КИНЕТИЧЕСКИЕ СВОЙСТВА В ОБЛАСТИ ПЕРЕХОДА ОТ ЗОННОГО ФЕРРОМАГНЕТИЗМА К СПИН-ЛОКАЛИЗОВАННОМУ В СПЛАВАХ Ni₃Al_{1-x}Mn_x

Н. И. Коуров^{*}, А. В. Королев

Институт физики металлов Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

Поступила в редакцию 27 декабря 2010 г.

При $T \le 800$ К и $H \le 7$ МА/м проведены исследования кинетических свойств ферромагнитных сплавов ${
m Ni}_3 {
m Al}_{1-x} {
m Mn}_x$ с $x \le 0.6$. Анализируется поведение электросопротивления, термоэдс, магнитосопротивления, нормального и аномального эффектов Холла в области перехода от зонного в ${
m Ni}_3 {
m Al}$ к спинлокализованному в ${
m Ni}_3 {
m Mn}$ ферромагнетизму при $x \sim 0.15$.

1. ВВЕДЕНИЕ

Сплавы Ni₃Al_{1-x}Mn_x являются удобным объектом для исследования особенностей свойств в области концентрационного перехода от зонного ферромагнетизма к спин-локализованному. Эти сплавы образуют непрерывный ряд твердых растворов, упорядочивающихся в гранецентрированную кубическую решетку со структурой $L1_2$ (типа Cu₃Au). Интерметаллид Ni₃Al имеет температуру образования сверхструктуры $T_M = 1640$ K, а атомно-упорядочивающийся сплав Ni₃Mn имеет температуру упорядочения $T_0 = 783$ K [1].

Все сплавы этой системы являются ферромагнетиками. В интерметаллиде Ni₃Al небольшой по величине спонтанный магнитный момент на атомах никеля $\mu_{\rm Ni} \sim 0.07 \mu_B / {\rm Ni}$ и достаточно низкие значения температуры Кюри T_C > 41.5 К обычно объясняются в зонной модели магнетизма [2-4]. Сплав Ni₃Mn в упорядоченном состоянии является ферромагнетиком с температурой Кюри $T_C \approx 733$ К [5]. При описании его свойств, как правило, используется приближение магнитных моментов, хорошо локализованных на магнитоактивных атомах. Согласно [6-8], спонтанные магнитные моменты атомов в сплавах на основе Ni₃Mn равняются $\mu_{Mn} \sim 3.6 \mu_B/Mn$ и $\mu_{\rm Ni} \sim 0.3 \mu_B/{
m Ni}$. При переходе от зонного Ni₃Al к практически спин-локализованному ферромагнетику Ni₃Mn поведение магнитных характеристик достаточно подробно исследовано в работах [7,8]. В этих работах показано, что изменение степени локализации моментов на магнитных атомах происходит в интервале концентраций 0 < x < 0.2. При этом отношение эффективного момента к спонтанному (параметр Роудса–Вольфарта) $p = \mu_{eff}/\mu_S$, характеризующий степень локализации магнитных моментов на атомах, изменяется от 15 до 1. Следовательно, в сплавах с $x \ge 0.2$ реализуется ситуация наибольшей локализации магнитных моментов на атомах Ni и Mn, несмотря на их отличие от целочисленных значений. Переход к наиболее возможной в рассматриваемых сплавах не зависящей от температуры локализации магнитных моментов сопровождается резким уменьшением их восприимчивости парапроцесса и, наоборот, возрастанием спонтанной намагниченности и температуры Кюри.

В настоящей работе рассматриваются кинетические свойства: удельное электросопротивление ρ , абсолютная дифференциальная термоэдс S, поперечное магнитосопротивление $\Delta \rho / \rho_0$, нормальный и аномальный эффекты Холла. Измерения этих характеристик проведены в интервале $2 \leq T \leq 800$ K и $H \leq 7$ MA/м на установке PPMS-9 фирмы Quantum Design в отделе магнитных измерений Института физики металлов УрО РАН. Сопротивление определялось четырехконтактным способом на постоянном токе, гальваномагнитные характеристики — в условиях перпендикулярно направленных векторов магнитного поля и постоянного тока. Для того чтобы исключить влияние атомного разупорядочения при

^{*}E-mail: kourov@imp.uran.ru

высоких температурах на поведение исследованных свойств, мы ограничились областью концентраций $x \leq 0.6$. Способ получения и аттестация образцов описаны в работе [7].

