
ÆÝÒÔ, 2012, òîì 141, âûï. 2, ñòð. 387�398  2012
THE FERMI�PASTA�ULAM RECURRENCE AND RELATEDPHENOMENA FOR 1D SHALLOW-WATER WAVESIN A FINITE BASINV. P. Ruban *Landau Institute for Theoretial Physis, Russian Aademy of Sienes119334, Mosow, RussiaReeived April 5, 2011Di�erent regimes of the Fermi�Pasta�Ulam (FPU) reurrene are simulated numerially for fully nonlinear �one-dimensional� potential water waves in a �nite-depth �ume between two vertial walls. In suh systems, the FPUreurrene is losely related to the dynamis of oherent strutures approximately orresponding to solitons ofthe integrable Boussinesq system. A simplest periodi solution of the Boussinesq model, desribing a singlesoliton between the walls, is presented in analyti form in terms of the ellipti Jaobi funtions. In the numerialexperiments, it is observed that depending on the number of solitons in the �ume and their parameters, theFPU reurrene an our in a simple or ompliated manner, or be pratially absent. For omparison, thenonlinear dynamis of potential water waves over nonuniform beds is simulated, with initial states taken in theform of several pairs of olliding solitons. With a mild-slope bed pro�le, a typial phenomenon in the ourse ofevolution is the appearane of relatively high (rogue) waves, while for random, relatively short-orrelated bedpro�les it is either the appearane of tall waves or the formation of sharp rests at moderate-height waves.1. INTRODUCTIONNearly integrable wave systems are known to ex-hibit the Fermi�Pasta�Ulam (FPU) reurrene, whena (�nite-size) system approximately repeats its initialstate after some period of evolution. Starting from the�rst observation of this phenomenon in the famous nu-merial experiment with one-dimensional (1D) lattiesof nonlinear osillators [1℄, the FPU reurrene and re-lated phenomena were studied in many physial on-texts (see, e.g., Refs. [2�14℄ and the referenes therein).In partiular, Zabusky and Kruskal [2℄ disovered soli-tons with a highly nontrivial behavior, when numer-ially investigated a mehanism of the reurrene forspatially periodi solutions of the Korteweg�de Vries(KdV) equation. Presently, the theory of solitons hasdeveloped into one of the main branhes of nonlinearsiene.It is well known that many integrable mathema-tial models have their origin in the theory of waterwaves. The two most famous integrable equations arethe KdV equation, �rst derived for weakly dispersiveunidiretional shallow-water waves, and the nonlinear*E-mail: ruban�itp.a.ru

Shrödinger equation, whih desribes an envelope of atrain of deep-water waves [15℄. For deep-water waves,many analyti and experimental results onerning theFPU reurrene are known [4�9; 16�19℄. As regards theshallow-water regime, only some numerial studies forthe KdV equation and its higher-order generalizationswere performed until reently (see, e.g., Refs. [10, 11℄),while the FPU phenomenon was never onsidered theo-retially for long waves in a �nite �ume, and was neverstudied experimentally in the shallow-water regime.It is lear that the KdV equation is not adequate forlong waves in a �nite basin where they re�et from thewalls. Fortunately, there is another integrable model,the Boussinesq system, that approximately desribesbidiretional shallow-water waves and is therefore po-tentially useful for analyti study of the FPU reur-rene in a �nite-length �ume (onerning the integra-bility of the Boussinesq system, see Refs. [20�23℄, andonerning the deviations of water waves from exatintegrability, see Refs. [10, 24℄). Presently, however,we do not have a lear theory of FPU reurrene forshallow water, based on the Boussinesq system. Per-haps, a future theory should be built with the help ofthe sophistiated mathematial methods developed for387 12*
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t g/hFig. 1. The FPU reurrene is perfet with theinitial shape of the free surfae in the form�0(x) = 0:12h os(2�x=60h) with L=h = 60,A0=h = 0:12, and h = 1:0 m: a � wave pro�les atseveral time moments when the kineti energy is at aminimum; b � the ratio of the kineti energy to the to-tal energy;  � the maximum and minimum elevationsof the free boundaryobtaining spatially periodi solutions of integrable sys-tems (in partiular, see [22℄ for the Boussinesq model).In this paper, suh a general purpose is not ahieved,although a family of periodi solutions is derived in anexpliit analyti form using a simple ansatz that orre-sponds to a single soliton periodially moving betweenthe walls. However, that solution is by no means themain result of our work; it just plays an auxiliary role,namely, to provide nearly �many-soliton� initial ondi-tions for highly aurate numerial experiments.Very reently, our short paper was published wherefor the �rst time the FPU reurrene was studied nu-

