О СПЕКТРЕ АТОМА ВОДОРОДА В СВЕРХСИЛЬНОМ МАГНИТНОМ ПОЛЕ

В. С. Попов^а, Б. М. Карнаков^{b*}

^а Институт теоретической и экспериментальной физики 117218, Москва, Россия

^b Национальный исследовательский ядерный университет «МИФИ» 115409, Москва, Россия

Поступила в редакцию 27 апреля 2011 г.

Рассмотрены различные подходы к вычислению энергий основного и возбужденных уровней атома водорода, находящегося в сверхсильном магнитном поле B, намного превышающем поле $B_a = m_e^2 e^3 c/\hbar^3 \sim 10^9$ Гс. Обсуждается влияние поляризации вакуума и аномального магнитного момента электрона на положение атомных уровней. Эффекты поляризации вакуума пренебрежимо малы при $B < 10^{15}$ Гс, однако становятся существенными в полях $B \gg 10^{16}$ Гс и приводят к качественному изменению атомного спектра в этой области. Обсуждается различие в поведении четных и нечетных уровней при $B \gg B_a$, сделаны уточнения формул для энергии нечетных уровней в зависимости от поля B.

1. ВВЕДЕНИЕ

Квантовомеханическая задача о спектре атома водорода в магнитном поле $B \gg B_a$, где $B_a =$ $= m_e^2 e^3 c/\hbar^3 \sim 10^9$ Гс, представляет большой интерес для астрофизики нейтронных звезд: пульсаров с полями $B \sim 10^{11} - 10^{13}$ Гс [1,2] и магнитаров — специального класса нейтронных звезд, в которых магнитные поля могут достигать рекордных значений вплоть до 10¹⁵ Гс [3]. Эта задача рассматривалась многими авторами [4-17], начиная с пионерской работы Шиффа и Снайдера [4], в которой было введено адиабатическое приближение, использованное всеми последующими авторами. Поскольку переменные в уравнении Шредингера не разделяются, применялись различные численные методы (см. работы [6–13] и указанные в них ссылки); имеются также аналитические формулы [5,13–17] для энергии уровней. Возникает вопрос о точности различных приближений и об области их применимости, слабо освещенный в литературе, что и является предметом данной работы. Мы обсудим также влияние поляризации вакуума и аномального магнитного момента электрона на положение атомных уровней и недавно обнаруженный [18-20] эффект «замерзания» энергий четных уровней в сверхсильных полях $B \gg 10^{16}$ Гс. Получены более точные асимптотические разложения для энергии нечетных уровней атома водорода, обсуждается качественное различие в ходе четных и нечетных уровней с ростом магнитного поля.

В дальнейшем, как правило, $\hbar = c = 1, m_e$ — масса электрона, $m = 0, \pm 1, \pm 2, \ldots$ — магнитное квантовое число (проекция орбитального момента электрона на направление магнитного поля), $B_a = m_e^2 e^3 =$ $= 2.35 \cdot 10^9$ Гс — атомная единица напряженности магнитного поля, $\mathcal{H} = B/B_a$ — безразмерное приведенное поле, $B_{cr} = \alpha^{-2}B_a = 4.41 \cdot 10^{13}$ Гс — критическое, или швингеровское поле в КЭД [21–23], $a_B = 1/m_e e^2$ — радиус Бора, $a_H = (eB)^{-1/2}$ — магнитная длина, или радиус Ландау, $\omega_L = eB/m_e$ ларморовская, или циклотронная частота, $\alpha = e^2 =$ = 1/137 (гауссова система единиц). При этом

$$a_H = \frac{a_B}{\sqrt{\mathcal{H}}} = \begin{cases} a_B, & B = B_a, \\ \alpha a_B, & B = B_{cr}, \end{cases}$$
(1.1)

$$\omega_L = m_e e^4 \mathcal{H} = \begin{cases} m_e e^4 = 2 \operatorname{Ry}, & B = B_a, \\ m_e, & B = B_{cr}, \end{cases}$$
(1.2)

а энергии атомных уровней равны

$$E_n = -\lambda_n^2 \mathrm{Ry},\tag{1.3}$$

^{*}E-mail: karnak@theor.mephi.ru

Сверхсильное магнитное поле сжимает атом: его поперечный к полю размер $a_{\perp} \sim a_H$ сокращается как $1/\sqrt{\mathcal{H}}$, а продольный размер a_{\parallel} сокращается лишь логарифмически [14]:

$$a_{\parallel}/a_{\perp} \sim \sqrt{\mathcal{H}}/\ln\mathcal{H} \gg 1.$$
 (2.1)

Распределение электронной плотности $|\psi(\mathbf{r})|^2$ принимает сигарообразную или даже игольчатую форму. Поэтому электрон оказывается, в среднем, ближе к ядру, чем в свободном (B = 0) атоме, вследствие чего энергия связи уровней (особенно основного) возрастает.

При $B \sim B_{cr}$ поперечное движение электрона является релятивистским, в то время как продольное движение носит нерелятивистский характер, и к нему применимо адиабатическое приближение [4, 14]. Это позволяет получить асимптотические (при $\mathcal{H} \gg 1$) формулы для спектра уровней в таком поле. Напомним некоторые сведения об уровнях атома водорода в магнитном поле.

Спектр энергий уравнения Дирака для электрона в чисто магнитном поле *B* (постоянном и однородном в пространстве) имеет вид [24]

$$\varepsilon_{N\sigma_z p_z}^2 = m_e^2 + p_z^2 + (2N + 1 + \sigma_z)eB,$$

$$N = 0, 1, 2, \dots,$$
(2.2)

где p_z — импульс электрона вдоль магнитного поля, $\sigma_z = \pm 1$ — удвоенная проекция спина на направление магнитного поля (ось z). При $B \gg B_{cr}$ все электронные состояния являются ультрарелятивистскими: $eB \gg m_e^2$, $\varepsilon \gg m_e$, за единственным исключением основного уровня Ландау (N = 0) с $\sigma_z = -1$, для которого $\varepsilon^2 = m_e^2 + p_z^2$ независимо от B.

Уравнение Шредингера в данной задаче удобно решать в цилиндрических координатах (ρ , z) с калибровкой $\mathbf{A} = [\mathbf{B} \times \mathbf{r}]/2$ [17, §112]. При этом в адиабатическом приближении решение уравнения Шредингера записывается в виде

$$\Psi_{nn_{\rho}m\sigma_{z}} = R_{n_{\rho}m}(\rho)\psi_{nn_{\rho}m}(z)\chi_{\sigma_{z}}, \qquad (2.3)$$

где $R_{n_{\rho}m}(\rho)$ — волновая функция поперечного движения электрона, χ_{σ_z} — его спиновая функция, а $\psi_{nn_{\rho}m}(z)$ — волновая функция продольного движения электрона в эффективном потенциале

$$U_{eff}(z) = -e^2 \int \frac{|R_{n_{\rho}m}(\rho)|^2}{\sqrt{\rho^2 + z^2}} d^2\rho, \qquad (2.4)$$

удовлетворяющая уравнению

$$-\frac{1}{2m_e}\psi''(z) + U_{eff}(z)\psi(z) = E_n\psi(z).$$

Собственные значения энергии равны

$$E_{nn_{\rho}m\sigma_{z}}[\mathrm{Ry}] = (2N+1+\sigma_{z})\mathcal{H} - \lambda_{nn_{\rho}m}^{2}, \quad (2.5)$$

где $N = n_{\rho} + (m + |m|)/2 = 0, 1, 2, \ldots, n_{\rho}$ — радиальное квантовое число волновой функции $R_{n_{\rho}m}(\rho)$ поперечного движения и n — квантовое число для продольного (вдоль магнитного поля) движения в эффективном потенциале. Заметим, что для основного уровня Ландау (N = 0) энергия нулевых колебаний осциллятора взаимно сокращается с магнитной энергией спина:

$$\frac{1}{2}\hbar\omega_L = \frac{e\hbar B}{2m_e c} = \mu_B B. \tag{2.6}$$

Далее в формулах (2.3)–(2.5) полагаем $N = n_{\rho} = 0$, $m = 0, -1, -2, \ldots$ и $\sigma_z = -1$. Такие состояния¹⁾ имеют нерелятивистскую энергию $E = -\lambda^2 Ry$ даже при $B \gg B_{cr}$, и к ним применимо уравнение Шредингера. Напомним, что в чисто магнитном поле спектр энергий поперечного движения обладает вырождением бесконечной кратности: энергия не зависит от магнитного квантового числа $m = 0, -1, -2, \ldots$ Каждому такому состоянию в атоме водорода в магнитном поле отвечает бесконечная совокупность («башня» [20]) связанных состояний, примыкающих к LLL-уровню и имеющих энергию связи, малую по сравнению с m_e . Этими состояниями мы и будем заниматься.

