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PERFECT FLUID AND SCALAR FIELDIN THE REISSNER�NORDSTRÖM METRICE. O. Babihev a;b*, V. I. Dokuhaev b**, Yu. N. Eroshenko b***aArnold Sommerfeld Center for Theoretial Physis,Department für Physik, Ludwig-Maximilians-Universität MünhenD-80333, Munih, GermanybInstitute for Nulear Researh, Russian Aademy of Sienes117312, Mosow, RussiaReeived September 30, 2010We desribe the spherially symmetri steady-state aretion of perfet �uid in the Reissner�Nordström metri.We present analyti solutions for aretion of a �uid with linear equations of state and of the Chaplygin gas. Wealso show that under reasonable physial onditions, there is no steady-state aretion of a perfet �uid onto aReissner�Nordström naked singularity. Instead, a stati atmosphere of �uid is formed. We disuss a possibilityof violation of the third law of blak hole thermodynamis for a phantom �uid aretion.1. INTRODUCTIONThe problem of matter aretion onto ompat ob-jets in Newtonian gravity was formulated within theself-similar treatment by Bondi [1℄. In the frameworkof general relativity, the steady-state spherial symmet-ri �ow of test gas onto a Shwarzshild blak hole wasinvestigated by Mihel [2℄. Detailed studies of sphe-rially symmetri aretion of di�erent types of �uidsonto blak holes were further undertaken in a numberof works [3℄ (see also review [4℄).In this paper, we study perfet �uids and salar�elds in the Reissner�Nordström (RN) metri. We de-sribe spherially symmetri steady-state aretion ofa test perfet �uid with a general equation of stateonto a nonrotating harged blak hole. We �nd analy-ti solutions for aretion of a perfet �uid with a linearequation of state and of the Chaplygin gas onto an RNblak hole. When a phantom �uid aretes onto a blakhole, the latter loses its mass. This result is onsistentwith the �ndings in Ref. [5℄ on the phantom aretiononto a Shwarzshild blak hole.We �nd that under reasonable physial assump-tions, a perfet �uid does not arete onto the RNnaked singularity, i. e., when M2 < Q2, where M is*E-mail: eugeny.babihev�physik.uni-muenhen.de**E-mail: dokuhaev�ms2.inr.a.ru***E-mail: eroshenko�ms2.inr.a.ru

the mass and Q is the eletri harge of the naked sin-gularity. Namely, steady-state aretion onto a nakedsingularity is only possible in two unphysial ases. Inthe �rst ase, the areting �uid is superluminal andan additional boundary ondition on the entral singu-larity is spei�ed. In the seond ase, the �uid may besti� or subluminal, but we have to postulate that thein�ow and out�ow oexist in the spae�time manifold,and the solution passes somehow through a singularpoint. We show that instead of a steady-state are-tion, a stati atmosphere around a naked singularity isformed1).We also show that the extreme state of an eletri-ally harged blak hole is reahed in a �nite time dueto phantom �uid aretion, when gravitational bakreation of the areting �uid is negleted. We argue,however, that the test �uid approximation may be vio-lated when the RN blak hole or naked singularity isalmost extreme. This implies that bak reation of the�uid on the bakground geometry may prevent trans-formation of a blak hole into a naked singularity, inaordane with the third law of blak hole thermody-namis [7℄.The paper is organized as follows. In Se. 2, weonstrut the general formalism for steady-state sphe-rially symmetri aretion of a test perfet �uid in the1) A similar result for the Kerr naked singularity was foundin [6℄ using numerial methods.899 5*



E. O. Babihev, V. I. Dokuhaev, Yu. N. Eroshenko ÆÝÒÔ, òîì 139, âûï. 5, 2011RN metri. In Se. 3, we give an alternative desriptionof the aretion in terms of a salar �eld. In Se. 4, weapply the results of the previous setions to partiularexamples of perfet �uid, namely, we study aretionof a �uid with a linear equation of state and aretionof the Chaplygin gas. A stati atmosphere of �uidsaround a naked singularity is desribed in Se. 5. Ablak hole approahing the extreme state by aretionof phantom �uid and the possibility of violation of thethird law of thermodynamis are disussed in Se. 6.We onlude in Se. 7.2. STEADY-STATE ACCRETIONIn this setion, we study spherially symmetristeady-state aretion of a test perfet �uid with a ge-neral equation of state in the RN metri. We loselyfollow the approah in [5℄ to gas aretion in theShwarzshild metri.The RN metri is given byds2 = fdt2 � f�1dr2 � r2(d�2 + sin2 � d�2); (1)where f = 1� 2Mr + Q2r2 :Here, M is the blak hole (or naked singularity) mass,and Q is its total harge. It is onvenient to introduedimensionless oordinates,� � tM ; x � rM ;and the dimensionless eletri harge of the blak holee � Q=M . In the ase e2 < 1, the equation f(x) = 0has two roots x� = 1�p1� e2:The larger root, x+, orresponds to the event horizon ofthe RN blak hole, and x = x� is the so-alled Cauhy(or inner) horizon. In the opposite ase, e2 > 1, theRN metri (1) desribes a naked singularity without anevent horizon. The marginal ase e2 = 1 orrespondsto an extreme blak hole.The energy�momentum of a perfet �uid isT�� = (�+ p)u�u� � pg�� ; (2)where � and p are the �uid energy density and pressurerespetively, and u� = dx�=ds is the �uid four-veloitynormalized by u�u� = 1. We assume that the pressureis an arbitrary funtion of the density alone, p = p(�).To �nd integrals of motion, we use the projetion of