0.4

0.2

0

−0.2
0 5 10 15 20 25 30

x/h

y/h

1.0

0.6

0.2

0 500 1000 1500 2000

Ekin/E

0.8

0.4

0.2

0 500 1000 1500 2000

Y/h

0.4

0

−0.2

Ymax

Ymin

t g/h

t g/h

t = 0 min 00 s
t = 0 min 54 s
t = 2 min 00 s

t = 2 min 49 s
t = 4 min 09 s
t = 8 min 18 s

а

b

c

Fig. 2. The FPU reurrene is less perfet with a largerinitial amplitude, �0(x) = 0:14h os(2�x=60h) withL=h = 60, A0=h = 0:14, and h = 1:0 m, beausethe nonintegrability e�ets are stronger (a, b, and show the same quantities as in Fig. 1)merially for fully nonlinear shallow-water waves in a�nite �ume [25℄. Exat equations of motion for poten-tial planar �ows of a perfet �uid with a free surfaein terms of so-alled onformal variables were used inthat study [26, 27℄. The simplest initial states weretaken, with zero veloity �eld and a osine-shaped freeboundary. Two typial examples of the reurrene arepresented in Figs. 1 and 2.One of the purposes of this paper is to provide addi-tional numerial examples of the reurrene for di�er-ent initial states, and to demonstrate a relation of theFPU phenomenon in shallow-water �nite basins to soli-tons of the approximate Boussinesq system. Anotherpurpose is to observe what new e�ets appear in the dy-namis of long dispersive waves if the bottom boundaryis nonuniform (it should be noted that onformal vari-388



ÆÝÒÔ, òîì 141, âûï. 2, 2012 The Fermi�Pasta�Ulam reurrene : : :ables provide exat equations of motion for an arbitrarynonuniform bottom pro�le when it is parameterized byan analyti funtion [26, 27℄). In partiular, three kindsof bed pro�les are onsidered: mild-slope beds, bedswith quasirandom, relatively short-orrelated orruga-tions, and beds with randomly plaed barriers. Thenonuniformity destroys the approximate integrability,and therefore initial states in the form of several pairsof olliding solitons evolve to the appearane of highlynonlinear wave events. Suh steep and tall waves anbe onsidered a 1D model for freak (rogue) waves some-times arising in the oastal zone (the subjet of freakwaves is urrently studied very extensively, see [28�30℄and the referenes therein).2. DIFFERENT EXAMPLES OF THE FPURECURRENCE2.1. Notes about the numerial methodWe onsider two-dimensional (2D) potential �owsof a perfet �uid with the veloity �eldv(x; y; t) = r'(x; y; t);where x is the horizontal oordinate, y is the vertialoordinate, and t is the time. The veloity potential' satis�es the 2D Laplae equation 'xx + 'yy = 0 in-side the �ow domain, with the ondition of zero normalveloity �'=�n = 0 at a (�xed) bottom boundary. Atthe free surfae y = �(x; t), where the normal veloity isVn = (�'=�n)y=�, we have two basi equations of mo-tion, the so-alled kinemati boundary ondition andthe dynami boundary ondition (the Bernoulli equa-tion): �t � Vnp1 + �2x = 0; (1)('t + v2=2 + gy)y=� = 0; (2)where g is the gravity aeleration (we neglet the sur-fae tension in this work).Beause the boundaries are nonuniform, Cartesianoordinates are not onvenient for an exat treatmentof the above problem. Fortunately, the 2D Laplaeequation is invariant under onformal transformationsof independent variables, and it is therefore possi-ble to introdue time-dependent onformal oordinates#(x; y; t) and �(x; y; t) suh that the �ow domain or-responds to a horizontal stripe 0 � � � �(t) in the #�plane (for details, see Refs. [26, 27℄). In the onformalvariables, the potential '(#; �; t) satis�es the Laplae

