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A consistent explanation of the formation of a ring-shaped pattern of exciton luminescence in GaAs/AlGaAs
double quantum wells is suggested. The pattern consists of two concentric rings around the laser excitation
spot. It is shown that the luminescence rings appear due to the in-layer transport of hot charge carriers at
high photoexcitation intensity. Interestingly, one of two causes of this transport might involve self-organized
criticality (SOC) that would be the first case of the SOC observation in semiconductor physics. We test this
cause in a many-body numerical model by performing extensive molecular dynamics simulations. The results
show good agreement with experiments. Moreover, the simulations have enabled us to identify the particular
kinetic processes underlying the formation of each of these two luminescence rings.

1. INTRODUCTION

Non-equilibrium collective effects in the exciton
and exciton—polariton systems in semiconductor het-
erostructures are a subject of intensive studies [1-26]. A
particular attention has been focused on the beautiful
phenomenon discovered experimentally in the system
of interwell excitons in GaAs/AlGaAs double quantum
wells (QWs) [6]: at sufficiently high excitation inten-
sity, a local photoexcitation of electrons (e) and holes
(h) above the exciton resonance gives rise to a macro-
scopic ring-shaped pattern of spatial distribution of the
exciton luminescence. The radius of the pattern can be
varied in a wide range by tuning external parameters
such as the excitation intensity or gate voltage. Re-
markably, at sub-Kelvin lattice temperatures the exter-
nal ring of the stationary pattern exhibits a sharp frag-
mentation, which could be the signature of a non-equi-
librium macroscopic quantum effect.

Understanding the nature of the ring-shaped pat-
tern requires building a many-body model that cap-
tures local generation of electron—hole pairs and their
spatial dynamics accompanied by the processes of for-
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mation and recombination of excitons. If the exciton
lifetime is sufficiently long, the spatial dynamics of the
excitons should also be considered.

The first theoretical explanation that met these re-
quirements was based on the diffusive transport model
(DTM) applied to the locally photogenerated holes and
equilibrium electrons, which were initially distributed
uniformly in the quantum-well plane [13, 14, 16, 17, 24].
The overlapping region for the hole and electron spatial
distributions apparently gave rise to the ring of exciton
luminescence.

However, this explanation has a lot of evident short-
comings [27]. For example, if the same number of pho-
togenerated electrons is added to the model (in princi-
ple, they must be added to maintain the electroneutral-
ity), then the ring of exciton luminescence can disap-
pear due to the exciton formation term, which is simply
proportional to the product of the electron and hole
densities. (If these densities decrease monotonically
from the excitation spot center, then the luminescence
intensity would apparently follow them.) More specific
shortcomings can be found in Appendix A.

In this paper, a novel consistent explanation of the
ring-shaped pattern formation is given. The main idea
is that an essential in-plane electric field occurs in the
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Fig.1. Left: Schematic of a double quantum well (DQW). The DQW structure is bordered by highly-doped GaAs layers

that serve as external electrodes forming a plane capacitor. In the experiments [6, 13, 24], the widths of the layers between

the electrodes are (200 nm) (8 nm) (4 nm) (8 nm) (200 nm), respectively. Right: (Top) Schematic of the DQW energy

profile along the “growth” axis (z axis) when a voltage is applied between the external electrodes (it results in a linear bias of

the profile) and interwell exciton formation (arrows show the path of a photoexcited electron). (Bottom) Interwell excitons
as co-directed classical dipoles

excitation spot region at sufficiently high excitation
power. This field strongly affects the spatial dynam-
ics of the photogenerated electrons and holes. (We do
not, consider any equilibrium carriers at all.) We show
that there are contributions to the electric field from
two quite different physical processes. Essentially, due
to one of these contributions, the ring-shaped pattern
formation could be understood in the paradigm of self-
organized criticality (SOC) [28]. To test the contribu-
tion, we have performed extensive molecular dynamics
simulations. They have shown that this contribution
alone is quite enough for a detailed qualitative expla-
nation of the ring-shaped pattern. (However, this pa-
per does not consider the transition to the SOC regime.
The parameters for the simulations have been chosen
to be in this regime from the very beginning.)

This paper is organized as follows. Further in this
section, we introduce some essential properties of dou-
ble quantum wells and interwell exciton formation,
some experimental results we focus on, and the for-
mulation of the problem to be studied. In Sec. 2, we
suggest two qualitative explanations (“scenarios”) for
the ring-shaped pattern formation and make the corre-
sponding estimates. Section 3 describes a many-body
dynamical model and conditions of the molecular dy-
namics simulations performed to investigate the second
scenario in more detail. Section 4 contains the results
of the simulations. Section 5 is conclusion and discus-
sion. Finally, Sec. 6 consists of three Appendices.

The structure of double QWs used in the experi-
ments [6, 13, 24] is shown in Fig. 1 (left). The elec-
tron band-gap energy Egqp of the “barrier” (B) lay-
ers is larger than Eg,, of the “well” (W) layers (Fig. 1
(right)), and hence GaAs layers form two rectangular
potential wells with the depth

Uow = (Egap (B) — Egap (W)) /2= 0.4 €V.

At a moderate occupation of the wells (i.e., when the
number of electrons in the GaAs conduction band is
not macroscopically large; see the next section for the
details), a voltage applied to the external electrodes
provides a constant tilt of the DQW potential profile
(Fig. 1 (right)). This “gate” voltage V is needed to sep-
arate electrons and holes in the different wells, facilitat-
ing the formation of interwell excitons. The crossover
between the interwell and intrawell exciton “ground”
states occurs at V; ~ 0.3 V [29]. (Since V; > 0.3 V
in the experiments [6, 13, 24], the intrawell excitons
are not discussed in what follows.) The stationary
laser pumping comes along z axis and is used for the
formation of a macroscopic number of photogenerated
electron—hole pairs. In the experiments [6, 13, 24], the
typical laser power was several hundreds of uW and was
focused in a spatial spot of few tens of ym. The pum-
ping energy was well above the exciton resonances, and
hence an electron was photoexcited to a high-energy
level of the QW near the continuum. Due to the ap-
plied gate voltage, the electron can then tunnel to the
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Fig.2. Experimental curves taken from Ref. [6]: the lu-

minescence intensity of interwell excitons vs the distance

r from the excitation spot center at different excitation

powers (the numbers near the curves are expressed in

1W). The excitation spot radius is about 20 um. Inset:

Dependence of the external ring radius on the excitation
power

corresponding QW. (The effective mass of an electron
in GaAs is seven times smaller than the mass of a heavy
hole, so the tunneling is much more probable for elec-
trons than for holes. We note that the energy of heavy
holes is lower than the energy of light ones in GaAs.)
The tunneling might also be facilitated by the volta-
ge-induced triangular profile of the barrier. Finally,
after a spatiotemporal in-layer relaxation of the charge
carriers, the interwell excitons are formed; they live
some finite time and then annihilate, giving rise to the
photoluminescence (PL) pattern in the QW (zy) plane.