the equation for the energy�momentum tensor onser-vation onto the 4-veloity, u�T��;� = 0. This gives theontinuity equationu��;� + (�+ p)u�;� = 0: (3)Integrating (3) one, we �nd the integral of motion (theenergy onservation)ux2n = �A; (4)where n � exp24 �Z�1 d�0�0 + p(�0)35 ;u = dr=ds < 0 in the ase of in�ow motion (aretion),and A > 0 is a onstant of integration, whih is relatedto the radial energy �ux.Integration of the time omponent of the onserva-tion law T��;� = 0 gives another integral of motion (therelativisti Bernoulli equation),(�+ p)(f + u2)1=2x2u = C1; (5)where u � dr=ds and C1 is a onstant of integration.From (4) and (5), we an easily obtain that�+ pn (f + u2)1=2 = C2; (6)where C2 � �C1A = �1 + p(�1)n(�1) ;with �1 being the energy density at in�nity.Equations (4) and (6) along with the equation ofstate p = p(�) form a losed system for aretion ontoan RN blak hole (or naked singularity). This system isto be supplied with appropriate boundary onditions.The obtained system of equations desribes aretion ofa perfet �uid with a general equation of state p = p(�),and may be applied, in partiular, to aretion of theChaplygin gas [8℄ or dark energy desribed by the gen-eralized linear equation of state [9℄.The onstant C2 is �xed by the boundary onditionat in�nity. Fixing A in (4) and, respetively, the �ux ismore triky. This is provided by the physial require-ment of a smooth transition through the ritial soundpoint (see the details, e. g., in [2℄). The resulting so-lution should be ontinuous from in�nity down to theblak hole horizon. Following [2℄, we �nd relations atthe ritial point,u2� = x� � e22x2� ; 2s(��) = x� � e22x2� � 3x� + e2 ; (7)900



ÆÝÒÔ, òîì 139, âûï. 5, 2011 Perfet �uid and salar �eld : : :where s(�) � (�p=��)1=2 is the speed of sound, andthe subsript ��� indiates that the values are taken atthe ritial point. It follows from (7) thatx�� = 1 + 32�42� (1� �1� 82�(1 + 2�)(1 + 32�)2 e2�1=2) ; (8)where � � s(x�). Critial points exist only ife2 � �1 + 32��282� (1 + 2�) :It is worthwhile to note that in ontrast to the aseof a Shwarzshild blak hole, there are formally twodi�erent ritial points, orresponding to the plus andminus signs in (8). We also note that x�� ! 0 as e! 0.Depending on the values of e and s one an identifythe following �ve ases.1. e < 1, 2s < 1 (2s = 1). In this ase, the eventand the Cauhy horizons exist, x+ > x�, as well asboth ritial points; the outer ritial point is outsidethe event horizon, x+� > x+ (x+� = x+), the inner riti-al point is between the event and the Cauhy horizons,x� < x�� < x+ (x�� = x�).2. e < 1, 2s > 1. Similarly to the previous ase,the event and the Cauhy horizons, and both ritialpoints exist; but the outer ritial point is in betweenthe event and the Cauhy horizons, x� < x�� < x+(x+� = x� = x+); the inner ritial point is inside theCauhy horizon, x�� < x+.3. e = 1. The event and the Cauhy horizons o-inide, x+ = x� = 1, and both ritial points exist: inthe subluminal ase, x+� > 1 and x�� = 1; for a sti��uid, 2s = 1, we �nd x�� = 1; in the superluminal ase,x+� = 1 and x�� < 1.4. 1 < e < 3=2p2. The RN metri desribes anaked singularity (the horizons are absent). Critialpoints exist for two di�erent branhes,2s � �4e2 + 3� 4epe2 � 18e2 � 9 (subluminal);or 2s � �4e2 + 3 + 4epe2 � 18e2 � 9 (superluminal):5. e � 3=2p2. The RN metri desribes a nakedsingularity. In ontrast to the previous ase, the ritialpoints exist only for subluminal branh.In Fig. 1, the ritial radii are shown as funtionsof the speed of sound for several values of e.Substituting the value of x+� from (8) in the �rst re-lation in (7) and then substituting x� and u� expressed