Исследования кинетических свойств сплавов $Ni_3Al_{1-x}Mn_x$, с нашей точки зрения, представляют интерес для выяснения тех изменений механизмов рассеяния и электронной зонной структуры вблизи поверхности Ферми, которые происходят при переходе от зонных ферромагнетиков к спин-локализованным. Эти исследования целесообразны при создании единой теории магнетизма переходных металлов. Поэтому им уделяется большое внимание уже несколько десятилетий.

2. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА

Результаты измерений удельного электросопротивления и абсолютной дифференциальной термоэдс сплавов $\mathrm{Ni}_{3}\mathrm{Al}_{1-x}\mathrm{Mn}_{x}$ с $x \leq 0.6$ приведены на рис. 1-3. Поведение температурных зависимостей ρ и S показаны для наглядности только в некоторых образцах из области перехода от зонных ферромагнетиков к спин-локализованным. На рис. 1 видно, что в парамагнитной области температур при $T > [T_C, \Theta_D]^{(1)}$ зависимости $\rho(T)$ всех исследованных сплавов близки к линейным функциям, т. е. определяются в основном механизмом электрон-фононного рассеяния электронов проводимости. Вблизи температуры Кюри особенно в сплавах переходной области концентраций (0 < x < 0.2) на кривых $\rho(T)$ наблюдаются «сглаженные» изломы, обусловленные изменением магнитной составляющей сопротивления. В спин-локализованных сплавах с x > 0.2 температуры Кюри на зависимостях $\rho(T)$ практически не выявляются. Их значения в рассматриваемых сплавах легко определяются по аномалиям в виде глубокого минимума на кривых температурных зависимостей магнитосопротивления $\Delta \rho / \rho_0(T)$ (см. рис. 4).

Как видно на вставках рис. 1, при низких температурах, T < 30 К $\ll [T_C, \Theta_D]$, поведение сопротивления в пределах погрешности измерений описывается выражением, характерным для ферромагнитных сплавов переходных металлов при условии малой величины электрон-фононного вклада [11]:

$$\rho(T) = \rho_0 + aT + bT^2.$$
(1)

Рис. 1. Электросопротивление сплавов Ni₃Al_{1-x}Mn_x. На вставке сплошными линиями показаны результаты обработки низкотемпературного сопротивления согласно выражению (1)

Здесь ρ_0 — остаточное сопротивление, при рассмотрении которого в исследованных магнитных сплавах с переменной степенью локализации магнитных моментов на атомах Ni, следует выделить основные

Здесь Θ_D — температура Дебая, равная 465 К для Ni₃Al
 и 315 К для Ni₃Mn [10].

Рис.2. Концентрационные зависимости коэффициентов в выражении (1) и коэффициента при линейной по температуре составляющей термоэдс $\Delta S/\Delta T$, определенные в области низких температур. Светлые обозначения соответствуют значениям, полученным в нулевом магнитном поле, темные — при H = 4 MA/м

неоднородности трех типов, определяющие его величину. Прежде всего, это обычные нарушения трансляционной периодичности в кристаллах (примеси, дислокации и т.д.), вклад в ρ_0 от которых в исследованных сплавах можно считать не зависящим от концентрации Mn. Неоднородности второго типа, дающие вклад, пропорциональный x(1-x), связаны непосредственно с изменением концентрации Mn. Нарушения периодичности третьего типа обу-