We now turn to the experimental results that we
intend to explain (Fig. 2). At a small excitation power,
the PL spatial profile practically follows the excitation
spot (see the details in [6]). When the excitation power
exceeds a certain value, a thick ring of luminescence ap-
pears near the edge of the excitation spot. In Ref. [6],
it was already seen at the excitation power 220 pyW.
Hereafter, we call this ring the “internal” ring. Fi-
nally, when the excitation power exceeds another criti-
cal value (Fig. 2), a thin “external” ring of luminescence
appears around the excitation spot and the inner ring.
Everywhere in this paper, the words “ring-shaped pat-
tern” mean these two concentric rings.

The formation mechanism of the ring-shaped lumi-
nescence pattern is the subject of the research described
below. In particular, we pose the following questions.
(i) Why does the ring-shaped pattern appear only when

48 KT, Boim. 6

the laser excitation power exceeds some critical val-
ues? (ii) What are the kinetic processes that under-
lie the formation of the internal and external rings?
(iii) Why does the external ring radius depend strongly
on the static gate voltage V; [30]? (iv) Why does the
luminescence of intrawell excitons (i.e., purely “two-
dimensional” excitons) not exhibit the ring-shaped pat-
tern [6]7

2. TWO SCENARIOS OF THE RING-SHAPED
LUMINESCENCE PATTERN FORMATION

In general, we believe that the ring-shaped PL pat-
tern appears due to the transport of hot uncoupled elec-
trons and holes from the excitation spot at a sufficiently
high excitation power. During the spatial spread, the
carriers relax in kinetic energy, emitting phonons and
can eventually form excitons relatively far away from
the excitation spot (“far away” in comparison with the
spot radius). We suppose that the hot charge carriers
are formed due to (i) in-layer electric fields that occur
at high pumping power in the excitation spot region
and (ii) high mobilities of the charge carriers in GaAs.
We suggest two particular mechanisms of the electric
field occurrence, they are described in detail in Secs. 2.1
and 2.2.

2.1. First scenario: hot carrier transport
induced by the external gate voltage

The first scenario concerns the screening of the gate
voltage Vg by photogenerated carriers in the excitation
spot (Fig. 3) at high excitation power.

The electric induction in the bilayer volume at the
laser excitation spot is D = E4+47P. Here E = Eje. is
the static uniform electric field generated by V, and P
is the polarization of the medium. If n is the density of
electron—hole pairs in the excitation spot of area S and
d is the average distance between the pairs in different
wells (i.e., d is the dipole length), then

(nS) (ed)

P=—
Sd

e.=—(ne)e., D= (Ep—4mne)e..
In the experiments [29], the DQW structure was re-

garded as an insulator. This means that the condition
Ey > 4men, (1)

must be satisfied in the excitation spot region. In this
case, the gate voltage results in a linear slope of the
DQW potential energy profile along the z axis on the
value 0U (z) =~ —eEpz (Fig. 1 (right)).
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Fig.3. Schematic of the electric field distribution along
the growth axis (z axis) of the DQW structure in the
vicinity of laser excitation spot at high excitation power.
(It is supposed that the excitation spot is far away from
the DQW edges and external contacts.) In the spot
region (ovals in the center), the static electric field in-
duced by the external gate voltage is curved due to the
presence of a macroscopically large number of photo-
generated charge carriers. The horizontal projections
of the field cause in-layer transport (shown by thick
arrows) of the carriers from the excitation spot

However, at typical values V;, ~ 1 V and n ~
~ 10 e¢m™% [29], we obtain eEy ~ eV,/2L ~
~ 10* eV /em, where L = 200 nm is the width of exter-
nal barrier of the DQW structure (Fig. 1 (left)), and
4mne? ~ 10* eV/em. So at the expected densities n ~
~ 10'""-10"2 cm~2 in the excitation spot at high pump-
ing power, condition (1) is therefore not satisfied there.
This means that the z-axis component of the resulting
field E. is essentially dependent on z in the excitation
spot region. More importantly, in this case there ex-
ists an in-plane component E,. of the electric field that
pushes both electrons in one layer and holes in another
layer away from the excitation spot (Fig. 3).

2.2. Second scenario: hot carrier transport
induced by the repulsive in-layer interaction

If the photogenerated electrons and holes do not
leave the excitation spot for any reason, then the higher
the pumping power P,, is, the higher the carrier densi-
ties in the spot. (Because the excitation is off-resonant,
the value of the exciton formation time is always larger
than the time of energy relaxation of the carriers to
reach the exciton transition.) Due to the bilayer geo-
metry, there exists a value of excitation power at which

the carrier densities in the spot reach the values when
repulsive in-layer Coulomb forces between carriers be-
come stronger than the attractive interlayer force. To
be more specific, we estimate the interaction strength
in the excitation spot in terms of the dimensionless in-
teraction parameter rz. At small carrier densities, the
interaction in the spot is the dipole—dipole one rather
than the Coulomb as in the case of a monolayer. In
particular, for an electron (or hole) monolayer,
T_e2/f_fN1 @)
* T h2/mf? ap Vnag’
where ap = h?/me? is the Bohr radius, n is the car-
rier density in the spot, and # ~ n=/2 is the average
distance between carriers. (Hereafter, we omit dielec-
tric constant in the formulas unless making numerical
estimates.) Thus, for a monolayer, an increase in the
density n leads to a decrease in the interaction. How-
ever, in the case of an electron—hole (e-h) bilayer at
7 > d, where d is the interlayer distance, the interac-
tion is dipole-dipole: U = e?d?/7® rather than e?/7.
This leads to

2

U d? d
=5 =——~ —Vnd?
R?/mr?  fap am e )

T's

where n <n. <d 2~ 1012 ecm™2 at d ~ 1075 c¢m [29)].
It follows that in this case the interaction increases in
accord with the densities. At n = n. (which corre-
sponds to some critical excitation power (P.;),) the
character of the interaction changes: the repulsive in-
layer interaction becomes dominating and, moreover,
one should effectively put n = 0 in estimate (2), i.e.,
the repulsive interaction becomes huge. This leads to
the appearance of in-layer electric fields ejecting the
electrons and holes from the excitation spot region.
Then the e-h densities in the spot grow to the criti-
cal values again and the ejection process recurs. There
is a direct correspondence between this self-organized
ejection, which maintains the critical values of carrier
densities in the spot, and the avalanches in the classic
sand-pile model of SOC [28, 31].

