 pho-
ton additions. An optical scheme with only one photon
addition is the simplest as can be seen from Fig. 1a,
and this scheme allows generating SCSs of moderate
amplitudes. Indeed, we have (see Fig. 1a)

at)0,ar,) = atD(ar,)|0) =
= D(aln)D+(aln)a+D(aln)|0> = D(an)(a+—|—oc}n)><
x [0) = D(am) (11) + a7,[1)),  (8a)

where we used the relation D™ (a)a*D(a) = a™ + a*.
The “half-finished product” |¥y) (Eq. (4)) for the op-
tical scheme with one photon addition (Fig. 1a) is then
given by

_ 10 +anl) _ |0)+]1)/af,
\/1+|a:|:1|2 \/1+1/|(J41n|2

|‘Ijﬂ:1> ) (8b)

if ar, = 1/a%,. Hence, output (8a) is a single-photon
added coherent state (SPACS) with the amplitude ayy,,
0) +[1)/aj,

V1+1/|am?’

and is the simplest approximation of the SCSs. Indeed,
the fidelity between SPACS and DSSCSs is given by

|SPACS(ar,)) = D(ar,) (8¢)

i = |(SCS’i(asos)S+(r)D+(oz) X

x |SPACS(am))]> =
= (SCSx(ascs)D(v41)S(—r)|SPACS (apn))|* =
= [(SCSx(ascs,1+1)S(—r)|SPACS(ar ), (9)

where v11 = chr(ar, — a) — shr(ar, — @)* and
|SCSt(ascs,y+1)) is the ~yii-representation of the
SCSs in Eq. (7), where Q@ = £7/4 is chosen. Here,
the parameters ay,, «, and r depend on the rotation
angle @ (Eq. (7)), but we omit their subscripts in order
to not complicate the notation. It is possible numeri-
cally to seek the parameters a1, y+1, and r with which
the fidelity in (9) takes the highest possible value. For
the even SCS, these values are

agos = 1, F+1 = 0.962444,
ar, = 1.2464i, o = 1.788644,
r= —0.445031, agcs = 1.1,

Fyy =0.943626, ar, = 1.05247:,

a=16373i, r=-0491368, ascs=1.2,
Fyy =0.92202, ar, = 0.900828:,
a =1.52202;, r = —0.537234.

Wigner functions of the displaced squeezed SPACS
with the corresponding parameters and the regular
even SCS with agcs = 1 are presented in Fig. 2. The
method of calculation is applicable to finding parame-
ters of the optical scheme in Fig. 1a to generate an odd
SCS. Our calculations are in total agreement with the
results in [10, 13]. For example, we have

ascs =1, F_; =0.997109,
ap &0, ax0, r=-0.31257;
ascs = 1.1, F_q =0.994411,
a0, a0, r=-0.36893;

ascs = 1.2, F_; =0.99085,
ar, =0, a=x0, r=-0.426398.
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Fig.2. (a) The Wigner function W, of the state D(«)S(r) (|0) + |1)/a7,) /v/1 + 1/|arn|? and (b) the Wigner function
Wiscs of the regular even SCS with ascs = 1. The fidelity between the states is Fly1 = 0.962444

Because aj, ~ 0 is taken, this means that the vac-
uum as an input is used to generate the odd SCS in
the optical scheme in Fig. 1la. With o ~ 0, the out-
put approximates an odd squeezed SCS (not displaced)
[10,13]. Because only one photon creation operator a*
is used to generate SPACS, the method may look at-
tractive due to its simplicity. The SPACSs were exper-
imentally demonstrated in [28]. Comparing the results
in [28] with those given above, it is possible to claim the
SPACSs generated in [28] do not approximate DSSCSs
because the amplitudes of experimental seed coherent
states were chosen out of the range needed for genera-
tion of DSSCSs.