Рис. 3. Термоэдс сплавов $Ni_3Al_{1-x}Mn_x$

словлены формированием локализованных магнитных моментов на атомах Ni. Согласно работе [8], из-за статистического распределения атомов Mn и Al по своим узлам в кристаллической решетке локализованные магнитные моменты при увеличении концентрации Mn случайным образом возникают на атомах Ni. На рис. 2 видно, что замещение атомов немагнитного алюминия в зонном ферромагнетике Ni₃Al на сильно магнитные атомы марганца ρ_0 сначала возрастает в несколько раз вплоть до некоторой критической концентрации $x_C \sim (0.15 - 0.2)$, где в основном заканчивается переход к ферромагнети-

Рис. 4. Магнитосопротивление сплавов $Ni_3Al_{1-x}Mn_x$, определенное при H=4 MA/м

кам с хорошо локализованными спиновыми моментами на магнитоактивных атомах Ni и Mn. При дальнейшем увеличении концентрации марганца остаточное сопротивление сплавов изменяется незначительно. Учитывая результаты исследований магнитных свойств рассматриваемых сплавов [7, 8], можно заключить, что особенности поведения зависимости $\rho_0(x)$, наблюдаемые на рис. 2, в основном обусловлены процессами формирования локализованных магнитных моментов на атомах никеля. Другими словами, в рамках теории магнетизма коллективизированных электронов (см., например, работу [12] и литературу в ней) аномальный рост остаточного сопротивления на начальной стадии замещения немагнитных атомов Al на магнитные атомы Mn в зонном ферромагнетике Ni₃Al можно связать, в основном, с ростом степени локализации спиновых флуктуаций на атомах Ni, которая в значительной мере определяет также и величину намагниченности.

Природа линейной по температуре составляющей в сопротивлении ферромагнитных сплавов рассматривалась многими исследователями как теоретически, так и экспериментально. Можно выделить два механизма рассеяния электронов проводимости на спиновых волнах, приводящих к линейному вкладу в формуле (1) [11,13]. Первый обусловлен рассеянием подмагниченных носителей тока на спиновых волнах за счет *s*-*d*-обменной связи, а второй — спин-орбитальным взаимодействием спинов электронов, локализованных на магнитных атомах, с орбитой электронов проводимости. В нашем случае необычным является то, что коэффициент а в формуле (1) при переходе от зонных ферромагнетиков к спин-локализованным в окрестности x_C изменяет знак с положительного на отрицательный. Разные знаки коэффициента а возможны: в случае первого механизма рассеяния из-за изменения вида закона дисперсии электронов проводимости, а во втором случае — вследствие смены знака константы спин-орбитальной связи. Отсюда можно заключить, что переход от зонного ферромагнетизма к спин-локализованному в исследуемых сплавах сопровождается существенной перестройкой электронной зонной структуры вблизи уровня Ферми E_F или сменой знака спин-орбитальной связи.

Аномальное изменение концентрационной зависимости коэффициента b при квадратичном члене в выражении (1), наблюдаемое на рис. 2 вблизи x_C , указывает на преимущество в сплавах $Ni_3Al_{1-x}Mn_x$ первого механизма рассеяния носителей тока за счет s-d-обменной связи. Для переходных металлов коэффициент b связывается в основном с рассеянием s-электронов на статических и динамических неоднородностях, сопровождаемым перескоками в d-зону, т. е. определяется параметрами электронной зонной структуры вблизи E_F .

Следует отметить, что расчет низкотемпературного сопротивления зонных ферромагнетиков в теории магнетизма коллективизированных электронов также показывает возможность линейного и квадратичного вкладов в $\rho(T)$ за счет рассеяния *s*-электронов на возбуждениях спиновой *d*-подсистемы, включая и локализованные спиновые флуктуации [12]. Причем величина и соотношение линейного и квадратичного вкладов в $\rho(T)$ определяются параметром $\alpha = 2I\chi_0$, где I — константа $T \sim$ обменного взаимодействия, а χ_0 — поперечная в мая динамическая восприимчивость. Согласно такому теоретическому рассмотрению, добавочная за счет рассеяния на спиновых флуктуациях тем-