3. АНАЛИТИЧЕСКИЕ ФОРМУЛЫ ДЛЯ АТОМНОГО СПЕКТРА (ЧЕТНЫЕ УРОВНИ)

В литературе предложено несколько аналитических формул для энергий уровня атома водорода в зависимости от сильного магнитного поля $B \gg B_a$, связанных с использованием адиабатического приближения. Перечислим их и сравним с данными численных расчетов.

¹⁾ Состояния LLL (the lowest Landau level) по обозначению работы [20]. Релятивистские поправки к энергии этих уровней, вычисленные на основе уравнения Дирака [8], оказались незначительными (порядка 10^{-5} от значения λ^2 при $B \sim 10^{13}$ Гс).

3.1. Основной уровень

Согласно [17, §112, задача 3], энергия связи основного уровня равна²⁾

$$\varepsilon_0 = \frac{1}{2} m_e e^4 \ln^2 \frac{B}{m_e^2 e^3},$$
 или $\lambda = \ln \mathcal{H}$ (3.1)

(отметим, что при $B = B_{cr}$ имеем $\mathcal{H} = \alpha^{-2}$ и, согласно (3.1), $\lambda = 2 \ln(1/\alpha) = 9.84$).

Аналогичное уравнение (3.28) из работы Лоудона [5] можно переписать в виде

$$\ln \mathcal{H} = \lambda + 2\ln(2\lambda). \tag{3.2}$$

Близкое выражение приведено в работе [7] и отличается от (3.2) только слагаемым $\gamma - \ln 2 = -0.116$ в правой части этого уравнения ($\gamma = -\psi(1) = 0.5772...$ — постоянная Эйлера).

В статье [14] получено уравнение (см. (2.13) в [14])

$$\ln \mathcal{H} = \lambda + 2[\ln \lambda + \psi(1 - \lambda^{-1})] + c_0, \qquad (3.3)$$

где $\psi(x) = \Gamma'(x)/\Gamma(x)$ — логарифмическая производная гамма-функции, $c_0 = 3\gamma + \ln 2 = 2.4248 \ (\gamma -$ постоянная Эйлера).

Укажем еще формальную (при $\mathcal{H} \to \infty$) асимптотику последнего уравнения,

$$\tilde{\lambda}_0 \approx \ln(\mathcal{H}/\ln^2 \mathcal{H}), \quad \tilde{\varepsilon}_0 = \tilde{\lambda}_0^2/2,$$
(3.4)

которая отличается от (3.1) функционально, причем

$$\frac{\tilde{\varepsilon}_0}{\varepsilon_0} = 1 - 4 \frac{\ln \ln \mathcal{H}}{\ln \mathcal{H}} + O\left(\frac{1}{\ln \mathcal{H}}\right), \quad \varepsilon_0 - \tilde{\varepsilon}_0 \approx 4 \ln \ln \mathcal{H}.$$

Хотя формально $\varepsilon_0/\tilde{\varepsilon}_0 \to 1$ при $\mathcal{H} \to \infty$, однако выход на этот предел происходит чрезвычайно медленно в полях, не имеющих реального физического смысла³⁾. В дальнейшем мы увидим, что как (3.1), так и (3.4) не являются истинными асимптотиками для энергии основного уровня.

Наконец, в работе [16] приведено уравнение

$$\ln \mathcal{H} = \lambda + 2 \ \psi (1 - \lambda^{-1}). \tag{3.5}$$

Для глубокого, $\lambda \gg 1$, уровня это уравнение принимает вид

$$\lambda = \ln \mathcal{H} + 2\gamma \tag{3.5'}$$

и отличается от (3.1) только сдвигом (рис. 1).

Рис. 1. Безразмерный импульс λ для основного уровня атома водорода в зависимости от приведенного магнитного поля \mathcal{H} : численные расчеты [9–13] (кривая 1), уравнение (3.3) — кривая 2, асимптотика (3.4) — кривая 3; формулам (3.1), (3.5) и (3.2) соответствуют кривая 4 и пунктирные кривые K и L

Сравним теперь эти приближения с точными⁴⁾ численными расчетами [9-12]. Из рис. 1 следует, что формула Лоудона (3.2), хотя и не является прецизионной, все же качественно описывает зависимость $\lambda(\mathcal{H})$ для значений \mathcal{H} от 10 до 10⁶. С другой стороны, выражения (3.1) и (3.5) фактически не имеют области применимости. Наиболее высокую точность имеет уравнение (3.3): так, при $B > 5 \cdot 10^{11}$ Гс кривые 1 и 2 уже неразличимы в пределах точности рис. 1, и с ростом *H* точность этого уравнения только повышается⁵⁾. Что касается асимптотики (3.4), то она приближается к точному решению, хотя и довольно медленно. Следует подчеркнуть, что приведенные выше уравнения, за исключением (3.3), относятся только к основному уровню и не применимы для возбужденных состояний атома водорода.

Особый интерес для астрофизики нейтронных звезд может представлять не зависимость $\lambda(\mathcal{H})$, а обратная ей зависимость $\mathcal{H}(\lambda)$, определяющая магнитное поле на поверхности звезды по измеренному сдвигу атомного уровня. Соответствующие данные приведены в табл. 1 работы [14]. В полях $B \gtrsim 10^{13}$ Гс погрешность уравнения (3.3) в определении поля \mathcal{H} не превышает 0.3%, и даже при $B \sim 10^{12}$ Гс (ха-

²⁾ Как отмечено в [17], с «логарифмической точностью».

³⁾ Так, например, различие между ε_0 и $\tilde{\varepsilon_0}$ даже при $B = 10^8 B_{cr} \sim 10^{21}$ Гс порядка 30%, причем разность $\varepsilon_0 - \tilde{\varepsilon}_0$ неограниченно возрастает при $B \to \infty$.

⁴⁾ Вплоть до десяти значащих цифр в работе [9].

⁵⁾ Пользуясь случаем, исправим допущенные в [14] опечатки: на рис. 4-8 и 10-12 этой работы по оси абсцисс должны быть приведены значения десятичных логарифмов lg \mathcal{H} , а не ln \mathcal{H} , на рис. 9 — lg B вместо ln B.

рактерное значение для нейтронных звезд) ошибка менее 10 %, что, по-видимому, достаточно для астрофизических приложений. В то же время уравнения (3.1) и (3.5) приводят здесь к значительным ошибкам — на два-три порядка величины — и не могут конкурировать с уравнением (3.3).

В (3.3) и последующих уравнениях считалось, что $n_{\rho} = m = 0$ (безузельное основное состояние). Как уже отмечалось, к числу уровней типа LLL относятся также состояния с $n_{\rho} = 0$ и m = -|m|. Для них в [14] получено уравнение, отличающееся от (3.3) только значением константы c_0 , которая в этом случае равна

$$c_m = \ln 2 + 4\gamma + \psi(1 + |m|),$$

$$m = 0, -1, -2, \dots,$$
(3.6)

так что

$$c_m = c_0 + \sum_{k=1}^{|m|} \frac{1}{k}, \quad m < 0.$$
 (3.6')

В табл. 1 и 2 дано сравнение численных расчетов [9,13] с решением уравнений (3.3) и (3.6). С ростом |m| значения энергии связи этих состояний уменьшаются (при данном \mathcal{H})⁶⁾.

3.2. Возбужденные уровни

Здесь нужно различать два случая: четные и нечетные (относительно отражения $z \rightarrow -z$ вдоль направления **B**) состояния. Мы начнем с первого случая.