equation '## + '�� = 0, with simple boundary ondi-tions '�(#; 0; t) = 0 and '(#; �(t); t) =  (#; t).The onformal variables result in a parameteriza-tion of the (x-periodi) free surfae in terms of a realfuntion �(#; t) as follows [26, 27℄:X + iY = Z h#+ i�(t) + �1 + iR̂�� �(#; t)i ; (3)where R̂� is a linear integral operator diagonal inthe disrete Fourier representation, R�(m) = i th(�m)(here, m is the number of a Fourier harmoni). A �xedanalyti funtion Z(�) determines a onformal map-ping of a su�iently wide horizontal stripe in the upperhalf-plane of an auxiliary omplex variable �, adjaentto the real axis Im � = 0, onto a region in the physialxy plane, with the real axis Im � = 0 parameterizingthe bed pro�le.Exat ompat expressions for the time derivatives�t(#; t),  t(#; t), and _�(t) were obtained, orrespond-ing to the dynamis of potential water waves in theuniform gravity �eld [26, 27℄:�t = �Re[�#(T̂� + i)Q℄; (4) t = �Re[�#(T̂�+i)Q℄� j�#j22jZ 0(�)�#j2�g ImZ(�); (5)_�(t) = � 12� 2�Z0 Q(#) d#; (6)where� = #+ i�+ (1 + iR̂�)�; � = (1 + iR̂�) ;Q = R̂� #jZ 0(�)�#j2 :The operator T̂� is diagonal in the disrete Fourier rep-resentation:T�(m) = �i th(�m); m 6= 0;T�(0) = 0:Equation (4) is the kinemati boundary ondition atthe free surfae, written in terms of onformal vari-ables, Eq. (5) is the dynami boundary ondition (theBernoulli equation), and Eq. (6) takes the time depen-dene of the onformal depth � into aount, whih isneessary for the onservation of the total �uid volume.If the funtion Z(�) is expressed in terms of ele-mentary analyti funtions (suh as exp(: : : ), log(: : : ),389