For a universal gate operation, a CNOT (Control
NOT) gate is required besides the 1-bit rotation. It
was found that the CNOT operation can be realized
using a teleportation protocol. To apply this sugges-
tion to quantum computation with coherent states, we
need to use the Hadamard gate (HG), see Egs. (6¢) and
(6d). Analysis shows that we can start with the states
|0, = 0.6232i) and |0, —agg = —0.6232i) that
form a logical qubit basis in the scheme in Fig. 1a. We
then apply an additional displacement operator D(/3)
with f = 0.6232i (dotted rectangle in Fig. 1a) and a
single photon addition to obtain the states that appro-
ximate

|0, arc) = D(ay)S(r)SCSy(ascs), (10a)

0, —ang) = D(a-)S(r)SCS_(ascs) (10b)

with fidelities Fly; = 0.962444 and F_; = 0.969086,
where r = —0.445031 and ay —a_ = 1.78864:. Hence,
the output of this Hadamard gate is squeezed even and
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odd SCSs shifted relative to each other by 1.78864i. It
is worth noting that apgg # ascs-

The same approach to the generation of SCSs of
larger amplitudes and construction of the Hadamard
gate can be developed in the case N = 2, where the
“half-finished product” |¥ 1) of the SCSs in Eq. (4) for
the optical scheme with two photon additions (Fig. 1a)
is given by

_ |0> + a:t1|].> + ai2|2>
\/1 + |ai1|2 + |ai2|2

|V t2)

(11a)

A displaced version of (11a) can be constructed using
two photon additions with one intermediate displace-
ment operator shifting by «; (Fig. 1a) as

atD(a1)a™|0,ar,) = a™ D(ar)a™ D(ary,)|0) =
= Dl + arm)D* (a1 + arn)a’ Dlas +a) x
x D" (arn)at D(ar,)|0) x
X 6i¢D(O£1 + Oé]n) [a+ + (Oll + aln)*] (a+ + O‘;n)|0> =
= e D(ar + ary) [aj, (0] +a7,)[0)+ (] +2a7,)[1) +
+V212)], (1)
where ¢ is some general phase shift and the normali-

zation factor is omitted. Expression (11b) is the wave
function |¥1,) shifted by ay + agp if

B V2

aj.(af +a3,)

* *
ay + 2aln

Y . . a
afa(af +aj,) T

at1 =

The state (11b) can approximate DSSCSs with the fi-
delity
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Fiy = |(SCS’i(a505)S+(ri) X
x DF(ax)D(on + ary) | W a)|”
= |(SCSs(ascs) D (v42)S(—rL) | Psn) [
= [(SCSi(ascs, v2)S(—re) [ Uaa) |,

where v4o = chry(ay, + oy —ay) —shry(ap, + o —
— a4)*, with certain parameters.

Following the procedure developed for N —1, we can
numerically find the parameters a4y, a+s, Y42, and r4
at which the fidelity in (12) takes the maximum value.
This allows estimating the parameters ay,, a1, and a+x
for the optical scheme in Fig. 1a as

(12)

a1 = Eilar,| = +i\/V2/ays, (13a)
ay = F2ilary|, (13b)
ay = Filary| (13c)

for an even SCS (Q = 7/4), where ay2 > 0and ay; =0
[16, 18], and

iy =a_1/V2a_s +VD/2, (14a)
af =5VD, (14b)
D =2(a_y1/a_s)? —4V2 Ja_, (14c)

for an odd SCS (@ = 7/4), while the amplitude of the
shift a_ follows from v_s. Knowing a1, ato, and ri
and using formulas (13) and (14), it is possible to calcu-
late the corresponding parameters of the optical scheme
in Fig. 1a at which the maximum fidelity is achieved.
These parameters are collected in Table 1.

Analysis shows that it is possible to choose the shift-
ing amplitude a; of the intermediate displacement op-
erator in Fig. 1a equal for both even and odd SCSs con-
struction with equal ry = r_ = r, and only to change
the amplitude of the seed coherent state aj,. Then
the output of such a device in Fig. 1a is squeezed even
and odd SCSs with equal r; = r_ = r, shifted relative
to each other by some value oy — a_. This outcome
of the device in Fig. 1a is described by Eqs. (10a) and
(10b). We collect the parameters that can be used for
the construction of the Hadamard gate in Table 2.