Because the mobilities of charge carriers in GaAs
QWs are very high (up to 107 ecm?/V-s for electrons
at sub-Kelvin temperatures [32-35]), the initial kinetic
energies of some part of the ejected particles can ex-
ceed the optical phonon emission threshold. Their re-
laxation in energy is then so fast that these carriers
are likely to form excitons not far away from the exci-
tation spot. In turn, the carriers with kinetic energy
less than the optical phonon energy hw,,: go further.
These carriers relax relatively slowly by emitting acous-
tic phonons. In GaAs, hwey: &~ 37 meV, and hence the
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velocities of the carriers contributing to long-distance
transport are less than vp,q, ~ 107 cm/s. (More details
about carrier energy relaxation due to phonon emission
can be found in Appendix B.)

In addition, there is an essential difference in mo-
bilities, and in effective masses, for electrons and heavy
holes in GaAs [32-34]. This can lead to some dif-
ference in in-layer “stream” velocities of electrons and
holes. The difference, in turn, would result in a sup-
pression of the attractive interlayer Coulomb force (see
Appendix C for the details) until the velocities become
small enough due to the acoustic phonon emission. In
these conditions the interlayer exciton formation is also
suppressed in some range of distances from the excita-
tion spot. (We recall, for example, that the classical
scattering cross-section for the Coulomb potential, the
Rutherford cross-section, is proportional to V—%, where
V' is the initial relative velocity at infinite distance.)
The suppression leads naturally to the formation of a
luminescence ring that would define a circumference of
the total luminescence pattern.

Thus, the internal ring of luminescence (Fig. 2)
might appear due to the electrons and holes that had
emitted optical phonon(s) and then quickly formed ex-
citons. In turn, the external luminescence ring can ap-
pear due to the carriers that were below the optical-
phonon emission threshold and therefore needed more
time (and longer distances) to relax by emitting acous-
tic phonons.

In general, we suggest that at high photoexcitation
power there exists an in-plane electric field E, that con-
sists of two contributions, “gate-voltage-induced” and
“in-layer interaction-induced”. Due to high mobilities
of charge carriers in GaAs, even a moderate value of
E, results in high initial velocities of the carriers di-
rected outside the excitation spot. Large relative ve-
locities of the ejected electrons and holes lead to a
suppression of the interlayer Coulomb attraction be-
tween them. This results in the suppression of the ex-
citon formation in some range of distances from the
excitation spot. In turn, the formation dynamics of
the ring-shaped luminescence pattern can be divided
into three stages: (i) radial acceleration of carriers in
the excitation spot region due to the in-plane compo-
nent of the static electric field that appears at relatively
high carrier density in the excitation spot and due to
the in-layer Coulomb repulsion at high pumping power;
(ii) deceleration of unbound carriers due to emission of
optical and acoustic phonons and due to the ambipolar
electric field (“Coulomb drag”); and (iii) the regime of
strong interlayer Coulomb correlations: formation and
optical recombination of interlayer excitons.

In what follows, we focus on the second scenario
and test it by molecular dynamics (MD) simulations.

3. MOLECULAR DYNAMICS SIMULATIONS:
NUMERICAL MODEL

To describe the spatial dynamics of IV hot electrons
and holes, we use the classical equations of motion

2(pi _ pj

; ; e?(rl —rl)

* 227 -0 € e
mere+%1‘e—g —— -

j#i vl —re

-~ Z e (rl —rj)

) e

vz @
]/

200i
mikh iy = ST
j#i |ri — 1)
> “ox) )
rh—rk —l—d2]3/27

combined with the conditions of exciton formation and
optical phonon emission (see below). Here, vectors r?
and rfl are in-plane positions of ith electron and jth
hole (1 <i,j7 < N), my ) is the electron (hole) effective
mass, e is the electron charge, and d is the interlayer
distance (see Fig. 4).

In addition to the inertia terms, the left-hand sides
of Egs. (4) and (5) contain phenomenological momen-
tum damping terms due to the interaction with acoustic
phonons with constants vye(n) = €/fte(n), where fie(p) is
electron (hole) mobility. The dimensionless equations
are given by

i (ri —r))
I+ 1) =267f93—

j#i [l —rl

_Z (1‘2 —I‘h)

CE

P

i ca(r), —ry)
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2
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with the constants ¢; = m?¥ . /m;‘Luh and co = m}/mj.
Hereafter, we normalize time by t. = \/em*u. /e, where
€ is the dielectric constant of the layers, and all dis-
tances by & = ¢/miu2. To estimate the parameters,
we use the well-known experimental values for high-
quality undoped GaAs/AlGaAs QWs. In particular,

)

cs rh r’e“)

+ d2]3/2’

(7)
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Fig.4. Qualitative schematic of optically excited electron—hole bilayer. Both stationary laser pumping in the center and
spatially distributed luminescence are perpendicular to the layers. The charge separation between the layers postulated in
the numerical model is due to the external gate voltage Vate

taking a typical value p, ~ 107 cm?/V-s [32, 33] for
temperatures 7' < 1 K, m} ~ 0.067m., mj ~ 0.5m,
(where m, is the bare electron mass), e = 12.8 and
pn ~ 0.1p, [34], we obtain t, ~ 1079 s, & ~ 10~ cm,
c1 ~1,and ca ~0.1.

The optical phonon emission was modeled in the fol-
lowing way: if the kinetic energy of a carrier exceeded
the energy of an optical phonon, this last energy was
subtracted from the first and the new direction of the
carrier velocity became random.