му теоретическому рассмотрению, добавочная за счет рассеяния на спиновых флуктуациях температурно-зависящая часть сопротивления тем больше, чем меньше намагниченность M(0) при T = 0. В частности, для коэффициента *b* получено соотношение [12]

$$b \sim [M(0)]^{-1} \sim (\alpha - 1)^{-1/2}.$$
 (2)

Отсюда следует, что существенное уменьшение температурно-зависящих вкладов в $\rho(T)$ при переходе от зонных ферромагнетиков к локализованным обусловлено увеличением степени локализации спиновых флуктуаций. В локализованных ферромагнетиках коэффициент b определяется только процессами рассеяния на спиновых волнах.

При обсуждении низкотемпературного сопротивления следует отметить еще один экспериментальный факт. Оказывается, достаточно сильное магнитное поле H = 4 MA/м по разному воздействует на величину отдельных составляющих $\rho(T)$. Из экспериментальных данных, приведенных на рис. 2, видно, что во всем исследованном интервале концентраций марганца остаточное сопротивление от магнитного поля практически не зависит, а линейный и квадратичный вклады в $\rho(T)$, наоборот, подавляются магнитным полем. В спин-локализованных сплавах при $x > x_C$ величины коэффициентов a и b в магнитном поле уменьшаются незначительно. Однако со стороны зонного ферромагнетика Ni₃Al в сплавах с $x < x_C$ магнитное поле подавляет температурно-зависящие составляющие $\rho(T)$ значительно сильнее, причем в наибольшей степени магнитное поле уменьшает коэффициент а. Обнаруженное поведение отдельных составляющих низкотемпературного сопротивления в магнитном поле естественно связать с процессом подавления магнитных неоднородностей двух типов. При $x < x_C$ основными неоднородностями являются спиновые флуктуации, а при $x > x_C$ — спиновые волны.

Температурные зависимости термоэдс сплавов $Ni_3Al_{1-x}Mn_x$ приведены на рис. 3. Видно, что кривые S(T) для всех образцов в интервале температур 100–200 К имеют особенность в виде максимума. Очевидно [14], что такая особенность не связана с температурой Кюри, значения которой в рассматриваемых сплавах изменяются в широком интервале температур. Мало вероятно, чтобы она была обусловлена эффектом фононного

увлечения электронов, который максимален при $T \sim (0.1 - 0.2)\Theta_D$. При этом следует отметить, что в магнитно-неоднородных сплавах эффект фононного увлечения, как правило, мал по величине. Скорее всего, наблюдаемая в виде максимума аномалия на кривых S(T) определяется общими особенностями электронной зонной структуры и процессов рассеяния, которые свойственны всем ферромагнитным сплавам Ni₃Al_{1-x}Mn_x.

Согласно экспериментальным данным, приведенным на рис. 3, зависимости S(T) в исследованной области температур становятся близкими к линейной функции в двух предельных случаях: наиболее высоких и низких температур. При этом наклон кривых S(T) при переходе от низких температур к высоким изменяется с положительного на отрицательный. Известно (см., например, [14]), что линейную зависимость S(T) имеет диффузионная составляющая термоэдс S_d , которая в двухзонной модели Мотта для ферромагнитных сплавов определяется главным образом перестройкой структуры *d*-подполос с противоположно направленными спинами электронов

$$S_{d} = \frac{\pi^{2}k^{2}T}{3e} \left(\frac{\partial \ln \sigma}{\partial E}\right)_{E_{F}} = -\frac{\pi^{2}k_{B}^{2}T}{3|e|} \left[\frac{3}{2}E_{F} - \frac{n_{d}'(\uparrow) + n_{d}'(\downarrow)}{n_{d}(\uparrow) + n_{d}(\downarrow)}\right]_{E_{F}}.$$
 (3)