For example, we consider the case agscs = 1.3.
It follows from Table 2 that the amplitude ay
—2.87582i of the intermediate displacement, opera-
tor in Fig. 1a is used. Then the output of the opti-
cal scheme in Fig. 1a can approximate either the even
DSSCS

D(a = —1.43791i)S(r = —0.351)|SC S (ascs = 1.3))

or
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D(a = 1.43791i)S(r = —0.351)|SCS, (agcs = 1.3))

with fidelity Fyo = 0.986582 if the input is a co-
herent state with the amplitude aj, = 1.43791: or
ar, = —1.437914, or the odd DSSCS

D(a = —2.875861)S(r

0.351)|SCS+(&505 = 1.3)>

or

D(a = 0)S(r = —0.351)|SCS4 (ascs = 1.3))

with fidelity F_o = 0.986539 if the input is a co-
herent state with the amplitude aj, = 0.344349: or
ar, = —2.53147i. In the case, the outcome of the op-
tical scheme in Fig. la depending on aj, is given by
two states that approximate squeezed even and odd
SCSs of ascs with high fidelity and are shifted rela-
tive to each other by approximately 1.43791:. Because
the outcome of the optical scheme in Fig. 1a depends
on the seed coherent state, we can use an additional
displacement operator D(/3) with either § = 0.89113i
or 3 = —1.98469i to deal with |0,agg = 0.546781i)
(10, amre 0.5467814)) as the input basis of logical
zero and one. The same consideration is applicable to
the SCSs construction with other values of agcg pre-
sented in Table 2. The Wigner functions of the state
|¥_5) and odd DSSCS with the amplitude agcs = 1.3
are presented in Fig. 3. The parameters for the plots
are taken from Table 1.
We consider the state |¥13) in Egs. (4) with N = 3:
|0) + at1]1) + ag2]2) + at3|3)
|Wi3) =
V1+axi? + Jata]? + |axs]?
which can be the output of the optical scheme in Fig. 1a
if at least three single photon additions with two in-
termediate displacement operators between them are
used. This case allows increasing the amplitude of
the generated DSSCSs because the squeezing opera-
tor acts amplification factor. We only present values
of the parameters used, omitting their detailed study
for future investigation. We have Fly3 = 0.993875 be-
tween D(a)S(r)|¥4s3) and the regular even SCS with
ascs = 1.6 for the following values:

, (15)

a1 = 0.131109, a42 =0.976048, a4z = —0.509043,

r =0.478936, o = 0.253028.

The fidelity Fiy3 = 0.990606 between D(a)S(r)|¥43)
and the regular even SCS with agcg = 1.7 is observed
for the following values:

ay1 = 0.164725, aio = 1.02245, a4z = —0.57829,

r =0.527901, «a = 0.264123.
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Table 1. Values of the initial coherent seed a7, and the intermediate displacement operator a1 in Fig. 1a at which the
output approximates either the even DSSCS D (a4 )S(r4)|SCSy(ascs)) or the odd DSSCS D(a—)S(r—)|SCS—(ascs))
with maximum fidelity

ascs Q=m/4 Q=-7/4
F, 5 =0.998728, r, = —0.293054, F_5 = 0.987245, r_ = —0.368812,
a) ar, = 1.25598i, a; = —2.2511964, a) ar, = 0.344249i, oy = —2.87582i,
1.3 a; = —1.255984i, a_ = —2.87586i,
b) arp, = —1.25598i, a; = 2.511964, b) ar, = —2.53147i, a; = 2.87582i,
oy = 1.25598i a_ =0
Fyo =0.997583, r, = —0.334228, F_ 5 =0.981078, r_ = —0.407125,
a) ar, = 1.180954, a; = —2.3619i, a) ar, = 0.373226i, o = —2.643284,
1.4 ay = —1.18095i, a_ = —2.643341,
b) ar, = —1.18095i, a; = 2.3619i, b) ar, = —2.27005i, a; = 2.64328i,
oy = 1.19095i a_ =0
Fy 5 =0.995765, r,. = —0.376383, F_5 = 0.987245, r_ = —0.445339,
a) ar, = 1.11822i, a; = —2.23643i, a) ar, = 0.399473i, o = —2.458944,
1.5 ap = —1.11822i, a_ = —2.45903i,
b) ar, = —1.11822i, a; = 2.23643i, b) ar, = —2.05947i, a; = 2.45894i,
oy = 1.11822; a_=0
Fyo =0.993085, ry = —0.419055, F 5 =0.964491, r_ = —0.483419,
a) ar, = 1.06794i, a; = —2.13588i, a) ar, = 0.423166i, a; = —2.310334,
1.6 ay = —1.06794i, a_ = —2.31047i,
b) arp = —1.06794i, oy = 2.135884, b) ar, = —1.88716i, a; = 2.310334,
oy = 1.06794i a_ =0