Simulation of laser pumping. Stationary op-
tical pumping of carriers was simulated by generating
them in random positions inside the excitation spot of
radius rg with some generation rate that was modeled
in two different ways. In fact, during a MD simulation
the time is changed by discrete steps, with the elemen-
tary time step At. According to the first way [25, 36],
the generation rate p was defined as the probability
per At to create one e—h pair in the excitation spot,
so that pAt < 1. We name this case the single gen-
eration regime (SGR). Alternatively, one can consider
the formation of several e-h pairs during A¢. Then the
carrier generation rate (CGR) is defined as the number
of e-h pairs generated in the excitation spot during the
time step At. We call it the multiple generation regime
(MGR). We note that the results of MD simulations
differ essentially in the single and multiple regimes. In-
deed, it is intuitively clear that the SGR. is likely to
correspond to weak pumping, whereas the MGR. de-
scribes high-power excitation.

The initial velocities of carriers in the excita-
tion spot were also chosen randomly in the intervals

|ti| < v and |¢i| < nug, where we took n = 0.5 in all
simulations.

During the spatial dynamics of the carriers, the ex-
citon formation occurred if an electron and a hole were
close enough to each other, |r. — ry| < a, where a(d) is
a phenomenological in-layer exciton radius, and their
relative velocity was smaller than some critical value,
|fe — 15| < Ve [25] (see also Appendix C). We note that
the dependence of the exciton formation rate on the e-h
relative velocity is one of the most crucial ingredient
for the ring-shaped pattern formation: assuming the
absence of that dependence, one always obtains a spa-
tially monotonic decrease of the luminescence outside
the excitation spot [25].

To simplify the simulations, we did not consider the
exciton dynamics. This means that as soon as an elec-
tron and a hole had formed an exciton, their dynamics
was no longer considered and the position of the forma-
tion event was recorded as a position of photon emis-
sion. Qualitatively, this corresponds to zero exciton
lifetime.

We note that since both the internal and external
ring radii are temperature independent [6, 29], it is
not advisable to include temperature (i.e., to add a
stochastic force to Eqs. (4) and (5)) into the conside-
ration. In turn, because the low-temperature fragmen-
tation of the external ring [6] apparently depends on
the exciton dynamics, we do not expect to observe the
fragmentation in the simulation results.

Finally, due to the inevitable restrictions in com-
putational power it was only possible to simulate the
dynamics of N < 10* interacting particles. For this

1172



MKITD, Tom 141, Bhm. 6, 2012

Ring-shaped spatial pattern ...

reason, we had to modify the values of a, vy, V., d
etc. in comparison with realistic values to facilitate the
exciton formation. However, it was clearly seen that
the closer the values of those model and real parame-
ters were, the better was the correspondence between
the MGR simulation results and the experimental ones.
We note that the in-plane motion of the carriers was
not restricted by any spatial boundaries.

4. MOLECULAR DYNAMICS SIMULATIONS:
RESULTS

Some preliminary results for the SGR were pub-
lished in Ref. [25]. In particular, quasi-1D simulations
and the crucial dependence of the ring pattern forma-
tion on the critical relative velocity V. in the exciton
formation condition were discussed there. In what fol-
lows, some new essential results are described.

4.1. Single generation regime (SGR)

The results of MD simulations of Eqs. (6) and (7)
in the SGR for several sets of parameters indicate that
there are two qualitatively different pictures. In gen-
eral, the in-layer distribution n,m,(r) of stationary lu-
minescence exhibits a ring-shaped pattern around the
excitation spot. But the pattern always contains only
one ring. More importantly, the ring can originate by
two qualitatively different ways.

According to the first way, the in-layer distributions
of electrons and holes are separated from each other and
the ring occurs in the region of their overlap (Fig. 5).

The dependence of the ring position on the genera-
tion rate p (Fig. 6), which mimics the excitation power,
shows that although the luminescence ring intensity in-
creases with p, its position is virtually independent on p
(top inset in Fig. 6). This behavior differs from that ob-
served experimentally (Fig. 2), where the radius of the
external luminescence ring grows nearly linearly with
an increase in the photoexcitation intensity and the
growth of the internal ring radius is also quite notice-
able. Interestingly, the same behavior, i.e., the inde-
pendence of the ring position on p, was observed in the
quasi-1D case [25].

However, there exists an another way of the ring
pattern formation. It was observable at other sets of
parameters, in particular, when maximal initial veloci-
ties of the carriers, the critical relative velocity V., and
the distance a were relatively small. We note that the
CGR p was taken in the same range of values as previ-
ously.

According the second way, the in-layer distributions
of electrons and holes practically coincide with each
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Fig.5. Stationary in-layer distributions of electrons

(ne), holes (ny), and luminescence (n;,m (1)) averaged
over time interval (200, 830). Inset: dependence of the
total number NV of electrons and holes on time ¢. In a
stationary state, the carrier generation rate is balanced
by the luminescence rate and N (t) exhibits saturation.
Parameters of the simulation: excitation spot radius
ro = 4, p = 10, velocity of the optical-phonon emission
threshold v,,: = 50, maximal electron initial velocity
vo = 50, critical relative velocity V. = 10, critical rel-
ative distance a = 0.2, first and second coefficients in
the equations of motion for holes ¢; = 1 and ¢2 = 0.25,
d® = 0.01, time step At = 0.0005
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cence distribution nyy,m (r) on the generation rate p.

Top inset: dependence of the luminescence ring radius

on p. Bottom inset: stationary total number Ng;q: of

electrons and holes vs p. Parameters of the simulations
are the same as in Fig. 5
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Fig.7. Stationary in-layer distributions of electrons
(ne), holes (ny), and luminescence (n;,m (1)) averaged
over time interval (500,10000). Top inset: dependence
of the total number N of electrons and holes on time ¢
exhibits a stationary state. Bottom inset: dependence
of electron (V) and hole (V},) stream velocities vs the
distance r from the excitation spot center. Parameters
of the simulation: ro = 3, p = 10, vopt = 10, vg = 1,
Ve=1,a=0.05 ¢ =1.1, c2 = 0.3, d> = 0.9 (the re-
sults are essentially the same at smaller d?), time step
At =0.005

other (Fig. 7). The ring occurs at the outer side of
the distributions, where the differences in the carrier
densities and velocities are small enough to allow the
exciton formation. The dependence of the ring radius
on the CGR p (Fig. 8) has shown that, in contrast to
the previous case (Figs. 5 and 6), the radius increases
linearly with p.