В выражении (3): e — заряд электрона, k — константа Больцмана, $\sigma = 1/\rho$ — проводимость, стрелки указывают плотности состояний n_d и их первые производные n'_d на уровне Ферми E_F для d-подзон со спинами электронов вдоль (\uparrow) и против (\downarrow) вектора намагниченности. Отсюда можно сделать вывод о существенной перестройке зонной структуры сплавов вблизи E_F при переходе от низких температур к высоким. При этом следует учитывать, что с ростом температуры изменяется роль основных рассеивателей *s*-электронов. При низких температурах определяющими рассеивателями являются статические неоднородности кристаллической решетки и электрон-электронное рассеяние, а при высоких электрон-фононное рассеяние. В области низких и высоких температур существенно различается также роль рассеяния на неоднородностях магнитной подсистемы.

На рис. 2 показана концентрационная зависимость линейной по температуре составляющей термоэдс, определенная в области низких температур (5 < T < 30 K). Видно, что при переходе от зонных ферромагнетиков к спин-локализованным

в окрестности критической концентрации x_C величина $\Delta S/\Delta T$ резко уменьшается. Согласно выражению (3), это может быть следствием перестройки электронной зонной структуры вблизи E_F сплавов, которая происходит из-за процессов локализации *d*-электронов на атомах Ni. Следует отметить, что при более полном рассмотрении диффузионной термоэдс, наряду с зонными параметрами, необходимо учитывать и процессы рассеяния электронов проводимости. Приведенные выше результаты исследования сопротивления сплавов Ni₃Al_{1-x}Mn_x свидетельствуют об изменении значимости отдельных типов рассеивателей электронов проводимости при переходе от зонных ферромагнетиков к спин-локализованным. При низких температурах в сплавах с $x < x_C$ кинетика электронов проводимости, а следовательно, и термоэдс во многом определяется спиновыми флуктуациями, а в сплавах с $x > x_C$ существенную роль играют уже спиновые волны. Другими словами, для исследованных сплавов при *x* < *x*^{*C*} более справедливой является модель коллективизированных электронов, а при $x > x_C$ модель локализованных спинов. Детальное рассмотрение термоэдс требует точного знания электронной зонной структуры и особенностей механизмов рассеяния в исследованных сплавах, что в настоящее время отсутствует.

3. ГАЛЬВАНОМАГНИТНЫЕ СВОЙСТВА

Результаты измерений гальваномагнитных свойств приведены на рис. 4 и 5. Следует отметить, что полевые зависимости поперечного магнитосопротивления и холловского сопротивления имеют обычный для ферромагнетиков вид [11]. Для всех исследованных образцов зависимости $\Delta \rho / \rho_0(H)$ являются линейно-квадратичными функциями, а $\rho_H(H)$ в пределе наиболее сильных магнитных полей становятся пропорциональными H.

Из рис. 4 следует, что магнитосопротивление всех сплавов имеет отрицательный знак, т.е. оно обусловлено упорядочением магнитных неоднородностей в поле. В окрестности температуры Кюри на зависимостях $\Delta \rho / \rho_0(T)$ наблюдается аномалия в виде глубокого минимума. В парамагнитной области температур магнитосопротивление становится практически равным нулю. В магнитоупорядоченном состоянии при $T = 2 \text{ K} \ll T_C$ переход от зонных ферромагнетиков к спин-локализованным сопровождается достаточно сильным уменьшением абсолютной величины магнитосопротивления. Такое поведение

величины $\Delta \rho / \rho_0$ при T = 2 K со стороны зонного ферромагнетика (при $x < x_C$) свидетельствует об уменьшении рассеяния на термических возбуждениях магнитной подсистемы в результате возрастания степени локализации спиновых флуктуаций при переходе к спин-локализованным ферромагнетикам. В теории магнетизма коллективизированных электронов аналогичные явления при увеличении температуры объясняются за счет эффектов перенормировки или взаимодействия между модами спиновых флуктуаций. Пороговая концентрация $x \sim x_C$ на кривой $\Delta \rho / \rho_0$ при T = 2 К выделяется изломом. В спин-локализованных ферромагнетиках магнитосопротивление в основном обусловлено подавлением в магнитном поле рассеяния электронов проводимости на спиновых волнах. При $x > x_C$ величина $\Delta \rho / \rho_0$ в зависимости от концентрации изменяется незначительно, как и отдельные вклады в $\rho(T)$, pacсмотренные выше.