Fig.3. (a) The Wigner function W_, of the state |¥'_;) (11a) and (b) the Wigner function W_psscs of the odd DSSCS
with ascs = 1.3. The fidelity between the states is 0.987244. The corresponding parameters are taken from Table 1
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Table 2. Values of the initial parameters used in the optical scheme to generate output Egs. (10a) and (10b)

SCs; Ty 01, Q=m/4 Q=-r/4
aga,
ascs = 1.3, r = —0.351, Fis = 0.986582, F_y = 0.986539,
= —2.87582i,
a) ame = 0.5467814, a) arm = 1437914, a) apm = 0.344349i,
5= 0.89113i, a = —1.43791i, a = —2.87586i,
b) ame = 0.54678i, b) arm = —1.437914, b) arm = —2.53147i, a = 0
8 = —1.98469 a = 1.43791i
ascs =14, 7= -040712, Fis = 0.986162, F_y = 0.981078,
ay = —2.64328i,
a) anc = 0.474207, a) arn = 1.32164, a) arn = 0.373226i,
B = 0.847433i, a = —1.32164i, a = —2.64334i,
b) ane = 0.474205i, b) arm = —1.321644, b arm = —2.27005i, a = 0
8 = —1.79585i a = 1.32164i
asos = 1.5, r = ~0.445339, Fia = 0.985525, F 5 =0.973453,
an = —2.45804i,
a) age = 0.4149981, a) ar, = 1.22947i, a) ar, = 0.3994734,
3 = 0.8144715i, a = —1.22047i, a = —2.45903i,
b) amg = 0.4150, b) are = —1.22947i, b) arm = —2.05947i, a = 0
5 = —1.64447i a = 1.22047i

W+DSSCS

Fig.4. (a) The Wigner function W3 of the state |U3) and (b) the Wigner function Wi psscs of the even DSSCS with
ascs = 1.7. The fidelity between the states is 0.9906. The parameters of the states are given in the text

The corresponding Wigner functions of the state | ¥ 3)
and the DSSCS are presented in Fig. 4. Interfe-
rence features of the states manifest in the p-dist-
ribution, while separated peaks are observed in the
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a-distribution for both |S¥,3) and the DSSCS. As re-
gards the odd SCS generation, for example, we have
F_35 =0.996303 between D(a)S(r)|¥_3) and the regu-
lar odd SCS with agcs = 1.8 for the following values:
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a_1 = —20.6595,
r = 0.364104,

a_2 R 0, a_3 = —151713,
a = —0.012192.

Our approach is based on the use of single photon
additions. It is well known that a single photon addi-
tion can be obtained probabilistically with the help of
a parametric down converter. The probability of such
an event is low. Nevertheless, SPACSs were experimen-
tally generated in [28] and the probability to register
only one photon in the ancillary mode at the output
of the down converter prevails over the probabilities to
register more than one photon. This can mean that the
problem of resolving number states becomes negligible
and we can therefore use silicon avalanche photodiodes
operating in the visible wavelength having a relatively
high efficiency and a small dark count rate. If the dark
count rate of a photodetector is negligible, then the
output state can be in a mixed state represented as

(1= P)Wspacs(a)+ PWy(a),

where Wspacs(a) is the Wigner function of the
SPACS and Wy(«) is the Wigner function of the vac-
uum and P is the probability to register an occasional
photon. The construction of higher-order states |¥ 1)
requires an intermediate displacement operator and an
extra single-photon addition that decreases the success
probability of the device in Fig. 1a. The displacement
operator D(3) with the amplitude S can be approx-
imated by a beam splitter with high transmittivity
T — 1 mixing the input field with the ancillary strong
coherent field |0,&) (£ > 1). Then the output can be
evaluated as

(1 = P)Wis(a) + PWy(a),

where Wis(a) is the Wigner function of |¥y,) and
Wa(a) is the Wigner function of the coherent state,
if we neglect the probability to register two occasional
photons. Hence, the fidelity of the generated states in
practice depends on the dark count rate and the success
probability of the method decreases as IV increases.