Summarizing the simulation results for the SGR, we
conclude that the first way of the ring pattern forma-
tion, when electron and hole in-plane distributions are
separated and the ring is formed in their overlap region,
does not correspond qualitatively to the experimental
results [6, 13, 24]. The second way could mimic the
experimental situation when the excitation power was
such that only the internal luminescence ring was ob-
servable. However, the position of the ring in the simu-
lations depends on the pumping rate stronger (linearly)
than that of the internal ring (cf. Fig. 2 and Fig. 8)
in the experiments [6, 13, 24]. In turn, a nearly linear
dependence of the ring radius on the excitation power
is typical for the external luminescence ring (Fig. 2),
but then the simulations miss the internal ring.
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10001\ XAF o
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Fig.8. Dependence of the stationary in-layer lumines-
cence distribution 1y, (r) on the generation rate p.
Top inset: dependence of the luminescence ring radius
R on p. Bottom inset: the stationary total number
Nstatr of electrons and holes vs p. Parameters of the
simulations are the same as in Fig. 7

This misfit can indicate that though the parameters
of the simulations in the second case are closer to re-
alistic ones, one needs more realistic carrier generation
algorithm which would enable us to model high excita-
tion powers and, at the same time, is independent on
the MD time step At.

4.2. Multiple generation regime (M GR)

In the MGR, the simulations result in much better
correspondence with experimental plots (Fig. 2) and,
simultaneously, some correspondence with the SGR re-
sults (“the second way”) can be traced.

First, the MGR results show two concentric rings in
the in-layer luminescence pattern: the internal ring has
small radius and high intensity and the external ring
has relatively large radius and is weaker in intensity
(Fig. 9). The in-layer distributions of electrons and
holes are similar to those of the above SGR. “second
way” (Fig. 7), i.e., the distributions practically coin-
cide with each other.

Due to the increase of the effective pumping power
in the MGR. case, the total number of carriers in the
stationary state (inset in Fig. 9) is more than one or-
der of magnitude larger than that in the SGR case. We
note that the stationary number of carriers in the ex-
citation spot is very close to the product of the instant
CGR (ANgpot /At = 300) and the unit time (= 1). This
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Number of carriers
1000 in the excitation spot
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Lumin., arb. un.

Fig.9. Top: Stationary in-layer distributions of elec-
trons (n.), holes (ny), and luminescence (17,m (1)) av-
eraged over the time interval (100, 400). Inset on top:
dependence of the total number N of electrons and
holes on time ¢ exhibits a stationary regime. Bottom:
3D luminescence pattern. Parameters of the simula-
tion: ro = 3, pumping rate (number of particles gener-
ated during the time step At in the spot) ANy, = 3,
Vopt = 10, vo = 1, Vo = 1, a = 0.05, ¢ = 1.1,
c2 =0.3,d> =0.9, and At = 0.01

means that most of the carriers escape from the spot
very fast. This can be understood by estimating the
critical number of carriers in the spot required for dom-
inant in-layer repulsion (see Sec. 2): taking n, ~ d=2,
we obtain N, = n.mrZ ~ 7 (ro/d)* & 30, which is much
smaller than the above number of carriers formed in the
spot during the unit time. (For the estimate, we have
used the parameters in the caption to Fig. 9.) The sys-
tem of charge carriers is therefore in the critical state.

10
S

103

2 3 4
1 ! V, arb. unS.
1 | | . N S
0 10 20 30 40 50 r

Fig.10. Dependence of the electron (V;) and hole (V4,)
stream velocities on the distance r from the excitation
spot center. The carrier velocities within the excita-
tion spot region essentially exceed the maximal initial
velocity (= 1). We note that V. and V}, are the ve-
locities of the part of the carriers that are below the
optical phonon emission threshold. Inset: The elec-
tron (fe(V')) and hole (f, (V")) distributions over single-
particle velocities. Parameters of the simulation are the
same as in Fig. 9

The mechanism of the ring pattern formation in
these conditions is as follows. The internal ring is
formed due to the carriers that have emitted optical
phonons. This can be seen in Fig. 10 by the sharp
changes of carrier velocities within the excitation spot.
We note that the velocities essentially exceed the max-
imal initial velocities there. (In addition, the opti-
cal phonon emissions were seen during the simulations
by changes of instant maximal velocities of the carri-
ers that were up to the threshold velocity of optical
phonon emission.) This means that the in-layer re-
pulsive Coulomb interaction is dominant in the excita-
tion spot. The repulsive forces accelerate the carriers
in such a way that the major part of them emits op-
tical phonons and then quickly forms excitons. The
carriers with velocities beneath the threshold velocity
of optical phonon emission go further emitting acous-
tic phonons and, eventually, form excitons relatively
far away from the excitation spot. This description is
in excellent agreement with all sets of simulations in
the MGR, and it therefore justifies the second scenario
suggested in Sec. 2. Some details of the Coulomb re-
pulsion accompanied by phonon emission are given in
Appendix B.

To prove the crucial role of Coulomb interactions,
we have performed a simulation where the interactions
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Fig.11. In-layer distributions of electrons (n.), holes

(n), and luminescence (nium(r)) averaged over the

time interval (1500, 2700) in the absence of any direct

Coulomb interactions. Inset: the dependence of the to-

tal number N of electrons and holes on time ¢. It shows

that the dynamics is still non-stationary. Parameters of
the simulation are the same as in Fig. 9

are switched off, even though the exciton formation
condition holds. The results are shown in Fig. 11.
We see that the saturation of N(¢) (i.e., the stationary
state) is absent during the time that essentially exceeds
previous simulation times for the MGR. The in-layer
distributions of electrons and holes resemble those for
the “first way” SGR, i. e., the distributions are spatially
separated. However, the ring does not form and the lu-
minescence decreases monotonically from the center.

We now discuss the dependence of the ring-shaped
pattern on the pumping power and the critical relative
velocity V. from the exciton formation condition.

The dependence of in-plane positions of the rings
on the pumping rate is shown in Fig. 12. The exter-
nal ring radius increases nearly linearly, whereas the
internal ring radius increases more slowly. This be-
haviour exhibits a good agreement with the experimen-
tal curves (Fig. 2). (Determining the dependences more
accurately requires collecting larger statistics that is a
very time-consuming procedure due to the large total
numbers (~ 10*) of particles in the MGR.)