Как было отмечено выше, уравнение (3.3) описывает весь дискретный спектр четных состояний. При этом возбужденные уровни лежат в области энергий невозмущенного атома водорода $\lambda = \lambda_n(\mathcal{H}) < 1$, причем $\lambda_n \to 1/n$ при $\mathcal{H} \to \infty$ (n = 1, 2, ... - полюсы функции $\psi(1 - 1/\lambda)).$

Сравнение с численными расчетами для 2s- и 3d-состояний⁷⁾ показывает [14], что энергии λ_n^2 этих уровней при $\mathcal{H} \gtrsim 50$ определяются уравнением (3.3)

Рис.2. То же, что на рис. 1, для первого возбужденного уровня 2s: кривая 1 — численные расчеты [9,10,13]; кривая 2 — расчет по уравнению (3.3); кривая 3 — приближение Лоудона (3.7); кривая 4 расчет по уравнению (3.8) с n = 1

с процентной или с еще более высокой точностью — см. кривые 1 и 2 на рис. 2.

В литературе имеется несколько приближенных асимптотических формул для энергии четных возбужденных уровней атома водорода. Согласно уравнению (3.24) из работы [5],

$$\ln \mathcal{H} = 2[\ln(2\lambda) + \psi(1 - \lambda^{-1})], \quad 0 < \lambda < 1.$$
 (3.7)

Как видно из рис. 2, эта формула при $\mathcal{H} < 10^4$ применима только качественно.

Недавно [20] была получена асимптотика (см. также Приложение А)

$$\lambda_n = \frac{1}{n} - \frac{2}{n^2} \times \left[\Lambda - \ln 2 - \gamma + \frac{1}{n} + 2\left(\ln n - \sum_{k=1}^{n-1} \frac{1}{k}\right)\right]^{-1}, \quad (3.8)$$

где $\Lambda=\ln\mathcal{H}$ и $n=1,2,\ldots$, применимая при условии $\ln\mathcal{H}\gg 1$ (для первого возбужденного уровня, n=1, сумму по k следует опустить). Точность этой асимптотической формулы в области значений $\mathcal{H}=10^2\text{--}10^4,$ типичной для нейтронных звезд, еще недостаточна; она может быть использована в области сверхсильных полей $B\gtrsim 10^{16}$ Гс.

4. НЕЧЕТНЫЕ УРОВНИ

Для нечетных уровней (2p, 3p, 4f и т. д. по классификации из работы [9]) справедливо граничное усло-

 $^{^{6)}}$ Что естественно, ибо возрастает центробежная энергия $m^2/2m_{e}\,\rho^2.$

⁷⁾ В отсутствие магнитного поля кулоновские состояния характеризуются квантовыми числами n, l, m. При включении магнитного поля l уже не является «хорошим» квантовым числом, за исключением его четности $(-1)^l$. Тем не менее в статье [9] и в этом случае для классификации состояний используется обозначение (n'l') вместо n^{\pm} , удобного при использовании адиабатического приближения. При этом уровню приписывается значение l' в порядке его расположения по значению энергии при изменении магнитного поля. Укажем соответствие между обозначения. 1s $\rightarrow 0^+$ (LLL), $2s \rightarrow 1^+$, 3d (a не $3s(!)) \rightarrow 2^+$, $2p \rightarrow 1^-$ и т.д.

21	1s (LLL)			$2s \ (1^+)$		$2p \ (1^{-})$		$3p (2^{-})$	
Ħ	a	b	С	a	b	a	b	a	b
0	1.0000	_	_	0.2500	_	0.2500	_	0.1111	_
10	3.4956	4.40	0.40	0.4179	0.4429	0.7653	0.6708	0.2197	0.2122
100	7.5796	8.08	2.41	0.5124	0.5176	0.9272	0.9162	0.2410	0.2400
10^{3}	15.325	15.49	9.25	0.5917	0.5921	0.9843	0.9842	0.2482	0.2481
10^{4}	28.282	28.288	22.8	0.6554	0.6552	0.9976	0.9976	0.2497	0.2497
10^{5}	47.783	47.766	43.9	0.7054	0.7053	0.9996	0.9997	0.2499	0.2500
10^{6}	74.84	74.78	73.3	0.7444	0.7443	0.9999	1.0000	0.2500	0.2500

Таблица 1. Энергии связи $\lambda_n^2 \, [\mathrm{Ry}]$ для нижних уровней $(m=n_
ho=0)$

Примечание. Приведены следующие результаты: a) численных расчетов [9, 13]; b) по уравнениям (3.3) и (4.7) соответственно для четных и нечетных состояний; c) асимптотика (3.4).

	m = 0		<i>m</i> =	= -1	m = -2		
\mathcal{H}	a	b	a	b	a	b	
100	7.5796	8.082	5.270	6.132	4.376	5.374	
1000	15.325	15.488	11.28	11.70	9.610	10.15	
10^{4}	28.282	28.288	21.83	21.97	19.05	19.26	
10^{5}	47.783	47.783 47.755		38.42	34.22	34.26	
∞	—	125.7	—	108.0	—	99.72	
24	m = -3		<i>m</i> =	= -4	m = -5		
Ĥ	a	b	a	b	a	b	
100	3.860	4.938	3.510	4.643	3.251	4.425	
1000	8.617	9.230	7.929	8.598	7.412	8.125	
10^{4}	17.35	17.61	16.16	16.45	15.25	15.57	
10^{5}	31.60	31.68	29.74	29.84	28.32	28.42	
∞	—	94.44	_	90.59	_	87.58	

Таблица 2. Энергии связи для LLL-состояний с $n_{
ho}=0$ и $m=0,-1,-2,\ldots$

Примечание. Приведены значения λ_m^2 [Ry]: *a*) согласно численным расчетам [9, 13]; *b*) по уравнениям (3.3), (3.6). Для $\mathcal{H} = \infty$ приведены предельные значения λ_{∞}^2 , вычисленные по уравнению (5.8) с данным *m*.

вие $\psi_n(0) = 0$, и их энергии равны [14]

$$E_n^- = -\frac{m_e e^4}{2n^2} \left[1 + O\left(\frac{\ln \mathcal{H}}{\mathcal{H}}\right) \right], \qquad (4.1)$$

поэтому даже в сверхсильных магнитных полях $B \sim m_e^2/e^3$, $\mathcal{H} \sim \alpha^{-3}$ их отклонения от формулы Бальмера пренебрежимо малы. Приведем здесь некоторые уточнения формул работы [14]. Так как волновые функции нечетных состояний $\psi_n^{(-)}(z) \propto z$

при малых z, в нулевом приближении можно считать $U_{eff}(z) \approx -e^2/|z|$ на всей оси z. Как известно, энергетический спектр E_n^- нечетных уровней в симметричном одномерном потенциале U(|z|) совпадает со спектром s-уровней E_{ns} в трехмерном потенциале U(r) той же формы, так что в данной задаче $E_n^- \approx -(1/n^2)$ Ry. Поэтому можно утверждать, что если в соответствующей трехмерной задаче записать потенциал в виде

$$U_{eff} \equiv -\frac{e^2}{r} + \left[U_{eff}\left(r\right) + \frac{e^2}{r} \right],$$

то последнее слагаемое можно рассматривать как малое искажение кулоновского потенциала и учесть его по теории возмущений. Это позволяет написать следующее выражение для энергии нечетных уровней:

$$E_{nmn_{\rho}}^{-} \equiv -\frac{m_{e}e^{4}}{2} \left(\lambda_{nmn_{\rho}}^{-}\right)^{2} = -\frac{m_{e}e^{4}}{2n^{2}} + \int \left(U_{eff}(r) + \frac{e^{2}}{r}\right) \psi_{ns}^{2}(r) d^{3}r, \quad (4.2)$$

где $\psi_{ns}(r)$ — невозмущенные волновые функции ns-состояний в кулоновском потенциале. При этом уровни слегка сдвинуты вверх относительно невозмущенных кулоновских уровней $E_n^{(0)} = -(1/n^2)$ Ry, поскольку подынтегральное выражение в (4.2) положительно. Качественное различие спектров четных и нечетных уровней иллюстрирует рис. 1 в работе [14].