При анализе результатов измерений эффекта Холла в ферромагнетиках в области линейной зависимости $\rho_H(H)$ обычно используют стандартное выражение [11]

$$\rho_H = R_0 B + R_S J = R_0^* H + R_S^* J_S, \qquad (4)$$

где $B = H + (4\pi - N)J$ — индукция в образце, N — его размагничивающий фактор. С учетом размеров образцов в форме параллелепипеда около $(3 \times 10 \times 0.2)$ мм³, используемых в данной работе при измерении эффекта Холла, имеем величину $N \sim 12$. Из экспериментальных зависимостей $\rho_H(H)$, линейных в области парапроцесса, определяются величины: при экстраполяции на нулевое поле $4\pi [R_S + (1 - N/4\pi)R_0]J_S$, а из наклона $R_0^* = R_0 + 4\pi\chi_P R_S$. Имея из полевых зависимостей намагниченности J(H), приведенных в работах [7,8], значения спонтанной намагниченности J_S и высокополевой магнитной восприимчивости χ_P , можно вычислить истинные коэффициенты нормального R_0 и аномального R_S эффектов Холла.

На рис. 5 видно, что величина коэффициента R_0 , так же как магнитосопротивления и отдельных вкладов в $\rho(T)$, наиболее существенно изменяется в сплавах со стороны зонного ферромагнетика Ni₃Al там, где изменяется степень локализации магнитных моментов на атомах никеля [7,8]. Критическая концентрация окончания перехода от зонного ферромагнетизма к спин-локализованному в сплавах Ni₃Al_{1-x}Mn_x на зависимости $R_0(x)$ выявляется в виде излома и «выхода» при $x > x_C$ практически на константу. При этом в переходной области концентраций наблюдается смена знака коэффициента

Рис. 5. Концентрационные зависимости поперечного магнитосопротивления $\Delta \rho / \rho_0$, коэффициентов нормального R_0 и аномального R_S эффектов Холла при $T=2~{
m K}$

 R_0 с положительного на отрицательный, что коррелирует с изменением коэффициента *a* в выражении (1), описывающем низкотемпературное сопротивление. Согласно теории кинетических явлений металлов (см., например, [11]), при учете носителей тока двух типов (электронов *e* и дырок *h*)

$$R_0 = \frac{1}{|e|c} \left(n_h \mu_h^2 - n_e \mu_e^2 \right) / \left(n_h \mu_h + n_e \mu_e \right)^2.$$
(5)

Здесь e — заряд электрона, c — скорость света в вакууме, n_i — число соответствующих носителей в единице объема, а μ_i — их подвижности. Отсюда следует, что в сплавах Ni₃Al_{1-x}Mn_x поведение коэффициента $R_0(x)$, как и коэффициента a(x), свидетельствует о существенной перестройке электронной зонной структуры вблизи E_F при переходе от зонного ферромагнетизма к спин-локализованному.

При рассмотрении аномальной составляющей эффекта Холла в области низких температур определяющим можно считать механизм рассеяния электронов проводимости на неоднородностях магнитной подсистемы, а следовательно [11],

$$R_S = \pm \frac{\lambda_{eff}}{E_F} \frac{\rho_m}{J_S}.$$
 (6)

В выражении (6) знаки «+» и «-» соответствуют дырочной и электронной проводимостям, λ_{eff} — константа спин-орбитальной связи, J_S — спонтанная намагниченность, а ρ_m — магнитная составляющая сопротивления. На рис. 5 видно, что при переходе от зонных ферромагнетиков к спин-локализованным в исследованных сплавах коэффициент R_S имеет неизменный отрицательный знак. Из сравнения поведения зависимостей $R_S(x)$ и $R_0(x)$ при учете формул (5) и (6) можно заключить, что такой магнитный переход, скорее всего, сопровождается сменой знака константы спин-орбитальной связи с отрицательного на положительный. Этот вывод согласуется с поведением коэффициента а в выражении (1) для случая, когда он обусловлен вторым механизмом рассеяния электронов проводимости, связанным со спин-орбитальной связью между спинами электронов, локализованных на магнитных атомах, с орбитой электронов проводимости.