The dependence of the ring-shaped luminescence
pattern on the critical relative velocity V. shows
(Fig. 13) that the smaller V. is, the larger the exter-
nal ring radius (the top inset in Fig. 13) and the ring
intensity. At the same time, the stationary number
of carriers increases to the limiting values of the order

Rium
3000
2351
g
2
2000 zor
5
B 25
1 | | 1 | |

3 4 5 6
Excitation power, arb. un.

1000

3

10 20 30 40 50

Fig.12. Dependence of the stationary in-layer lumines-

cence distribution 7., () on the excitation power with

the number A N0 of particles generated per time step

in the spot shown by numbers (1, 3, 6) near the corre-

sponding curves. Inset: dependence of the external ring

radius on the excitation power. The other parameters
of the simulations are the same as in Fig. 9

Ny, arb. un.

o
S

6000

©w [
S <

[ ]
[

External ring radius

4000

1 | | 1

15 V., 20

2000

10

20 30 40

Fig.13. Dependence of the stationary in-layer lumi-
nescence distribution m,.,(r) on the critical relative
velocity V. from the exciton formation condition. Top
inset: dependence of the external ring radius on V.
Bottom inset: the stationary total number Ny of
carriers vs V.. The pumping rate ANyt = 3. The
other parameters of the simulations are the same as in
Fig. 9
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Left: Luminescence patterns in the case of two excitation spots at two distances, 85 (top) and 70 (bottom),

between the spot centers. Right: The corresponding dependences of the total numbers Ny 5 of carriers excited by the spots
on time ¢ show that the system arrives at the stationary state. Parameters of the simulations are the same as in Fig. 9
except the critical relative velocity, here V. = 0.5

of 10* (the bottom inset in Fig. 13) for the available
computational power.

Finally, we have performed simulations with two
identical but spatially separated excitation spots to
compare our results (see Fig. 14) with experimental
pictures [13,30]. In can be seen that when the spots
are placed close enough, the external rings open to-
wards each other, forming a figure similar to one of the
Cassini ovals. This behavior also corresponds to the ex-
periments, even though the simulations do not include
the exciton dynamics.

Summarizing the simulation results for the MGR,
we conclude that they show reasonable correspondence
with the experiments [6, 13,24, 30]. Therefore, the the-
oretical explanations [13,14,16-18, 24] of the ring pat-
tern formation based on the diffusion-induced spatial
separation of in-layer distributions of electrons and
holes (see Appendix A) must be revised.

5. CONCLUSION AND DISCUSSION

It has been shown that the stationary ring-shaped
luminescence pattern forms due to the hot carrier trans-
port (HCT) caused by the in-plane electric fields which
appear at high enough excitation power in the excita-
tion spot region. The HCT is essentially non-diffusive.

In particular, the internal luminescence ring appears
due to the electrons and holes emitting optical phonons,
whereas the external ring forms due to the relaxation of
the carriers that are initially below the optical phonon
emission threshold. To form excitons, these carriers re-
lax emitting acoustic phonons and, in addition, due to
the interlayer Coulomb drag.

The ring-shaped pattern formation is particularly
interesting as a possible bright signature of self-or-
ganized criticality [28, 31]. Although the “second
scenario” naturally involves the SOC regime, the
MGR simulations reported have been performed in the
critical state. Thus, the transition to the SOC regime
as well as its statistical properties (e.g., 1/ f-noise) in
this system are still open questions.

The author thanks L. P. Paraskevova and L. I. Kon-
drashova for the encouragement, and Yu. M. Kagan and
F. V. Kusmartsev for the helpful discussions.

APPENDIX A

Diffusive model of charge carrier transport

The diffusive transport model [13] used to explain
the experiments [6] was based on two reaction-diffusion
equations
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e = DV2ne —wneny, + J, (1), (8)
np = th2nh —wneny + Ji (7") ’ (9)

where n, and nj, are electron and hole 2D densities and
w is electron—hole binding rate to form an exciton. The
source term .J; (1) = P..0 (r) for photoexcited holes is
focused in the local excitation spot. The density of
photoexcited electrons is supposed to be negligible in
comparison with the equilibrium electron density n.
in the absence of laser excitation. When n., is spa-
tially disturbed due to the presence of holes, there ap-
pears the electron current J, (r) = I —ane (1), which is
spread in the quantum-well plane. Here, I and an. are
the currents in and out of the system, respectively, such
that ne, = I'/a. (We note that a here is not the critical
relative distance used in the simulations but an inde-
pendent parameter.) Implying the stationary regime
and the symmetry with respect to the polar angle, and
neglecting the exciton diffusion [15], one obtains the
exciton PL intensity Ipy (r) oc ne(r)n, (r).

The authors of Ref. [13] have assumed that a lumi-
nescence ring with radius R appears at the overlap of
the electron and hole densities (see Fig. 15) so that
n, > n. at r < R and np, € ne at r > R with
ne (r — 00) = ns (Fig. 15). Neglecting the exciton
formation term wn.ny far from the boundary r = R,
we obtain

d2nh 1 dnh Pez

2 = - =
vnh_dr2+r dr Dy,

d(r)  (10)

for holes. Using the boundary condition nj, (r = R) =0
results in
P., ! R

nh(TSR):Qﬂ'Dh n—. (11)

Accordingly, for electrons one obtains
Vne = — (I/De) + (a/De)ne (r)

with  boundary conditions n.(r=R) = 0,
Ne (r — 00) = Ngo-

Denoting A = (ne — o) /Moo and & = r/\, where
A= \/De/a = \/Denoo/l is a characteristic length, we

arrive at

A 1 dA
— +—-———=A=0. 12
dx2+x dx (12)

The last equation is the modified Bessel equation of
zero order. The solution is

A (z) = AK, (2), (13)

Density

Holes
Excitons

Electrons

0 Distance r from the excitation spot

Fig.15. The density distributions obtained in Ref. [13]
with the use of the diffusive transport model

where A is a constant and K () is the zero-order mod-
ified Hankel (or MacDonald) function, such that

1
Ky(zx—=0)~ln—, Ky(x—o0)=0.
x

Hence,
Ne (1) /Moo =14+ AKo (T/X). (14)