V. P. Ruban ÆÝÒÔ, òîì 141, âûï. 2, 2012and so on; see [26; 27; 31�33℄ for partiular examples),then the right-hand sides of Eqs. (4)�(6) an be eas-ily evaluated using the fast Fourier transform routinesand mathematial library omplex funtions (in C pro-gramming language, the names of suh omplex fun-tions are  exp(: : : ),  log(: : : ), and so on). The aboveproperties form the base of the numerial method.In the numerial experiments, we use dimension-less variables (however, for graphial presentations, thewave pro�les are resaled to a harateristi depth h == 1 m), and onsider either �at horizontal or 2�-perio-di nonuniform bed pro�les (whih means Z(� +2�) == 2�+Z(�)) having an additional symmetry about theimaginary axis,ImZ(�� 0 + i� 00) = ImZ(� 0 + i� 00);ReZ(�� 0 + i� 00) = �ReZ(� 0 + i� 00):This symmetry is required for simulations of waves be-tween the vertial walls loated at x = 0 and at x = �.Of ourse, the funtions  (#; t) and �(#; t) should alsohave de�nite symmetries: (#+ 2�; t) =  (#; t);  (�#; t) =  (#; t);�(#+ 2�; t) = �(#; t); �(�#; t) = ��(#; t):The symmetries are automatially preserved in time ifthe initial data are symmetri.In all our simulations, the system at t = 0 is ha-raterized by a free surfae pro�le y = �0(x) and bythe veloity �eld v = 0. Suh initial onditions withzero kineti energy Ekin were taken beause they areonvenient to observe the reurrene by monitoring thetime dependene of the quantity Ekin=E, where E isthe total energy, whih is onserved in the numerialexperiments up to 7�8 deimal digits. The funtion�0(x) is even and periodi, and therefore satis�es theboundary onditions �00(0) = �00(L=2) = 0, where L isan x-period. A speial proedure was designed to nu-merially �nd the funtion �(#; 0) orresponding to agiven initial pro�le �0(x) [25℄.2.2. Example where the reurrene is absentWe stress that the FPU reurrene ours for speialinitial onditions only. It is lear from the theoretialstandpoint that the reurrene orresponds to a nearlylosed trajetory on a torus in the phase spae of anintegrable system. The dimensionality of the torus isequal to the number of the e�etively exited degreesof freedom. Typially, the frequenies of that motionare not rationally related. Therefore, reurrene is not
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ÆÝÒÔ, òîì 141, âûï. 2, 2012 The Fermi�Pasta�Ulam reurrene : : :mate desription in terms of several olliding solitonsbeomes possible. In the Boussinesq model, �free� soli-tons are haraterized by positive or negative dimen-sionless veloities sn (onstant and all di�erent) andby the positions (phases) xn(t). The orrespondinganalyti solutions are presented in [23℄. It is impor-tant that when two solitons with opposite veloitiess1 = �s2 = s ollide at a position x0 (or a single soli-ton ollides with the wall), the veloity �eld along the�ow domain is identially zero at some time moment,while the shape of the free surfae is given by the simpleformula �(x) = S(x� x0; s) withS(x� x0; s) = 2h(s2 � 1)h2[p3(s2 � 1)(x� x0)=2h℄ : (7)This formula was used in our numerial experiments toprepare initial states in the form of several pairs of ol-liding solitons, plaed su�iently far apart from eahother.In a �nite domain, eah soliton moves between thewalls and additionally aquires a de�nite phase shift�(sn) when it re�ets from a wall (sn ! �sn afterre�etion) and phase shifts �(sn; sm) when it ollideswith other solitons [23℄. In this piture, the reurreneours when the positions of all solitons self-onsistent-ly return lose to their initial values at some time mo-ment. The simplest nontrivial example of a quasireur-rene in the system of two solitons is shown in Fig. 4.But the above approximate desription does notwork if we initially put several idential humps, eahorresponding to a pair of olliding solitons, at di�erentpositions. Figure 5 shows that the reurrene ours ina more ompliated way in suh a ase.If we put two or more humps, with one of themhigher than the others, then the reurrene is possibleonly with tuned values of the larger veloity. Suessfulexamples are shown in Figs. 6 and 7.3. EXTREME WAVES OVER NONUNIFORMBEDSWe have observed in numerial experiments thatwith a �at bottom, if all the initial humps are nearly ofthe same height, the maximum surfae elevation, as afuntion of time, does not muh exeed the initial valuefor a long time. What happens if the bed is nonuni-form? This question is answered in this setion basedon a set of numerial experiments. Three typial ex-amples are presented below.In the �rst nonuniform ase, we simulated wavesover a mild-slope bottom, orresponding to a funtionZ(�) of the form (Fig. 8)
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ÆÝÒÔ, òîì 141, âûï. 2, 2012 The Fermi�Pasta�Ulam reurrene : : :lear at the moment. The FPU quasireurrene is alsorobust with initial states in the form of two solitons.For a larger number of solitons, quasireurrene is pos-sible with speial values of parameters only.All our numerial results are based on the invis-id theory. In reality, of ourse, a visous frition atsagainst the reurrene. However, it was estimated in[25℄ that a relative e�et of the visous frition near thebottom and near the side walls of the �ume beomessmall if all the spatial sales inrease proportionally.In the quasi-integrable regime over a �at horizon-tal bed, with initial states in the form of several nearlyequal solitons, formation of extreme waves appears ef-fetively suppressed, beause the solitons preserve theirstrengths for a long time. When the approximate inte-grability is destroyed by the bed nonuniformity, the sys-tem evolves to a random-wave-�eld regime where qua-sisolitoni oherent strutures of di�erent amplitudesare present, some of them being stronger than the ini-tial solitons. When the strongest oppositely propaga-ting strutures ollide, fairly extreme waves arise. Thehighest extreme waves were observed for a mild-slopebed pro�le, while for relatively short-orrelated bed in-homogeneities, the extreme waves were typially lesstall but more sharp-rested. Similar e�ets were ob-served both for waves between the vertial walls andfor waves with periodi boundary onditions withoutthe additional symmetry.Our present results for extreme events in bidi-retional wave �elds over nonuniform beds may havesome relevane to the problem of rogue (freak) wavesin oastal zone, but only if the oast is in the formof a wave-re�eting li� rather than a wave-absorbingbeah.This paper was supported by the Russian Founda-tion for Basi Researh (Projet � 09-01-00631), theCounil of the President of the Russian Federationfor Support of Young Sientists and Leading Sien-ti� Shools (Projet�NSh-6885.2010.2), and the Pre-sidium of the Russian Aademy of Sienes (program�Fundamental Problems of Nonlinear Dynamis�).APPENDIXA single soliton between the walls in theBoussinesq modelThe Boussinesq equations for weakly nonlinear,weakly dispersive long water waves in the dimension-