4. ЗАКЛЮЧЕНИЕ

Таким образом, проведенные исследования показывают обычное для ферромагнетиков практически одинаковое поведение температурных и полевых зависимостей кинетических свойств в зонных и спин-локализованных сплавах Ni₃Al_{1-x}Mn_x. Однако параметры всех исследованных кинетических свойств при переходе от зонных ферромагнетиков к спин-локализованным испытывают существенные изменения. На их концентрационных зависимостях наблюдаются аномалии в виде излома, максимума или «скачка» в окрестности критической концентрации $(0.15 < x_C < 0.2)$, где заканчивается такой магнитный переход, сопровождающийся максимальной локализацией *d*-электронов на атомах никеля [7,8]. Значительное уменьшение величин линейного и квадратичного по температуре вкладов в низкотемпературное сопротивление, а также отрицательного магнитосопротивления при переходе от зонных ферромагнетиков к спин-локализованным можно объяснить уменьшением рассеяния электронов проводимости на термических возбуждениях магнитной подсистемы в результате возрастания степени локализации спиновых флуктуаций.

Экспериментально обнаруженная смена знаков коэффициента *a* в линейной по температуре составляющей сопротивления и коэффициента нормального эффекта Холла при переходе от зонных ферромагнетиков к спин-локализованным свидетельствует о существенной перестройке электронной зонной структуры вблизи E_F в сплавах Ni₃Al_{1-x}Mn_x. В то же время сравнение концентрационных зависимостей коэффициентов нормального и аномального эффектов Холла, а также поведение коэффициента a(x) в формуле (1) указывают на различие знака константы спин-орбитальной связи в зонных и в спин-локализованных ферромагнетиках.

ЛИТЕРАТУРА

- N. Masahashi, T. Tagasugi, O. Izumi, and H. Kawazoe, Z. Metallkde. 77, 212 (1986).
- S. K. Dhar, K. A. Gschreidner, Jr., L. L. Miller, and D. C. Johnston, Phys. Rev. B 40, 11488 (1989).
- S. N. Kaul and S. Anita, J. Phys.: Condens. Matter. 16, 8695 (2004).
- 4. R. P. Smith, J. Phys: Condens. Matter. 21, 1 (2009).

- 5. N. Thompson, Proc. Phys. Soc. 52, 217 (1940).
- T. Shinohara, T. Tagasugi, H. Yamauchi et al., J. Magn. Magn. Mat. 53, L1 (1985).
- Н. И. Коуров, С. З. Назарова, А. В. Королев и др., ФММ 110, 3 (2010).
- A. V. Korolev, N. I. Kourov, S. Z. Nazarova et al., Sol. St. Phenom. 168–169, 149 (2011).
- C. Stassis, F. X. Kayser, C.-K. Loong, and D. Arch, Phys. Rev. B 24, 3048 (1981).
- K. P. Cupta, C. H. Cheng, and P. A. Beck, J. Phys. Chem. Sol. 25, 73 (1964).
- 11. С. В. Вонсовский, *Магнетизм*, Наука, Москва (1971).
- Т. Мория, УФН 135, 118 (1981); Т. Мория, Спиновые флуктуации в магнетиках с коллективизированными электронами, Мир, Москва (1988).
- 13. А. Н. Волошинский, Е. А. Туров, Л. Ф. Савицкая, ФТТ 12, 3141 (1970).
- 14. Ф. Дж. Блатт, П. А. Шредер, К. Л. Фойлз, Д. Грейг, Термоэлектродвижущая сила металлов, Металлургия, Москва (1980).