Из уравнения (4.2) следует асимптотическое разложение для энергии связи:

$$\left(\lambda_{nmn_{\rho}}^{-}\right)^{2} = \frac{1}{n^{2}} - \frac{4}{n^{3}} \left\{ a_{mn_{\rho}} \frac{\ln \mathcal{H}}{\mathcal{H}} + \frac{a_{nmn_{\rho}}^{(1)}}{\mathcal{H}} + \frac{a_{mn_{\rho}}^{(3/2)}}{\mathcal{H}^{3/2}} + \dots \right\}, \quad \mathcal{H} \to \infty. \quad (4.3)$$

Логарифмически главное слагаемое в сдвиге уровня определяется областью интегрирования $a_H \leq r \leq a_B$ в (4.2), в которой можно положить

$$U_{eff}(r) \approx -\frac{e^2}{r} + \frac{e^2 \overline{\rho_{mn_{\rho}}^2}}{2r^3}, \qquad (4.4)$$

$$\psi_{ns}^2(r) \approx \psi_{ns}^2(0) = \frac{1}{\pi a_B^3 n^3}$$

и, с логарифмической точностью, получить оценку для сдвига нечетного уровня:

$$\delta E_{nmn_{\rho}}^{-} \approx \int \left(U_{eff} + \frac{e^2}{r} \right) \psi_{ns}^2(r) d^3 r \approx$$
$$\approx \frac{2e^2 \overline{\rho^2}_{mn_{\rho}}}{a_B^3 n^3} \int_{a_H}^{a_B} \frac{dr}{r} = \frac{e^2 \overline{\rho^2}_{mn_{\rho}}}{a_B^3 n^3} \left(\ln \mathcal{H} + O(1) \right). \quad (4.5)$$

Поскольку

$$\overline{\rho^2}_{mn_{\rho}} = \iint \rho^2 |R_{n_{\rho}m}(\rho)|^2 d^2 \rho = 2(2n_{\rho} + |m| + 1)a_H^2,$$

для коэффициента $a_{mn_{\rho}}$ (не зависящего от n) в разложении (4.3), согласно (4.3) и (4.5) получаем

$$a_{mn_{\rho}} = 2n_{\rho} + |m| + 1. \tag{4.6}$$

Определение следующих коэффициентов разложения связано с более громоздкими вычислениями, которые мы выносим в Приложение В. Используя приведенные в нем результаты, в случае $m = n_{\rho} = 0$ находим

$$\left(\lambda_{n00}^{-}\right)^{2} = \frac{1}{n^{2}} - \frac{4}{n^{3}} \left[\frac{\ln \mathcal{H}}{\mathcal{H}} - \frac{k_{n}}{\mathcal{H}} + \frac{4\sqrt{2\pi}}{\mathcal{H}^{3/2}} + \dots \right], \quad (4.7)$$

где $n = 1, 2, 3, \ldots,$

$$k_n \equiv -a_{n00}^{(1)} = 2 + \ln 2 + \gamma + 2(J_n - \ln n), \qquad (4.8)$$

а J_n дается формулой (В.5) Приложения В.

В частности, для нижних нечетных уровней имеем

$$J_{1} = 0, \quad k_{1} = 2 + \ln 2 + \gamma = 3.270,$$

$$J_{2} = 3/4, \quad k_{2} = 7/2 - \ln 2 + \gamma = 3.384,$$

$$J_{3} = 7/6, \quad k_{3} = 13/3 - \ln(9/2) + \gamma = 3.407$$
(4.9)

и далее численно

$$J_4 = 1.458, \quad k_4 = 3.414, \\ J_5 = 1.683, \quad k_5 = 3.418.$$
(4.9')

Отметим, что в случае возбужденных (в продольном направлении движения) состояний, как видно из табл. 1, асимптотические формулы (3.3) и (4.7) обеспечивают более высокую точность, чем для основного уровня. Это обстоятельство имеет простое физическое объяснение, поскольку для возбужденных состояний растет (пропорционально n^2) размер области локализации волновой функции в продольном направлении, что приводит к уменьшению кулоновского взаимодействия и к расширению области применимости адиабатического приближения на все меньшие значения магнитного поля.

5. ЭФФЕКТЫ КВАНТОВОЙ ЭЛЕКТРОДИНАМИКИ

Недавно было показано [18–20], что в сильных магнитных полях кулоновский потенциал точечного заряда искажается из-за поляризации вакуума: возникает экранировка потенциала на малых расстояниях $|z| < 1/\sqrt{6} m_e = \alpha a_B/\sqrt{6}$, что приводит к сдвигу основного уровня $\Delta E_{1s} > 0$. В полях B > $> m_e^2/e^3 \sim 10^{16}$ Гс понижение энергии уровня с ростом B замедляется, и при $B \to \infty$ атомный уровень не «проваливается»⁸ в $-\infty$, а «замерзает» на

⁸⁾ Что соответствует «падению на центр» в квантовой механике [17] и имело бы место согласно формулам (3.1) и (3.3).

конечном предельном значении энергии $(-\lambda_{\infty}^2 \text{ Ry})$. Этот неожиданный эффект впервые заметили Шабад и Усов [18], затем он был исследован Высоцким и Маше [19, 20]. Результаты этих авторов качественно близки, хотя и существенно различаются в деталях; см. подробнее разд. 4.2 в работе [20].

Экранировка кулоновского потенциала при использовании адиабатического приближения приводит к изменению эффективного потенциала. Теперь он имеет вид

$$\tilde{U}_{eff}(z) = U_{eff}(z) + \delta U_{eff}(z), \qquad (5.1)$$

где $U_{eff}(z)$ описывается прежним выражением (2.4) а его искажение [20] —

$$\delta U_{eff}(z) = e^2 \int \frac{|R_{0m}(\rho)|^2}{\sqrt{\rho^2 + z^2}} d^2 \rho \times \\ \times \left[e^{-\mu|z|} - e^{-\sqrt{1+b}\,\mu|z|} \right] > 0. \quad (5.2)$$

Здесь $\mu = \sqrt{6} m_e = (\alpha a_B / \sqrt{6})^{-1}, \ b = \mathcal{H} / \mathcal{H}_{\infty} = B / B_{\infty},$

$$\mathcal{H}_{\infty} = 3\pi/\alpha^3 = 2.42 \cdot 10^7,$$

$$\Lambda_{\infty} = \ln \mathcal{H}_{\infty} = 17.00$$
(5.3)

(или $B_{\infty}=3\pi m_e^2/e^3\approx 6\cdot 10^{16}$ Гс) и мы положили $n_{\rho}=0.$

Изменение зависимости сдвигов уровней от магнитного поля из-за экранировки кулоновского потенциала непосредственно связано со значением величины

$$\delta_m(\mathcal{H}) = 2e^{-2} \int_0^\infty \delta U_{eff}(z) dz =$$

$$= 2 \int_0^\infty \int \frac{|R_{0m}(\boldsymbol{\rho})|^2}{\sqrt{\boldsymbol{\rho}^2 + z^2}} d^2 \boldsymbol{\rho} \times$$

$$\times \left[e^{-\mu z} - e^{-\sqrt{1+b}\mu z} \right] dz > 0 \quad (5.4)$$

и сводится к вычитанию этого слагаемого из $\ln \mathcal{H}$ в левой части уравнения (3.3). Теперь уравнение для спектра четных уровней имеет вид (см. формулы (C.11) и (C.12) в Приложении C)

$$\ln \mathcal{H} - \delta_m(\mathcal{H}) = \lambda + 2[\ln \lambda + \psi(1 - \lambda^{-1})] + c_m \quad (5.5)$$

(константы c_m определены в (3.6)).

Для вычисления интегралов в (5.4) заметим, что в них доминирующий вклад вносят области значений $\rho \sim a_H = a_B/\sqrt{\mathcal{H}}$ и $z \sim 1/\mu = \alpha a_B/\sqrt{6}$ (вклады

Рис.3. Зависимость $\lambda(\mathcal{H})$ для основного уровня в области сверхсильных полей без учета (кривая 1) и с учетом (кривая 2) поляризации вакуума $(\lambda_{\infty} = 11.21)$

областей с бо́льшими значениями ρ и z экспоненциально малы). В предельном случае $a_{H}^{2}\ll 1/\mu^{2},$ т.е. при $\mathcal{H}\gg 6/\alpha^{2}\approx 10^{5}$ под радикалом $\sqrt{\rho^{2}+z^{2}}$ в (5.4) можно опустить ρ^{2} и получить⁹⁾

$$\delta_m(\mathcal{H}) \approx 2 \int_{\varepsilon > 0 \to 0}^{\infty} \frac{dz}{z} \left[e^{-\mu z} - e^{-\mu \sqrt{1+b}z} \right] = \\ = \ln(1+b) = \ln(1+\alpha^3 \mathcal{H}/3\pi), \quad \mathcal{H} \gg 6/\alpha^2 \quad (5.6)$$

(подчеркнем, что здесь $\delta_m(\mathcal{H})$ от значения m не зависит).