less variables (�=h! �, p3x=2h! x, p3g=h t=2! t)take the form ut + uux + �x = 0; (A.1)�t + [(1 + �)u℄x + 14uxxx = 0; (A.2)where � is the vertial displaement of the free surfaeand u =  x is the horizontal veloity. Following [23℄,we transform the above system to a more symmetriform qt + 12qxx + q2r = 0; (A.3)�rt + 12rxx + r2q = 0; (A.4)where new real unknown funtions q(x; t) and r(x; t)express the old funtions �(x; t) and u(x; t) in the fol-lowing manner:u = qxq ; � = �1 + qr + ux2 : (A.5)We note that system of equations (A.3) and (A.4) isformally similar to the fousing nonlinear Shrödingerequation 2i t +  xx + 2 2 � = 0and its omplex onjugate�2i �t +  �xx + 2 �2 = 0:Therefore, we an apply a simple generalization ofthe Akhmediev�Eleonskii�Korneev�Kulagin ansatz[8, 34, 35℄, and seek a solution of Eqs. (A.3)�(A.4) inthe form(q; r) = [U(x; t)�pZ(t)℄ exp(�P (t)):In this way, we an obtain and integrate a system ofequations for the unknown funtions U(x; t), Z(t), andP (t). At some point, the problem is redued to theanalysis of two equations (f. [34℄)_Z2�16Z4+16wZ3�4(h+w2)Z2�4bZ = 0; (A.6)U2x + U4 + 2(w � 3Z)U2 + 2 _ZpZU ++ (2wZ � 3Z2 � b) = 0; (A.7)where w, h, and b are some onstants (there is also thethird equation _P + 2Z = w).395



V. P. Ruban ÆÝÒÔ, òîì 141, âûï. 2, 2012However, we prefer not to deal with a funtionof two variables suh as U(x; t), and therefore use aslightly less general ansatz that still admits physiallyinteresting solutions, with the variables separated fromthe very beginning:q(x; t) = F (t) + Q(t)D(x) +A(t) ; (A.8)r(x; t) = G(t) + R(t)D(x) +A(t) : (A.9)We take the only x-dependent funtion D(x) satisfyingthe relationsD2x = 4�2(D2�1)(1��2D2) � D2�ÆD4��; (A.10)Dxx = D � 2ÆD3; (A.11)where �, �, , and Æ are some real parameters. There-fore, it is one of the Jaobi ellipti funtions (for theirde�nitions and properties, see, e.g., [36℄):D(x) = nd�2�x;p1� �2 � : (A.12)The x-period of this funtion is ~L = I(�)=�, whereI(�) = 1=�Z1 dzp(z2 � 1)(1� �2z2) : (A.13)We now substitute ansatz (A.8)�(A.9) in system(A.3)�(A.4). Using relations (A.10) and (A.11), weobtain the following set of equations (whose left-handsides are oe�ients in front of di�erent powers(D+A)�n, n = 0; 1; 2; 3, or their linear ombinations):_F + F 2G+ ÆAQ = 0; (A.14)� _G+ FG2 + ÆAR = 0; (A.15)_Q+ Q2 (� 6ÆA2) + 2QFG+RF 2 = 0; (A.16)� _R+ R2 (� 6ÆA2) + 2RFG+QG2 = 0; (A.17)2 _A+QG�RF = 0; (A.18)�(A� 2ÆA3) +QG+RF = 0; (A.19)