4. CONCLUSION

The ability to investigate the elementary actions of
the boson creation operators on a seed coherent state
is of interest both as a tool to take a closer look at
fundamental events in quantum physics and as a nat-
ural extension toward exotic quantum entities, such as
SCSs. For this, we proposed a new representation of
the SCSs in terms of displaced number states with ar-
bitrary amplitudes (a-representation). We were able
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to show that the type of generated SCSs (even or odd)
is independent of the photon parity in the a-represen-
tation. A photon parity can be defined only for SCSs
in the O-representation. The main motivation to use
this representation is to consider problems of genera-
tion and rotation (Eqs. (10a) and (10b)) of SCSs in
general position, involving different methods of gener-
ation and measurements [9-21], and to apply this to
quantum computation with coherent states. This al-
lows determining the range of parameters of the opti-
cal schemes with which output states can approximate
SCSs with high fidelity.

We used a method developed in [22], as is shown
in Fig. la, to construct the states that approxi-
mate DSSCSs. Another possible method is to use
photon added/subtracted squeezed coherent states
at™S(r)|0,ar,) and a™S(r)|0, ar,) (Fig. 1b), consid-
ering which deserves a separate analysis. Our analysis
shows that it is possible to choose the parameters of
the optical scheme in Fig. 1a such that the output be-
comes sensitive to the seed coherent state, which allows
constructing local rotations of qubits, in particular the
Hadamard gate, consisting of coherent states with high
fidelity. We note that these are not rotations because
they are defined by expressions (6a) and (6b). The out-
comes are the squeezed SCSs shifted relative to each
other by some quantity along the p-axis (Eqs. (10a)
and (10b)). Moreover, the amplitudes of input qubits
are not equal to those of output qubits. Nevertheless,
we can supply the optical scheme in Fig. 1a addition-
ally by a phase shifter by /2 and an absorbing medium
(not shown in Fig. 1a) to make the amplitude of the ini-
tial qubit equal to the amplitude of the output qubit,

|0,0zscg> — |0,ia505> — |0,Z'ascseir> =

|07QHG>7

0, —ascs) — |0, —iascs) = 0, —iascse )
= |07 _aHG>7

where T' is the absorbing factor of the medium. The
Hadamard gate that effects a transformation as in
Fig. la cannot be unitary. Possible use of the
Hadamard gate for quantum computations with coher-
ent states deserves a separate investigation [17]. All
parameters needed to construct either even or odd
DSSCSs depending on seed coherent states are pre-
sented in Tables 1 and 2. It was also shown that the
SPACS generated in [28] does not approximate the even
DSSCS because the amplitudes of the seed coherent
state were chosen outside the required range. An opti-
cal scheme with three single photon additions and with
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two intermediate displacement operators between them
allows constructing an even DSSCS with the amplitude
1.7 and fidelity more than 0.99. Consideration of pho-
ton added /subtracted squeezed coherent states may be
preferable from the practical standpoint, which may be-
come the subject of a future study. In the short term,
this approach extends the set of the states that may be
used for quantum information processing and adds new
methods for manipulations with coherent state qubits.

APPENDIX A

Decomposition in terms of displaced number
states

We use the coherent state representation

0,as0s) = D(ascs)|0) = exp (—|ascs[*/2) x
x exp(ascsa’) exp(ascsa)l0) =
= exp (—lascs|*/2) exp(ascsa™)|0) =
= exp (—|ascs|*/2) exp ((a + B)a’) [0) =
|al?) /2) exp(Ba™) x
x exp (—|a|?/2) exp(aa™)|0) =
|a]?) /2) exp(Ba™t)|0,a) =

laf?) /2) x
55 )

=exp (— (Jases]® —

= exp (— (|04505|2 -

=exp (— (Jases)® —

(A1)

where agcs =a+ f (8 = ascs —a) and o and 8 are
arbitrary numbers. We consider a*™|0,a) using the
well known formulas [27]. Then

at™0,a) = D(a)DT (a)a™ D(a)|0) =
= D(a)(a® +a")"|0) =
a) Y CEVEN Q"R k) =
k=0
n—~k
Z - ‘/_a k). (A2)
Using (A.2), it is possible to transform

Ynzo ((Ba™)"/n) 0, a) to

oo

>

n=0

|0 a) = [0,a)+5 (1, a) + ™)+ (5% /2!)