Из формул (5.5) и (5.6) видно, что экранировка кулоновского потенциала сводится к замене $\Lambda = \ln \mathcal{H}$ на $\tilde{\Lambda}$, где [20]

$$\tilde{\Lambda} \equiv \ln \tilde{\mathcal{H}} = \ln \left[\mathcal{H} \middle/ \left(1 + \frac{\alpha^3}{3\pi} \mathcal{H} \right) \right], \qquad (5.7)$$

в уравнении для спектра четных уровней и в полях $\mathcal{H} \ll \mathcal{H}_\infty$ ее влияние пренебрежимо мало.

Однако при $\mathcal{H} > \mathcal{H}_{\infty}$ ситуация меняется; см. рис. 3 и 4, на которых четко виден эффект «замерзания» 1*s*- и 2*s*-уровней при $\mathcal{H} \to \infty$. Предельные значения ($\lambda = \lambda_{\infty}$) энергии LLL-уровней определяются из уравнения

$$\Lambda_{\infty} = F_m(\lambda) \equiv \lambda + 2\left[\ln \lambda + \psi\left(1 - \frac{1}{\lambda}\right)\right] + c_m \quad (5.8)$$

⁹⁾ При этом интегралы с экспонентами выражаются через интегральный логарифм.

Рис.4. Зависимость $\lambda(\mathcal{H})$ для первого возбужденного уровня 2s. Кривые 1 и 2 — согласно уравнению (3.3) с $\Lambda = \ln \mathcal{H}$ и $\tilde{\Lambda} = \ln \tilde{\mathcal{H}}$, кривые 3 и 4 соответствуют уравнению (3.8) с Λ и $\tilde{\Lambda}$, n = 1. Точки — результаты численных расчетов

и приведены в табл. 2 и 3. Отметим, что данные этих таблиц согласуются с данными, приведенными на рис. 10 в работе [20], как и значение $\varepsilon_{\infty} = 1.709$ кэВ.

Из (5.7) и (5.8) следует, что

$$\ln(1 + \mathcal{H}_{\infty}/\mathcal{H}) = F_m(\lambda_{\infty}) - F_m(\lambda), \qquad (5.9)$$

откуда при $\mathcal{H} \gg \mathcal{H}_{\infty}$

$$\lambda = \lambda_{\infty} - \frac{1}{F'_m(\lambda_{\infty})} \frac{\mathcal{H}_{\infty}}{\mathcal{H}} + \dots$$
 (5.10)

(см. рис. 3), где

$$F'_{m}(\lambda) = 1 + 2\lambda^{-1} + \lambda^{-2}\psi'(2 - \lambda^{-1}) =$$

= 1 + 2\lambda^{-1} + (\pi^{2}/3)\lambda^{-2} + \dots , \lambda \lambda \ge 1.

Уравнения (3.3) и (5.5) имеют корни, соответствующие глубоким LLL-уровням не только при $\lambda > 1$, но также и корни вблизи полюсов ψ -функции. Эти возбужденные уровни имеют энергию связи (см. табл. 3) менее 1 Ry = 13.6 эВ и относятся к «башне» состояний, примыкающих к нижнему LLL-уровню с данным $m \leq 0$.

До сих пор мы пренебрегали аномальным магнитным моментом $\Delta \mu$ электрона, однако при $B \gtrsim B_{cr}$ его вклад становится существенным. В столь сильных полях магнитный момент зависит от поля; так, в первом порядке по α [25–27]

$$\Delta \mu = \frac{\alpha}{2\pi} \mu_B \cdot \begin{cases} 1 + O(L^2 \ln L), & L \ll 1 \\ -L^{-1} \ln^2 L, & L \gg 1, \end{cases}$$
(5.11)

ЖЭТФ,	том	141,	вып.	1,	2012

Таблица 3. «Замерзание» атомных уровней

	LLL	Возбужденные состояния			
m	$\varepsilon_{\infty}, \ $ кэ ${ m B}$	n	$\varepsilon_{\infty}, \mathrm{sB}$	\tilde{c}_n	
0	1.71	1	10.7	0.270	
-1	1.47	2	3.00	1.384	
-2	1.36	3	1.39	1.740	
-3	1.28	4	0.798	1.914	
-4	1.23	5	0.517	2.018	
-5	1.19	10	0.132	2.231	

Примечание. Таблица содержит предельные $(B \to \infty)$ значения энергии связи ε_{∞} с учетом поляризации вакуума для LLL-состояний с $n_{\rho} = 0, m = 0, -1, \dots, -5$ и для возбужденных состояний с $m = n_{\rho} = 0, n = 1, \dots, 5, 10.$

где $L = B/B_{cr} = \alpha^2 \mathcal{H}$ и $\mu_B = |e|\hbar/2m_ec$ — магнетон Бора. С ростом *В* аномальный магнитный момент электрона меняет знак [25].

Энергия основного уровня Ландау при
 $B \gg B_{cr}$ равна

$$E_{0} = m_{e} + \frac{1}{2}\hbar\omega_{H} - (\mu_{B} + \Delta\mu)B - \frac{1}{2}m_{e}e^{4}\lambda^{2} =$$
$$= m_{e} + \left(\frac{1}{2\pi\alpha}\ln^{2}L - \lambda^{2}\right)\text{Ry}, \quad L \gg 1 \quad (5.12)$$

(как отмечалось выше, в случае дираковского электрона, т.е. при $\Delta \mu = 0$, для LLL-состояний энергия нулевых колебаний $\hbar \omega_H/2$ полностью сокращается с магнитной энергией спина $\mu_B B$). При $L \gg 1$ вклад в (5.12) от аномального момента $\Delta \mu$ растет как $\ln^2 L$ и сравнивается с энергией связи уровня при $\ln L = \sqrt{2\pi\alpha} \cdot \lambda$ или¹⁰) $L = L_*$,

$$L_* = \exp\left[2\ln\frac{1}{\alpha} \middle/ \left(\frac{1}{\sqrt{2\pi\alpha}} - 1\right)\right] \approx 15.$$
 (5.13)

При $L > L_*$, т.е. при $B > 7 \cdot 10^{14}$ Гс, сдвиг основного уровня, связанный с $\Delta \mu$, превышает его энергию связи λ^2 Ry. Однако этот сдвиг определяется КЭД, а не атомной физикой, и он практически одинаков для всех уровней атомного спектра. Поэтому энергии радиационных переходов $np \to 1s$, которые могли бы наблюдаться в эксперименте, при учете $\Delta \mu$ практически не меняются.

¹⁰⁾ Здесь мы положили для оценки $\lambda \approx \ln \mathcal{H}$.

6. ЗАКЛЮЧЕНИЕ

В статье обсуждаются аналитические формулы для энергий основного и возбужденных состояний атома водорода, находящегося в магнитном поле $B \gg B_a \sim 10^9$ Гс. Рассмотрены атомные уровни, примыкающие к нижней зоне Ландау с $n_{\rho} = 0$ и магнитными квантовыми числами m = 0, -1, -2, ...Энергии этих состояний остаются нерелятивистскими даже в сверхсильном магнитном поле $B \gtrsim B_{cr}$ и могут быть рассчитаны на основе уравнения Шредингера. Сравнение с имеющимися численными расчетами показывает, что уравнение (3.3) при $\mathcal{H} = B/B_a \gtrsim 100$ имеет процентную или еще более высокую точность.

Сделаем несколько заключительных замечаний.

1. Имеется существенное различие между энергиями четных и нечетных уровней, $E_n^{\pm} = -(\lambda_n^{\pm})^2 \operatorname{Ry}$, что качественно видно уже из асимптотических формул при $\mathcal{H} \gg 1$ (без учета поляризации вакуума)

$$\lambda_n^+ \approx \frac{1}{n} \left(1 - \frac{2}{n \ln \mathcal{H}} + \dots \right),$$

$$\lambda_n^- \approx \frac{1}{n} \left(1 - \frac{2}{n} \frac{\ln \mathcal{H}}{\mathcal{H}} + \dots \right),$$
 (6.1)

n = 1, 2, ... Возбужденные четные уровни расположены значительно выше нечетных, соответствующие поправки Ридберга составляют [17]

$$\Delta^+ \approx \frac{2}{\ln \mathcal{H}}, \quad \Delta^- \approx \frac{\ln \mathcal{H}}{\mathcal{H}}.$$
 (6.2)

2. При $\mathcal{H} \sim 10^{3}-10^{4}$ нечетные уровни уже близки к невозмущенным кулоновским значениям $E_{n} =$ $= -(1/n^{2})$ Ry, в то время как четные уровни еще далеки от этого предела (см. также рис. 1 в [14]). Таким образом, утверждение о приближенном вырождении четных и нечетных уровней в сильном магнитном поле [5, 17] нуждается в существенном уточнении.