(A2 � ÆA4 � �) +QR = 0: (A.20)(The last equation atually appears twie.) It is easyto show that the two algebrai relations are onsistentwith the �ve di�erential equations. It also follows fromthese equations thatFG = ÆA2 + ; (A.21)where  is a onstant. We now take the squared equa-tion for _A and obtain4 _A2 = (RF �QG)2 = (RF +QG)2 � 4FGQR == (A� 2ÆA3)2 + 4( + ÆA2)(A2 � ÆA4 � �);whih is an easily solvable �rst-order equation4 _A2 = �4ÆA4 +A2(2 + 4 � 4�Æ)�� 4� � 4Æ(A2 � �21)(�22 �A2); (A.22)where�21;2 = 12 � 24Æ + Æ � ����s14 � 24Æ + Æ � ��2 � �Æ : (A.23)The solution of Eq. (A.22) is again expressed throughan ellipti funtion:A(t) = �1 nd0�t�2pÆ;s1���1�2�21A �� �1 nd (�; �) : (A.24)Beause nd(�; �) = 1=dn(�; �) by de�nition (see [36℄)and [dn(�; �)℄� = ��2sn(�; �) n(�; �), we an expressthe time derivative _A(t) as_A(t) = �1�2pÆ�2sd(�; �) d(�; �): (A.25)Thus, we have obtained expliit expressions for thequantities A, QR, FG, and (RF + QG). From these,we an also extrat the ratios Q=F and R=G, beauseRG + QF = RF +QGFG = A� 2ÆA3ÆA2 +  ; (A.26)RG � QF = 2 _AFG = 2 _AÆA2 +  : (A.27)396



ÆÝÒÔ, òîì 141, âûï. 2, 2012 The Fermi�Pasta�Ulam reurrene : : :The obtained information is su�ient to onstrut theveloity u(x; t) and the free surfae elevation �(x; t) viaformulas (A.5), beauseu = � 1D +A+Q=F � 1D +A�Dx; (A.28)� = �1+FG+RF+QGD+A + QR(D+A)2+ux2 : (A.29)Using the relations  = 4�2(1+�2), Æ = 4�2�2, and � == 4�2, it an be shown that �1 < 1 and �2 > 1=�, andtherefore at de�nite time moments the funtion A(t)takes values A1 = 1 or A2 = 1=�. Simultaneously, atthose time moments, either Q = 0 or R = 0. WhenQ = 0, the veloity �eld u(x) is zero everywhere, whilethe free surfae pro�le is either �1(x) or �2(x), where�1(x) = �1 +  + 4�2��2 + 1� �2D(x) + 1� ; (A.30)

�2(x) = �1(x� ~L=2): (A.31)We see that the best hoie for the onstant  is  == 1�4�2�, beause in this ase �1min = 0. The funtion�1(x) has a single hump at x = 0, and therefore or-responds to the moments when a soliton ollides withthe left wall, while �2(x) orresponds to the ollisionsof the soliton with the right wall at x = ~L=2.In the limit � � 1, we have ~L ! 1 and D(x) �� h(2�x), and hene�1(x) � 4�21 + h(2�x) = 2�2h2(�x) : (A.32)The full solution in this limit is given by the follow-ing formulas (it is interesting to note that the solutionbelow is essentially Eq. (52) in Ref. [34℄ for the fous-ing nonlinear Shrödinger equation, but evaluated atimaginary time):q(x; t) = 241 + 2�2 h�2t�p1 + �2 �� 2�p1 + �2 sh�2t�p1 + �2 �p1 + �2 h(2�x) + h�2t�p1 + �2 � 35 e�t; (A.33)r(x; t) = 241 + 2�2 h�2t�p1 + �2 �+ 2�p1 + �2 sh�2t�p1 + �2 �p1 + �2 h(2�x) + h�2t�p1 + �2 � 35 et: (A.34)Collision of the soliton with the wall at x = 0 ours att = t�, whenh�2t��p1 + �2 � =p1 + �2:It is easy to derive that before and after the ollision,the soliton (at x > 0) moves with the respetive velo-ities s = �p1 + �2.REFERENCES1. E. Fermi, J. Pasta, and S. Ulam, Los Alamos Sienti�Laboratory Report No. LA-1940, Los Alamos, NewMexio (1955).2. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15,240 (1965).3. V. E. Zakharov, Zh. Eksp. Teor. Fiz. 65, 219 (1973).4. A. Thyagaraja, Phys. Fluids 22, 2093 (1979).5. H. C. Yuen and W. E. Ferguson, Phys. Fluids 21, 1275(1978).