X

Y

\/§I2,a> +20%|1,0) + +a"%[0, ) ) +

ﬂn - *n—
+ HZO,’;\/HQ klky +

<1+6a + + ..>|0,a)+

+B(1L+Ba* + ... +CLA ) x
x|1,a)+(62/\/i) X
X (14 o +...+C2p" 22 22!/l +...)[2,a) +
+(BVE) (L. Gl ) %
x|lLay+...=
= (1+Ba* +2a*2 /2! +... 4+ " " /ol +...)]0,a) +
+A(1+Ba* 4+ .. 48" (n 1) 4 ...) x
x |1,a) + (B%/V2!) x
X (14 Ba*+... 48" 2a "2/ (n=2)1+...)|2,0) +
+(BYVIYA+ . 4+ D)+ .. x

> l

. B
.. = exp(fa ); il |1, a).

+...+

52 *2 6na*n
2! n!

x |1, a) + (A.3)

Finally, we have
|ases|? — |a|2)
) x
2
oo
x exp(pa” Z
+
= exp ( SCS ) exp 0450504 X
gy %
y Z SC’S
2 2
Q@
=eXP( —50s 5 | | )eXP(Oésosa ) X

00 1 1
X E 1- [,a).
—~ Vi < ascs) e

The same is applicable to the state |0, —ascs):

|0,ascs) = exp (—

Il,04>

(A4)

|0, —ascs) =

2 2
= exp <—%) exp(—agosa™) x

N Z a\’%;_!s (-1)! <1 +

)l o). (A.5)

ascs
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Therefore, if we take a = 0 in (A.4), then we have
the following decomposition of the vacuum state with
respect to the basis of displaced number states:

0) =

|0,ascs =0) =

APPENDIX B

Wave amplitudes of several first terms of the

SCSs

Expressions for the wave amplitudes of the SCSs in
an arbitrary a-presentation are given by Eqs. (2a). If
we take ascs = aascos + ie, where a and ¢ are some
real numbers, then the first several wave amplitudes of
the even SCS are given by

(8%

5%5 Ai(acss,a) =

(Gz(ozscs,a,s) _
Gi(ascs, a,¢€)

ayi(ascs,a) =
_ases 1€

VI

) ., (B.1)

ascs

2
Yscs

V2!
a%os

ol G
— <2a+i 2

ascs
3
Xscs
V3!

—3a—a’+i

ats(ascs,a) = Bi(acss,a) =

2 . 2ea

7

- _
Xgsos aSCS)

) Gz(asosﬂvf)] . (B.2)

Gi(ascs,a,¢€)
Cyi(acss,a) =

a%os
V3!

3a’e

a43 (045057 a) =

Al

3ae? 3

2
Xscs

+ (1+3a2—

3e

3
dgog QSCS QgscCs

3e2 . 6aV )
+1 X

2
5o ascs
" Gi(ascs,a,e)

Gi(ascs, a,¢e)

l)+

} . (B.3)

where

Gi(ascs,a,e) = 2 [cos(ascse) ch(aageg) —

— isin(ascse) sh(aazeg)], (B.4)
Gy(ascs,a,e) =2 [cos(agcgs) sh(aa%os) -
— isin(ascse) ch(aageg)] . (B.5)

The wave amplitudes of the odd SCS fol-
low from the expressions for the even SCSs if
we substitute Ga(ascs,a,e)/Gi(ascs,a,c) onto
Gi(ascs,a,e)/Ga(ascs,a,e) in Egs. (B.1)—(B.3).
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APPENDIX C

Alternation of photon additions and
displacements as a method of generation of an
arbitrary single-mode finite superposition of
number states

The method of constructing an arbitrary single-mo-
de superposition of number states was proposed in [22].
We briefly recall it. An arbitrary wave function

N
= ¢uln) = Z Latto),(C)
n=0
can be rewritten as
) = L (at —ay)a™ —ay_ )...(a" —a3) x
- \/m N N—1/)-"- 2

x (a* —a7)|0),

where aj,a3,...,a)y are the N complex roots of the
characteristic polynomial

N
n=0

The relation a® — o can be ensured by applying the
creation operator a® to |0, —«a;) = D(—a;)|0) [27]:

(pna*n

a*|0, —a;) = D(—a;) D" (—a;)a™ D(—a;)|0) =
= D(—a;)(a" = a})[0).