3. С учетом поляризации вакуума при $B \to \infty$ энергии нижних четных LLL-уровней с различными m не уходят на $-\infty$, как это было бы в случае «падения на центр», а стремятся к конечным предельным значениям, величина которых $E_{\infty}^{+} = -\lambda_{\infty}^{2}$ Ry зависит от магнитного квантового числа m и велика по сравнению с уровнями дискретного спектра атома водорода. Так, например, для основного состояния $n_{\rho} = m = 0$, в согласии с работой [20], $E_{\infty}^{+} = \lambda_{\infty}^{2}$ Ry = 1.709 кэВ, что на два порядка превышает энергию связи в свободном атоме. Аналогичным образом в случае возбужденных четных уровней асимптотика энергий E_n^+ при $B \to \to \infty$ отличается от $E_n = -(1/n^2)$ Ry. В этом проявляется эффект «замораживания» уровней, связанный с поляризацией вакуума и экранировкой кулоновского потенциала. Тем самым устанавливается верхняя граница области применимости уравнения (3.3). Заметим, однако, что в полях $B \sim 10^{12} - 10^{15}$ Гс (пульсары и магнитары) поправка на поляризацию вакуума еще мала, и это уравнение имеет высокую точность.

4. Обычно радиационное смещение атомных уровней в КЭД мало (например, лэмбовский сдвиг $\Delta_{LS} = 1058 \text{ MF}$ ц уровней $2s_{1/2}$ и $2p_{1/2}$ атома водорода [24]). В случае сверхсильного магнитного поля $\mathcal{H} \gtrsim \mathcal{H}_{\infty}$ поляризация вакуума приводит к качественному изменению спектра четных уровней.

5. В статье Зельдовича «Уровни энергии в искаженном кулоновском поле» [28] был указан интересный физический эффект, который может наблюдаться в тех случаях, когда потенциал взаимодействия (или волновая функция) разделяется на две части с сильно несоизмеримыми радиусами. Если в системе имеется уровень с энергией, близкой к нулю (резонансная ситуация), то происходит резкое изменение («перестройка») атомного спектра. В дальнейшем этот эффект был переоткрыт в релятивистской кулоновской задаче с зарядом Z > 137 [29], в теории легчайших адронных атомов [30] и получил название «эффекта Зельдовича» [31, 32].

В работе [33] получено безмодельное уравнение, описывающее эффект Зельдовича для *s*-состояний, и показано, что подходящей переменной для его описания является эффективное квантовое число [34,35] $n^* = 1/\lambda = (-2E_n)^{-1/2}$. При наличии эффекта Зельдовича значения n^* для серии атомных уровней обладают периодичностью (см., например, рис. 1 в [33]). Рассмотрим в этой связи спектр атома водорода в сильном магнитном поле.

В табл. 4 приведены значения n^* для состояний с квантовыми числами $m = n_{\rho} = 0$ и n = 1, 2, 3, полученные из результатов численных расчетов λ_n^2 [9,10,13]. Видно, что свойство периодичности с хорошей точностью выполняется в достаточно сильных полях $\mathcal{H} \gtrsim 10$ (отдельно для четных и нечетных состояний); ср., например, значения n^* для 2s-, 3s- и 3d-состояний при фиксированном \mathcal{H} (от 10 до 10⁶). Аналогия между расположением возбужденных уровней для этих двух задач (атом водорода при $B \gg B_a$, $a_H \ll a_B$ и кулоновская задача с короткодействием [30–33] при $r_0 \ll a_B$) впервые была отмечена, по-видимому, в работе [14].

Таблица 4. Эффективное квантовое число уровня n^*

21	$n^*(\mathcal{H})$								
Ĥ		P =	+1	P = -1					
	1s	2s	3s	3d	2p	3p	4f		
0	1.000	2.000	3.000	3.000	2.000	3.000	4.000		
0.1	0.9556	1.838	3.388	2.580	1.755	2.675	3.616		
1	0.7756	1.765	3.741	2.748	1.387	2.354	3.343		
10	0.5349	1.547	3.545	2.546	1.143	2.133	3.131		
100	0.3632	1.397	3.399	2.399	1.039	2.037	3.036		
1000	0.2554	1.300	3.303	2.302	1.008	2.007	_		
10^{4}	0.1880	1.235	3.237	2.237	1.001	2.001	-		
10^{5}	0.1447	1.191	3.192	2.192	1.000	2.000	-		
10^{6}	0.1156	1.159	3.160	2.160	1.000	2.000	-		
∞	0.0892	1.129	_	_	1	2	3		

Мы благодарны М. И. Высоцкому, сообщившему нам результаты статьи [20] до ее опубликования, за полезные обсуждения в ходе работы. Мы также благодарны А. Е. Кудрявцеву, В. Д. Муру и Ю. А. Симонову за обсуждение полученных результатов, А. И. Потехину, предоставившему нам результаты своих численных расчетов, С. Г. Позднякову за помощь в вычислениях и М. Н. Маркиной за помощь при оформлении рукописи.

Работа выполнена при частичной финансовой поддержке РФФИ (гранты №№ 09-02-01201а, 10-02-00364а).

приложение А

Изложим вывод асимптотической формулы (3.8) для возбужденных четных уровней. При $\mathcal{H} \to \infty$ корни уравнения (3.3) близки к полюсам функции $\psi(1 - \lambda^{-1})$, а именно, $\lambda \to 1/n = 1, 1/2, 1/3, \ldots$ Полагая

$$\lambda = \frac{1}{n+\varepsilon}, \quad \varepsilon \to 0 \tag{A.1}$$

и учитывая, что [36]

$$\psi(1 - \lambda^{-1}) \equiv \psi(\lambda^{-1}) + \pi \operatorname{ctg}(\pi/\lambda) =$$

= $\varepsilon^{-1} + \psi(n) + O(\varepsilon)$, (A.2)

из (3.3) получаем

$$2\varepsilon^{-1} = \Lambda - \frac{1}{n} + 2[\ln n - \psi(n)] - \ln 2 - 3\gamma$$

и окончательно находим

$$\lambda = \frac{1}{n+\varepsilon} = \frac{1}{n} - \frac{2}{n^2} \left(\frac{2}{\varepsilon} + \frac{2}{n}\right)^{-1} = \frac{1}{n} - \frac{2/n^2}{\Lambda + 1/n + 2[\ln n - \psi(n)] - \ln 2 - 3\gamma} + O\left(\frac{1}{\Lambda^2}\right), \quad n = 1, 2, \dots \quad (A.3)$$

Поскольку

$$\psi(n) = \psi(1) + \sum_{k=1}^{n-1} \frac{1}{k}, \quad \psi(1) = -\gamma,$$
 (A.4)

формула (А.3) совпадает с (3.8). Здесь $\Lambda = \ln \tilde{H}$ или $\Lambda = \ln \mathcal{H}$, соответственно с учетом или без учета поляризации вакуума.

Из (А.3) при $\mathcal{H} \to \infty$ для предельного значения $\lambda_{\infty}^{(n)}$ имеем

$$\lambda_{\infty}^{(n)} = \frac{1}{n} - \frac{2}{(\Lambda_{\infty} - \tilde{c}_n)n^2},\tag{A.5}$$

где $\Lambda_{\infty} = \ln(3\pi/\alpha^3) = 17.0$, $\tilde{c}_1 = \ln 2 + \gamma - 1 = 0.2703$, а значения \tilde{c}_n см. в табл. 3 ($\tilde{c}_n \rightarrow c_0 = 2.425$ при $n \rightarrow \infty$).

Для n = 1 эта формула дает $\lambda_{\infty}^{(1)} = 0.8805$, а по уравнению (5.8) получаем $\lambda_{\infty} = 0.8861$. Отметим, что формула (А.3) неприменима для основного состояния, для которого $\lambda_{\infty} = 11.213$.