6. E. Infeld, Phys. Rev. Lett. 47, 717 (1981).7. H. C. Yuen and B. M. Lake, Adv. Appl. Meh. 22, 67(1982).8. N. N. Akhmediev and V. I. Korneev, Theor. Math.Phys. 69, 1089 (1986).9. Q. Zhu, Y. M. Liu, and D. K. P. Yue, J. Fluid Meh.496, 213 (2003).10. A. R. Osborne, M. Onorato, M. Serio, and L. Bergam-aso, Phys. Rev. Lett. 81, 3559 (1998).11. R. Camassa and L. Lee, J. Comp. Phys. 227, 7206(2008).12. G. Van Simaeys, Ph. Emplit, and M. Haelterman,Phys. Rev. Lett. 87, 033902 (2001).13. N. J. Zabusky, Chaos 15, 015102 (2005).14. G. P. Berman and F. M. Izrailev, Chaos 15, 015104(2005).397



V. P. Ruban ÆÝÒÔ, òîì 141, âûï. 2, 201215. V. E. Zakharov, J. Appl. Meh. Teh. Phys. 9, 190(1968).16. M. P. Tulin and T. Waseda, J. Fluid Meh. 378, 197(1999).17. J. B. Song and M. L. Banner, J. Phys. Oeanogr. 32,2541 (2002).18. W. S. Chiang and H. H. Hwung, Phys. Fluids 19,014105 (2007).19. S. Leblan, Eur. J. Meh. B/Fluids 28, 605 (2009).20. D. J. Kaup, Progr. Theor. Phys. 54, 396 (1975).21. B. A. Kupershmidt, Comm. Math. Phys. 99, 51 (1985).22. A. O. Smirnov, Theor. Math. Phys. 66, 19 (1986).23. J. E. Zhang and Y. Li, Phys. Rev. E 67, 016306 (2003).24. W. Craig, P. Guyenne, J. Hammak et al., Phys. Fluids18, 057106 (2006).25. V. P. Ruban, Pis'ma v Zh. Eksp. Teor. Fiz. 93, 213(2011).26. V. P. Ruban, Phys. Rev. E 70, 066302 (2004).

27. V. P. Ruban, Phys. Rev. E 77, 037302 (2008).28. E. Pelinovsky and C. Kharif (editors), Eur. J. Meh.B/Fluids 25, 535�692 (2006).29. N. Akhmediev and E. Pelinovsky (editors), The Eur.Phys. J.�Speial Topis 185, 1�266 (2010).30. E. Pelinovsky and C. Kharif (editors), Speial Is-sue �Extreme and Rogue Waves�, Natural Hazardsand Earth System Sienes (2010); http://www.nat-hazards-earth-syst-si.net.31. V. P. Ruban, Phys. Lett. A 340, 194 (2005).32. V. P. Ruban, Phys. Rev. E 77, 055307(R) (2008).33. V. P. Ruban, Phys. Rev. E 78, 066308 (2008).34. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin,Theor. Math. Phys. 72, 809 (1987).35. N. Akhmediev and A. Ankiewiz, Phys. Rev. A 47,3213 (1993).36. E. T. Whittaker and G. N. Watson, A Course ofModern Analysis, Part 2, Cambridge University Press(1927).

398