Hence, an arbitrary single-mode superposition of the
number states can be obtained by a sequence of
alternate single-photon additions and displacements
starting with |a,) with the corresponding amplitude
AIn [22]

|¥) = (iou/Vl ) D*(=an) x
x at"D(—an)D" (—an_1)atD(—an_1) ...
. X D(—a3)D" (—az)at D(—ay) x

X D+(a1n)a+|a1n>. (C.2)

We can use the relation D(a)D(5) = exp [i Im(a5*)] x
x D(a+ f3) to simplify the expression (C.2):

@) = ¢ (p/Vl ) D*(—an) x

xat"D(ay_1 —an)a™D(ay_ o —an_1)...

. X D(ag — az)a™D(—ay — ar,) (C.3)

a+|a1n>7

where ¢ is the total phase shift.
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In particular, in the O-representation or the same
number state representation (Eqs. (3a) and (3b)), for
the even SCSs, we have

|SCS+N(C%505,0)> = N+N(QSCSaO)(a2S%S/n') X

x (a™ —a@) (@™ —ai ) ... (a™ —a}?) x
x (a7 —a1?)[0), (C.4)
where a}?,a3?, ..., a3? are the roots of the polynomial
- agbs .o
* n __
> o) (a*)" = 0. (C.5)

The same is applicable to the generation of the odd
SCS if we start with the input state |1, azy)

|SCS_n(ascs,0)) =

= N_n(ascs, 0)(agbs/(n+ 1)) (a™? —ay)...
x (™ —a3?)(a™ — a}?)|1), (C.6)
with the roots of the equation
a O‘ZSnCS 2
* n = . .
Z(Qn-l—l)!(a )" =0 (C.7)

n=0

APPENDIX D

Some particular cases of the use of the method
of alternate single-photon additions and
displacements

The roots of the characteristic polynomials given in
Appendix C can be obtained in the general case only
numerically. Nevertheless, some particular solutions
can be found analytically. We show this with the exam-
ples of constructing the SCSs in the O-representation.
We then have

atD(=2ar,)a™0,a5,) = a* D(—az,) x
x (at 4 aF,)|0) =
D(—ar,) DV (—arm)at D(—ar,)(a™ + a},)|0) =
= D(~arm)(a* —aj,)(a’ +a7,)|0) =
= D(~ar)(@*® - aj})[0) =
= D(—am) (V212) - a32]0)) =

D(~arn)|arn|? <|O> + a%os|2>/@) ,

(D.1)

if ay, = ilar,| and a4, = 2/|arm|>. The output of
(D.1) is a state that approximates the even SCS dis-
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placed by ay, up to a normalization factor. A further
extension of (D.1) is given by

atD(—2ay)at D(ay+ar,)at D(—2a3,)a™ |0, ar,) =

= a+D(—2a1)a+D(Oé1+OéIn)D(_OHn)( +2_O‘In)|0>

= D(=a1)(a"*~a;?)(a"*~a7})|0) =

ar) (VA 49)=V2 (ai*+a72)|2) 0)) =
(D.2)

*2 %2
+a1 Arp

D(-
= la1Plar|*D(~

x (10) + a%esi2)/ V2! + adesl4)/ VL) |

al) X

where the roots of characteristic polynomial (C.5) are
a’ 2= =2 (3i \/_) [e%cs.

Because agcs > 0, it follows that ar, = i|lar,|, an =
= i|ay |, where

ant = 2 (3+V3)
In| — Oé2 )
scs
|a1|2=2(3_\/§) s = ——.
A%cs es larn|?

Finally, the output operator D(ay) is applied to gen-
erate a truncated version of the even SCS with three

terms.
For the odd SCS, we have

atD(—2ary)a™ |1, ar,) =
= D(—am)(a” —aj,)(a" +a,)1) =

= aiD(=an) (=I1) + V3I[3)/a7?)
= —ai2D(~arm) (1) + a%esl3)/ VL) (D3)

if ar, = ilaq| and a%og = 6/]ar,|?. The output of
(D.3) is a two-level approximation of the odd SCS dis-
placed by ay,. If we extend (D.3), then

atD(=2ay)at D(ay+ar,)at D(=2ar,)a™ |1, ar,) =

= D(—a2)D+(—ag)a+D(—a2)D+(a2) +D(a2) @ X
x eV D(—a1)(a*? —afp) (@™ —a)|l) =
= ewOéjn0412D( ) l|1> - & (jl_;;;lo[é;;@
b2 | = eFartainian x
Qg O'/In
a%osl3) agosl3)
X <|1)+ 3l W ), (D.4)
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where aj? (54+iV5) /akos and  aj?