If A > R, as supposed in [13], then the electron den-
sity ne (1) /neo & 14+ Aln(A/r) at R < r < \. Using
the boundary condition ne (r = R) = 0, we find the
coefficient A. Finally,

In (\/r)

v B

ne (R<r < A) =N {1—111(/\/]%)

Then it has been assumed that at the boundary bet-
ween the electron and hole densities the total current
is zero, i.e.,

D, 2 =, 2 e
From Eq. (16) it follows that
R )
and therefore the ring radius can be expressed as
R=MXexp(—2mD¢neo/Pey) - (18)

If we set Dy, = 0, then the ring radius R must be equal
to zero because, according to the model [13], the diffu-
sion of holes is the only reason why they move out of
the excitation spot. But Eq. (18) does not depend on
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Dy, and hence the ring radius is not zero at D;, = 0,
i.e., the ring exists even if all holes are left in the ex-
citation spot. This clearly unphysical result is not a
consequence of the limit case A > R, but rather comes
from wrong initial assumptions. (In Ref. [17], the re-
sult, Eq. (18), has been generalized but even then R
does not depend on Dj,.)

We note that in the original paper [13], the erro-
neous formula for R has been given [27]

(19)

2w D
Ronsy = Aexp (_w> ,

DhPem

The presence of Dj in the exponent denominator
could be deceiving because at first sight (i.e., with-
out the dimensionality check: [D.] = [Dp] = cm?/s,
[Moo] = cm ™2, [P.,] = s 1) it looks reasonable.

In addition, both the DTM [13] and its modifica-
tions [14, 16-18] could not explain in principle why the
external luminescence ring appears only when the ex-
citation power exceeds some critical value.

Nevertheless, the drift-diffusion regime can be ap-
plicable for slow charge carriers near the luminescence
ring at r ~ R. (As before, we do not consider equilib-
rium carriers and are only focused on photogenerated
ones.) In particular, the continuity equations in this
regime are given by

’fle(h) + div ie(h) = Je(n) — r, (20)
fLX +diViX:F—nx/Tx. (21)
Here ne, np and ie = —nepe E— D Vne, i, = npupE —

— Dy, Vny, are 2D densities and particle flux densi-
ties of uncoupled electrons in the plane z = d/2 and
holes in the plane z = —d/2, and p,(y) is the electron
(hole) mobility. The particle flux density for excitons
isixy ~ —DxVnyx, where nx is the interlayer exciton
density. The contribution from the dipole—dipole inter-
action between the excitons is omitted in ix because
it appears as an above-linear correction on nyx. The
carrier generation rates g.(p) (r,t) are some given func-
tions. The exciton formation rate can be written as
(inessential constant prefactors are dropped hereafter)

[(r,t)= /w(|v1 —va|) X
X fe (r,v1,t) fr (v, va,t) d*vid>vs, (22)

where f,, (r,v,t) is the electron (hole) distribution
function, such that

Ne(h) (ryt) = /fe(h) (r,v,t) d2v,

and w (v) is the specific exciton formation rate. The
exciton lifetime 7x is supposed to be density indepen-
dent. Finally, the Poisson equation for the electric field
is given by (time dependence is dropped; € is the di-
electric constant)

div (eE(r,z)) = 4me[(np(r) + nx(r)) 6(z + d/2) —
— (ne(r) +nx(r)) 6(z = d/2)].  (23)

It includes the contribution of the interlayer exciton
dipole fields and keeps the electroneutrality for the
free carrier system when the exciton formation is sup-
pressed (nx(r) = 0).

At r ~ R, one can set w (v) & Wyaz, then T (r) &
R Wiazte (1) iy () and Egs. (20), (21), and (23) with
ge(n)y = 0 become a closed system.

We note that the ambipolar electric field E might
play an important role in the formation of a sharp in-
tensity profile of the external luminescence ring. In this
regard, it is useful to note that the FWHM of the ex-
ternal ring intensity is almost independent of the ring
radius R at high excitation powers (see Fig. 2).

APPENDIX B

If e2\/n > hwopt at n > d=2, then the in-layer
Coulomb repulsion in the excitation spot might be “ex-
hausted” at small distances: the potential energy of the
carriers transforms into kinetic energy, which, in turn,
is spent on the fast optical phonon emission so that the
carriers do not go far from the excitation spot.

To estimate whether the values of carrier densities
in the excitation spot are sufficient for such process,
we consider two electrons resting at distance ro from
each other at the moment ¢ = 0. We neglect the en-
ergy dissipation due to acoustic phonon emission first,
to facilitate the effect described above. Then the equa-
tion of motion is

mit = e /r?,
with m = m}/2 and r = |r; — r2|. (The dielectric con-
stant € is introduced by substituting e> — e2/¢ in the

final expression.) The solution is expressed through the
inverse function,

1
t/to = x2—x+§1n(a§+\/x2—x),

where x = r/rg and to = /mrg /2e2. At t > (3 + 4)t,
with a good precision, the velocity is v & vs = 79 /%0,
i.e., the electrons move nearly uniformly at large times.
The condition of optical phonon emission is given by

mo?  e? 2

= S
2 ro 1 —eeb
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whence it follows that

— To
1 — hwept/ (€2/10)

r>r.

Substituting ro ~ n~'/2 in the expression for r. gives
2
n ~ (ehwopt/e2 + l/rc) )

The value n¥ = (ehwopt/62)2 ~ 4-10" cm™? (with
€ ~ 12.8 and hwepe =~ 37 meV for GaAs) at r. = o
is the smallest density at which the process of optical
phonon emission is dominant. We note that at n > n
the effect is extremely pronounced, e.g., r. &~ 1 ym at
n = 1.003n} (extra 0.3% to n}). At n =n}, we obtain
ro ~ 0.1lap for GaAs.