приложение в

Вывод разложения (4.3) для энергетического спектра нечетных уровней

Для получения этого разложения¹¹⁾ удобно в интеграле в (4.2) воспользоваться выражением (2.4) для эффективного потенциала, поменять порядок интегрирования по ρ и $r \equiv z$ и разбить интегрирование по z на две области (0, L) и (L, ∞), где $a_H \ll \ll L \ll a_B$ (конкретное значение L не существенно). Далее, волновую функцию *ns*-состояния удобно записать в виде [17]

$$\psi_{ns}(z) = \frac{1}{\sqrt{\pi n^3}} e^{-z/n} F(-n+1,2;2z/n), \qquad (B.1)$$

где вырожденная гипергеометрическая функция выражается через обобщенный полином Лагерра.

¹¹⁾ Ниже мы используем атомные единицы $e = \hbar = m_e = 1$.

В интеграле по интервалу (0, L) можно положить¹²⁾

$$\psi_{ns}^2(z) = \frac{1}{\pi n^3} [1 - 2z + O(z^2)]$$

и получить

$$4\pi \int_{0}^{L} \left[U_{eff}(r) + \frac{1}{r} \right] \psi_{ns}^{2}(r) r^{2} dr \approx \\ \approx -\frac{4}{n^{3}} \iint \left| R_{n\rho m}(\rho) \right|^{2} \times \\ \times \int_{0}^{L} z^{2}(1-2z) \left[\frac{1}{\sqrt{\rho^{2}+z^{2}}} - \frac{1}{z} \right] dz d^{2}\rho = \\ = -\frac{4}{n^{3}} \left[\frac{1}{4} \overline{\rho^{2} \ln \rho^{2}} - \frac{1}{4} (2 \ln 2 - 1) \overline{\rho^{2}} - \frac{4}{3} \overline{\rho^{3}} - \\ - \frac{1}{2} \overline{\rho^{2}} \ln L + \overline{\rho^{2}} L + O(\mathcal{H}^{-2}) \right], \quad (B.2)$$

где усреднение проводится по состоянию с волновой функцией $R_{n_am}(\rho)$ [17].

Для выполнения интегрирования по области (L,∞) достаточно ограничиться разложением

$$\frac{1}{\sqrt{\rho^2 + z^2}} \approx \frac{1}{z} - \frac{\rho^2}{2z^3}$$

и записать интеграл в виде

$$4\pi \int_{L}^{\infty} \left[U_{eff}(r) + \frac{1}{r} \right] \psi_{ns}^{2}(r) r^{2} dr \approx$$
$$\approx \frac{2}{n^{3}} \iint \left| R_{n\rho m}(\boldsymbol{\rho}) \right|^{2} \int_{L}^{\infty} \frac{\rho^{2}}{z} \times$$
$$\times e^{-2z/n} F^{2}(-n+1,2;2z/n) dz d^{2} \rho. \quad (B.3)$$

Для вычисления интеграла удобно преобразовать (B.3) следующим образом:

$$\frac{2}{n^3}\overline{\rho^2} \left[\int_{L}^{\infty} \frac{1}{z} e^{-2z/n} dz - \int_{0}^{L} \frac{1}{z} e^{-2z/n} \times \left[F^2(-n+1,2;2z/n) - 1 \right] dz - J_n \right], \quad (B.4)$$

где

$$J_n = \int_0^\infty \frac{1}{z} e^{-z} \left[1 - F^2(-n+1,2;z) \right] dz.$$
 (B.5)

Первый интеграл в (В.4) выражается через интегральную показательную функцию ${\rm Ei}(-2L/n)$, что позволяет получить его разложение

$$\int_{L}^{\infty} \frac{1}{z} e^{-2z/n} dz = -\gamma - \ln \frac{2}{n} - (B.6)$$
$$-\ln L + \frac{2L}{n} + O(L^2), \quad L \ll 1.$$

Наконец, последний интеграл в (В.4) с рассматриваемой точностью равен

$$\int_{0}^{L} \frac{1}{z} e^{-2z/n} \left[F^2(-n+1,2;2z/n) - 1 \right] dz =$$
$$= 2 \left(\frac{1}{n} - 1 \right) L + O(L^2). \quad (B.7)$$

Приведенные формулы определяют сдвиги нечетных уровней по отношению к кулоновским уровням $E_n^{(0)} = -1/2n^2$. При этом, как и следовало ожидать, вспомогательный параметр L, введенный для удобства вычислений, в окончательном ответе выпадает.

Записывая в (В.2)

$$\frac{1}{n^3}\overline{\rho^2\ln\rho^2} = \frac{1}{n^3}\left[\overline{\rho^2}\ln(a_H^2) + \overline{\rho^2\ln(\rho^2/a_H^2)}\right].$$

замечаем, что здесь первое слагаемое в правой части определяет асимптотически старшее слагаемое в сдвиге уровня с коэффициентом $a_{mn_{\rho}}$ в разложении (4.3), совпадающее с приведенным ранее (4.6).

Для следующего члена разложения получаем

$$a_{nmn_{\rho}}^{(1)} = \frac{1}{2} \left\{ K_{mn_{\rho}} - \left[2J_n - 2\ln n + 2\gamma + \ln 2 + 1\right]\overline{\rho^2/a_H^2} \right\}, \quad (B.8)$$

где

$$K_{mn_{\rho}} = -\overline{(\rho^2/a_H^2)\ln(\rho^2/2a_H^2)}.$$

В случае $n_{\rho} = 0$, используя явное выражение для волновой функции $R_{n_{\rho}m}(\rho)$ [17], получаем

$$K_{m0} = -2(|m|+1)\psi(|m|+2).$$
 (B.9)

Наконец, величина

$$a_{mn_{\rho}}^{(3/2)} = \frac{8}{3} \overline{\rho^3 / a_H^3} \tag{B.10}$$

не зависит от n, при этом для состояний с $n_{\rho} = 0$

$$\overline{\rho^3/a_H^3} = 2^{-|m|-1/2} \sqrt{\pi} \frac{(2|m|+3)!!}{|m|!}.$$
 (B.11)

В частности, при m = 0 отсюда имеем $\overline{\rho^3/a_H^3} = 3\sqrt{\pi/2}$, что учтено в разложении (4.7).

¹²⁾ Подчеркнем, что коэффициент при z не зависит от n.

приложение с

Спектр четных уровней в искаженном на малых расстояниях одномерном кулоновском потенциале

Особенность рассматриваемой задачи связана с тем, что в пределе нулевого радиуса обрезания гамильтониан

$$\hat{H} = -\frac{\hbar^2}{2m_e} \frac{d^2}{dz^2} - \frac{e^2}{|z|},$$
(C.1)

оставаясь эрмитовым, уже не является самосопряженным оператором¹³: возникает падение на центр (в точку z = 0). Поэтому спектр искаженного потенциала зависит как от радиуса, так и от конкретного вида обрезания при $|z| \leq r_0$.

Получим уравнение для спектра четных уровней в одномерном симметричном потенциале вида $U(z) = -e^2 v(|z|)$, представляющем искаженный на малых расстояниях $|z| \leq r_0 \ll a_B$ кулоновский потенциал $U_C(z) = -e^2/|z|$. Существенно, что искажение потенциала предполагается удовлетворяющим условию¹⁴⁾ $|U(z)| \leq e^2/r_0$.

Для решения уравнения Шредингера

$$\psi''(z) = \frac{2m_e}{\hbar^2} [U(z) - E] \psi(z)$$
 (C.2)

при $|z| \leq r_0$ замечаем, что в этой области потенциал U(z) представляет мелкую потенциальную яму (а может быть, даже и невысокий барьер!), поскольку

$$\frac{m_e r_0^2 |U(z)|}{\hbar^2} \lesssim \frac{r_0}{a_B} \ll 1.$$
 (C.3)

В этом случае, как известно, волновая функция $\psi(z)\approx {\rm const}=1,$ и из уравнения (С.2) при z>0 следует, что

$$\psi'(z) \approx \frac{2m_e}{\hbar^2} \int_0^z U(z') \, dz' \tag{C.4}$$

(см. [17, § 45]), при этом учтено, что $|E| \ll e^2/r_0$.

Теперь замечаем, что на расстояниях $r_0 \ll z \ll \ll a_B$, где потенциал имеет уже кулоновский вид, выражение (C.4) принимает вид

$$b'(z) = -\frac{2}{a_B} \ln\left(\frac{z}{a_B}\right) - K, \qquad (C.5)$$

при этом значение параметра K зависит от конкретного вида обрезания потенциала. Так, для модели прямоугольного обрезания, т. е. для $U = -e^2/r_0$ при $|z| < r_0$ и $U = -e^2/|z|$ при $|z| > r_0$, имеем

$$K = \frac{2}{a_B} \left[\ln \frac{a_B}{r_0} + 1 \right]. \tag{C.6}$$

Подчеркнем, что большое значение логарифма $\ln(a_B/r_0)$, являясь главным слагаемым в K, не зависит от конкретного вида обрезания, причем сама величина r_0 определена лишь по порядку величины.