= (5—1iV5) /a%cg. The output state is a three-level
approximation of the odd SCS displaced by —aq.
Higher-order characteristic polynomials (C.5) and
(C.7) can be solved numerically. Numerical values of
the fidelities are

Fiy(a%ds,, = 0.861557) =
= F_1(a%% | = 1.04403) =
= Fis(a%d%,, = 1.27247) =
= F »(a%ds,, = 1.45741) = 0.99,

where a4’ y is the size of the SCS for which the
fidelity takes the value 0.99 (Fin (%%, ) = 0.99).

ASCSEN
Comparing the fidelities, we see that a%2%
1.04403 > %2

SCS+1 0.861557 and a%2%_,
— 145741 > o

099, = 1.27247.

APPENDIX E

Wigner functions

We have considered the presentation of SCSs and
their approximations on the phase plane. The Wigner
functions of even/odd SCSs can be expressed as

Wiscs(a) = Ni(ascs) x
x [Wo(a) + W_o(a) £2Xa05 ()], (E.1)
where a = = + ip, ascs = rscs + ipscs and
2
Wo(Oé) = — X
T
X exp [—2(1‘ — 1‘505)2 — 2(]) — pscs)2] N (EQ)
2
W_ =—
0(04) p X
x exp [-2(z + zscs)? — 2(p+ pscs)?].  (E.3)
2
Xascs (O/,) = ; X
X exp(—2:v2 — 2p2) cos[4(zpscs — prscs)]. (E.4)

The Wigner function of a two-level superposition
(N =1, Eq. (8b)), being the simplest approximation
of the DSSCSs, is given by

Wil(a) = 1+ |2ﬂ:1|2 X
x (Wo(a) + |ast|*Wi(a) + X101 (), (E.5)

528

MKITD, Tom 141, Bhm. 3, 2012
Wo(a) =Y (a), (E.6)
W1 (a) =Y (a)(42® + 4p* — 1), (E.7)
Xio1(a) =2Y () |al(x +ip) + axi(x — zp)] , (E.8)
Y(a)= 2 exp(—22% — 2p?). (E.9)
s

The Wigner function of a three-level superposition
(N =2, Eq. (11a)), being the next approximation of
the SCSs, is given by

1

W) =4 Flasa? + Jazal?
x [Wola) + |as1|* Wi (@) + |as2)*Wa(a) +
+ Xto1(a) + Xuo2(a) + Xpa2(a)],  (E.10)
where
Wa(a) =Y (a) [14+4(22 +2p> —1) + 3 +
+ 4(22” - 3)2” + 4(2p” - 3)p* +
+ (1 -42”)(1—-4p”)], (E.11)
Xoz(@) = 2v2Y () [aga(z —ip)? + c.c],  (E.12)
Xia(a) = 2v2Y (@) x
x {asiat, [(x +ip)(22° +2p* — 1)] +cc.}. (E.13)

Higher-order Wigner functions Wiy () with N > 2
can be calculated only numerically because of their
complexity. Marginal distributions for the momentum
and position are given by [W(z,p)dz = (p|p|p) and
[ W (z,p)dp = (z|p|z), where p is a density matrix.

If the Wigner functions of the SCSs are given by
Wiscs(a), then it is possible to show that the Wigner
function transforms as

Wiscs(a) = Wipsscs X

x [chr(a — B) —shr(a™ — %))
for the DSSCSs, where r is the squeezing parameter
and (3 is the displacement amplitude. Then, the Wigner
functions of the even/odd DSSCSs can be expressed as

(E.14)

Wipsscs(a) = Ni(asos) X
X [WO(a) + W*O(a) + QXQDSSCS(Q)] ) (E'15)
where a = x +1ip, ascs = xscs +ipscs, B = x5 +ipg
and
2 r—x 2
Wo(a) = —exp l—Q < - g xscs) -
e e

b—Dps

-2 (22

—pscs) ], (E.16)
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W_o

Xapsscs (a) = ; exp

R1

Tr —Ip
eT’

2
+ xscs) -

= 2o -2

_2<p—p6

e*’l"

. (E.17)

E
6)] . (E.18)
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