To find a qualitative dependence of the carrier flux
velocity on in-plane coordinates when the carrier ki-
netic energies are below the optical phonon emission
threshold, we consider the previous model adding the
dissipation due to acoustic phonons. Then for two elec-
trons we have (unit vectors are dropped)

mity 62/ vy — r2|2 — Ty,

mity = —e*/|ry — r2|2 — Yo,
where v = e/, is the dissipation coefficient and p, is
the electron mobility. Substituting R = (r; +ry) /2
and r = r; — ro, in the center-of-mass frame (R = 0),
we obtain the equation of motion
L_e? 1
mr = ’]"_2 — 5’}/74
Dissipation of the energy E(r) = mv?(r)/2 + €/r
is given by dE/dr = —~yv(r)/2 (because dE/dt =
= —yv?/2), which leads to the equation
dv e 1
mu (1) el 571}(7‘).
In the dimensionless form (r = roz, v = voou), we have

u(x)[§2-+c4 - (24)

dz 222’

where a = \/~v2rg/8me?, * > 1, and u(z = 1) = 0.
(To avoid a confusion, we note again that this a has
its own meaning.) Using the relation v = e/p., we can
rewrite the parameter as a = (1/2) (rg/fe)g/Z, where
& = /mipu? is the characteristic length scale. Ta-
king & ~ 1 pum for GaAs (see the description of the
numerical model in the main text) and rg ~ n;1/2 ~
~ d ~ 107% ecm, we obtain a ~ 1073. Equation (24) can
be reduced to the Abel equation of the second kind. Its

a = 0.001
0.8 J

0.005
0.6 J

0.4 0.01

0.02
0.2 J

050.1 0.05

1 20 40 60 80 100

1

10~¢

200 400 600 800 1000
T

Fig. 16. Numerical solutions of Eq. (24) with
w(z) = v/ve and & = r/rg for different values of the
parameter a. Top: Linear scale. Bottom: Log scale

exact analytical solution is unknown. However, a qual-
itative behavior of u(xz) can be found from the asymp-
totic solutions at @ — 1 and 2 — oo (see also numerical
solutions in Fig. 16). It is natural to assume that ve-
locity u(x = c0) = 0. Hence, du/dx can be dropped in
Eq. (24) at * — oo that gives us(z) ~ (2a2?)~!. We
now rewrite Eq. (24) as

du. 1

dr 2220
At x — 1, due to the initial condition v — 0 and
therefore the last term in the right-hand side can be
dropped. This gives ui(x) &~ /1 —1/x at  ~ 1. The
dependence of u(z) on a is as follows: the larger a is,
the narrower the width of the peak and the smaller its
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height (see Fig. 16). We note that in the laboratory
frame ve ;, = v/2 and rep =7/2.

It is also interesting to note that the MGR sim-
ulations indicate that the external luminescence ring
appears only if the carrier stream velocities V) (r) as
functions of the distance r from the excitation spot (see
Fig. 10) have a non-monotonic dependence similar to
that in Fig. 16, i.e., the velocities increase at small
r, reaching the maximal values at some finite r (often
within the excitation spot region), and then decrease
to zero at large r.

APPENDIX C

Suppression of exciton formation in the bilayer
at high e—h relative velocity

Here, we illustrate how the critical relative velocity
V. appears in principle in the exciton formation condi-
tion. We can distinguish two mechanisms referred to in
what follows as “geometric” and “kinetic” ones, which
lead to the existence of the critical e-h relative velocity
above which the interlayer exciton formation is strongly
suppressed.

1. “Geometric” mechanism. Due to the bilayer
geometry, at, sufficiently large relative e—h velocity the
interlayer Coulomb attraction, which results in an exci-
ton formation, is suppressed. To show this, we consider
the Fourier transform

U, = /d2r exp (iq - r) U (r)
of the pair interaction potential

—62/\/7‘2-|-7d2

between an electron from one layer and a hole from
another (r is the in-plane relative distance). We obtain

U(r) =

JO (gr)rdr 2me?

= —2me? = -
V2 +d?

exp (—qd), (25)

the “screened Coulomb potential” in the momentum
space. (The effects of charge screening studied in the
random phase approximation [37] lead to a change in
the preexponential factor, which is not important in
this consideration.) Hence, if the electron—hole relative

velocity
h h
v="sV.=—,
md
then the interaction between the carriers decreases ex-
ponentially as V' increases. This means that we can

neglect the interaction as well as the exciton formation
at V > V.. At d ~ 107% cm [29] and the reduced e-h
mass m = 0.06m. in GaAs, we obtain V. &~ 3-10” cm/s,
which is of the same order of magnitude as the thresh-
old velocity vp,q. of optical phonon emission in GaAs
(Umaz [ Ve = 1.5).

2. “Kinetic” mechanism. The second mech-
anism is based on the fact that to form an exciton,
the unbound electron—hole pair must emit an acoustic
phonon. (Here, we suppose that the carrier velocities
are below the optical phonon emission threshold.)

To illustrate this, we consider a model system: an
infinite train of electrons separated from each other by
distance L uniformly moves with velocity V' along a
thread and an immovable hole is located at distance
d from the thread. The interaction potential between
the electron train and the hole as a function of time is
given by

where

pe =\ (kL +V)* + @.

Although the sum diverges as 1/ |k|, the relative value
of the potential U (t) = U(t) —U(0) is convergent. The
components of the corresponding force acting on the
hole along and perpendicular to the thread are given
by

= 2 (kL+ Vit = e2d
Z %7 Fi(t) = Z —.

Ey(t) =
Pk b oo Pk

k=—o00

Both the potential and the force are periodic functions
of time with the period T'= L/V.

In the 2D case, when there exists relative flow (with
velocity V') of electrons in one layer and holes in an-
other, the interlayer interaction potential between the
electron flow and a given hole oscillates with the fre-
quency w ~ Vy/n, where n is the 2D density of elec-
trons in the flow. If this frequency is higher than 71,
where 7 = min(7e—4e, Thae) 18 the minimal carrier—
acoustic phonon scattering time, the exciton formation
in real space is not possible. We can therefore write
the exciton formation condition as

V <V, ~1/Vnr2. (26)

If the carrier densities are essentially different, one
should take n = max(n.,n) in (26). Atn ~ 1019 cm—2
and 7 ~ 1077 s, the critical relative velocity is V, ~
~ 10* cm/s.
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In fact, one can obtain the estimate (26) in a more

simple way. We suppose for definiteness that locally

Ne

> np. Then an e-h pair with relative velocity V'

can form an exciton if

= —1/2
VT < Fee~n, /,

that is, the electron or the hole should have time to
emit an acoustic phonon before the next electron would
come to the hole. The condition (26) follows directly

fro

10.

11.

12.

13.

14.

15.

m the last formula.
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