В то же время на расстояниях $|z| \gg r_0$ решение уравнения (С.2) для $E = -\hbar^2 \lambda^2 / 2m_e < 0$, экспоненциально убывающее на больших расстояниях, описывается функцией Уиттекера:

$$\psi(|z|) = \operatorname{const} \cdot W_{\nu,1/2}(2|z|/\nu a_B) \qquad (C.7)$$

с $\nu = 1/\lambda a_B > 0$. В области $r_0 \ll z \ll r_B$ аргумент функции Уиттекера мал и выражение (С.7) принимает вид (мы положили $\psi(0) = 1$)

$$\psi(z) \approx \left\{ 1 - 2\frac{z}{a_B} \ln(2\lambda z) - \left[\lambda a_B + 2\psi \left(1 - \frac{1}{\lambda a_B} \right) - 2 + 4\gamma \right] \frac{z}{a_B} + \dots \right\}.$$
 (C.8)

Здесь $\psi(z) = \Gamma'(z)/\Gamma(z)$ — логарифмическая производная гамма-функции, $\psi(1) = -\gamma, \ \gamma = 0.5772...$ — постоянная Эйлера.

Область $r_0 \ll z \ll r_B$ является областью перекрытия решений, в которой справедливы формулы (C.5) и (C.8) одновременно. Дифференцируя (C.8) и приравнивая (C.5), получаем уравнение для спектра четных уровней в искаженном кулоновском потенциале:

$$Ka_B = \lambda a_B + 2\ln(2\lambda a_B) + 2\psi \left(1 - \frac{1}{\lambda a_B}\right) + 4\gamma.$$
 (C.9)

Ранее, в случае эффективного потенциала

$$U_{eff}(z) = -e^2 \int \frac{|R_{0m}(\boldsymbol{\rho})|^2}{\sqrt{\rho^2 + z^2}} d^2 \rho, \qquad (C.10)$$

где в роли r_0 выступает $a_H = \sqrt{\hbar c/eB}$, было получено значение (для $n_\rho = 0$) [14]

$$Ka_B = 2\ln(a_B/a_H) + \ln 2 - \psi(1+|m|) =$$

= ln $\mathcal{H} + \ln 2 - \psi(1+|m|),$ (C.11)

¹³⁾ С математической точки зрения это связано с тем, что теперь в точке z = 0 из-за сингулярности потенциала условия непрерывности волновой функции и ее производной не могут быть выполнены, см. ниже (С.8). О различии между эрмитовыми и самосопряженными операторами см., например, [37]. ¹⁴⁾ Подчеркнем, что в трехмерном случае, в отличие от одномерного, такое искажение кулоновского потенциала U(r) =

номерното, такое некажение кулоповского потенциала с (r) = $-e^2/r$ (например, за счет конечных размеров ядра) выступает как малое возмущение, причем чем меньше радиус обрезания r_0 , тем меньше и возмущение.

 $\mathcal{H} = B/B_a, B_a = m_e^2 e^3 c/\hbar^3$, которое совместно с (С.9) определяет спектр четных уровней, см. (3.3) и (3.6).

Теперь замечаем, что согласно формулам (С.4) и (С.5) учет изменения эффективного потенциала из-за поляризации вакуума сводится к следующей замене в (С.9) и (С.11):

$$K \to K + \delta K, \quad \delta K = -\frac{2m_e}{\hbar^2} \int_0^\infty \delta U_{eff}(z) \, dz.$$
 (C.12)

Ввиду быстрого убывания $\delta U_{eff}(z)$, см. (5.2), верхний предел интегрирования можно положить равным бесконечности. Отсюда следует уравнение (5.5) для спектра четных уровней, так как $\delta_m(\mathcal{H}) = -\delta K a_B$.

ЛИТЕРАТУРА

- 1. D. Lai, Rev. Mod. Phys. 73, 629 (2001).
- A. K. Harding and D. Lai, Rep. Progr. Phys. 69, 2631 (2006).
- C. Kouveliotou, R. C. Duncan, and C. Thompson, Sci. Amer. (пер.: В мире науки, № 6, с. 26 (2003)).
- 4. L. I. Schiff and H. Snyder, Phys. Rev. 55, 59 (1939).
- 5. R. Loudon, Amer. J. Phys. 27, 649 (1959).
- R. F. Elliott and R. Loudon, J. Phys. Chem. Sol. 15, 196 (1960).
- H. Hasegawa and R. E. Howard, J. Phys. Chem. Sol. 21, 179 (1961).
- Z. Chen and S. P. Goldman, Phys. Rev. A 45, 1722 (1992); 48, 1107 (1993).
- 9. J.-H. Wang and C.-S. Hsue, Phys. Rev. A 52, 4508 (1995).
- 10. D. Lai and E. E. Salpeter, Phys. Rev. A 53, 152 (1996).
- Yu. P. Kravchenko, M. A. Liberman, and B. Johansson, Phys. Rev. A 54, 287 (1996).
- 12. A. Y. Potekhin, J. Phys. B 31, 49 (1998).
- А. Ю. Потехин, Дисс. ... докт. физ.-мат. наук, ФТИ им. Иоффе, Санкт-Петербург (2009).
- 14. Б. М. Карнаков, Письма в ЖЭТФ 77, 73 (2003);
 В. С. Попов, Письма в ЖЭТФ 77, 79 (2003);
 Б. М. Карнаков, В. С. Попов, ЖЭТФ 124, 996 (2003).

О спектре атома водорода . . .

- Научная сессия МИФИ-2011, т. 2 (2011), с. 177.
- 16. I. B. Khriplovich and G. Yu. Ruban, Laser Phys. 14, 426 (2004).
- 17. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика: нерелятивистская теория, Физматлит, Москва (2002).
- A. E. Shabad and V. V. Usov, Phys. Rev. Lett. 98, 180403 (2007); Phys. Rev. D 77, 025001 (2008).
- 19. M. I. Vysotsky, Pis'ma v Zh. Eksp. Teor. Fiz. 92, 22 (2010).
- 20. B. Machet and M. I. Vysotsky, Phys. Rev. D 83, 025022 (2011).
- 21. F. Sauter, Z. Phys. 69, 742; 73, 547 (1931).
- 22. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
- 23. J. Schwinger, Phys. Rev. 82, 664 (1951).
- 24. А. И. Ахиезер, В. Б. Берестецкий, Квантовая электродинамика, Наука, Москва (1989).
- И. М. Тернов, В. Г. Багров, В. А. Бордовицын, О. Ф. Дорофеев, ЖЭТФ 55, 2273 (1968).
- 26. R. Jancovici, Phys. Rev. 187, 2275 (1969).
- 27. R. G. Newton, Phys. Rev. 96, 523 (1954); Phys. Rev. D 3, 626 (1971).
- 28. Я. Б. Зельдович, ФТТ 1, 1637 (1959).
- 29. В. С. Попов, ЖЭТФ 60, 1228 (1971).
- 30. А. Е. Кудрявцев, В. Е. Маркушин, И. С. Шапиро, ЖЭТФ 74, 432 (1978).
- 31. A. M. Badalyan, L. P. Kok, M. I. Polikarpov, and Yu. A. Simonov, Phys. Rep. 82, 31 (1982).
- 32. Б. М. Карнаков, А. Е. Кудрявцев, В. Д. Мур,
 В. С. Попов, ЖЭТФ 94, 65 (1988).
- 33. А. Е. Кудрявцев, В. С. Попов, Письма в ЖЭТФ 29, 311 (1979).
- 34. А. А. Радциг, Б. М. Смирнов, Параметры атомов и атомных ионов, Энергоатомиздат, Москва (1986).
- 35. Л. А. Буреева, В. С. Лисица, Возмущенный атом, ИздАТ, Москва (1997).
- 36. Справочник по специальным функциям, под ред. М. Абрамовица и И. Стегун, Наука, Москва (1979).
- 37. А. С. Вайтман, Проблемы в релятивистской динамике квантованных полей, Наука, Москва (1968).

2 ЖЭТФ, вып.1