x+� x+� x+�x+�x�� x��x��
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Fig. 1. The outer ritial radius x+� (thik lines) andinner ritial radius x�� (thin lines) are shown as fun-tions of the sound speed s for several values of theeletri harge e = Q=M . We note that the outer rit-ial radius oinides with the event horizon, x+� = 1,for the extreme blak hole (e = 1) in the ase s � 1in terms of � in (6), we �nd a losed equation for � atthe ritial point,��+p��1+p1 n1n� = 1 + 32� +Dp2 [1+32�+4e22�(2��1)+D℄ ; (9)where D =q(1 + 32�)2 � 8e22�(2 + 1):For e = 0, Eq. (9) redues to the equation for the riti-al point in the ase of the Shwarzshild blak hole [5℄.The blak hole mass hanges at the rate _M == �4�r2T r0 due to �uid aretion. With the help of (4)and (6), this expression an be written as_M = 4�AM2[�1 + p1℄: (10)It is lear from this equation that the aretion of phan-tom energy, de�ned by the ondition �1 + p(�1) < 0,is always aompanied with a derease in the blak holemass. This is in aordane with previous �ndings [5℄.We stress that the result is valid for any equation ofstate p = p(�) with �+ p(�) < 0.3. PERFECT FLUID AS A SCALAR FIELDIt is well known that the dynamis of a relativistiperfet �uid in the absene of vortiity an be desribed901



E. O. Babihev, V. I. Dokuhaev, Yu. N. Eroshenko ÆÝÒÔ, òîì 139, âûï. 5, 2011in terms of a salar �eld. In partiular, a sti� �uidorresponds to a anonial massless salar �eld. Todesribe more ompliated equations of state, we intro-due a generalized nonanonial salar �eld Lagrangianof the form L = L(X); X � 12������: (11)The energy�momentum tensor orresponding to La-grangian (11) isT�� = LXr��r��� g��L;where the subsript X denotes the derivative with re-spet to X . The orrespondene between the salar�eld and the perfet �uid with energy�momentum ten-sor (2) is ahieved by the identi�ation (see, e. g., [10℄)u� � r��p2X ;where the pressure p oinides with the Lagrangiandensity of the salar �eld, p = L(X), and the energydensity is � (X) = 2XL;X �L:The sound speed an be expressed as2s = L;X�;X = �1 + 2XLXXLX ��1 :Apart from the energy density " and pressure p, we anformally de�ne the �partile number density�n � exp�Z d��+ p� = pXL;Xand the enthalpy h � �+ pn = 2pX:Equations of motion following from (11) are�� �p�gLX g������ = 0: (12)A steady-state �ow is desribed by the ansatz�(t; x) = a1t+  (x); (13)where the onstant a1 de�nes the �osmologial� valueof _� at spatial in�nity. For ansatz (13), it is easy to seethat X = 12 �a21f � f 02� ;and equation of motion (12) an be integrated one togive x2fLX 0(x) = p2A: (14)

Equation (14) is in fat another form of (3), writtenin terms of the salar �eld. Moreover, Eq. (14) is analgebrai equation for the funtion  0. Therefore, thegeneral solution must ontain A, whih should be de-termined via an analog of ritial point (7). From (12),we an �nd  00 in terms of  0 (this expression also on-tains LX and LXX ). The ritial point is then found byequating both the nominator and the denominator ofthe obtained expression to zero. As a result, we obtain 0�2 = a21 x�f 0�f2 (x�f 0� + 4f�) ; f� 0�2LXX = LX ; (15)whih is another form of (7). We now have three equa-tions (14) and (15) whih an be used to �nd  0�, x�,and A. This proedure is fully equivalent to �xing theritial point for the �uid aretion. This desriptionis very useful for some partiular tasks.In partiular, we analyze (14) in the limit x ! 0.We have 2X � x2e2 B2 � e2x2 02:Beause X > 0 for the �uid, this leads toX ! 0;  02 ! 0 as x! 0: (16)On the other hand, it follows from (14) thatLX 0 ! onst; x! 0: (17)Combining (16) and (17), we onlude that the �uidreahes x = 0 during a steady-state aretion only ifLX ! 1 as X ! 0. This means, in partiular, thata �uid desribed by the linear equation of state with� � 1 does not reah the entral singularity at x = 0 ife 6= 0.4. ACCRETION ONTO A BLACK HOLEIn this setion, we present and disuss several an-alyti solutions for steady-state aretion of a perfet�uid onto a harged blak hole.4.1. Linear equation of stateAs the �rst example, we onsider the linear equationof state p = �(�� �0); (18)where � and �0 are onstants. This equation was int-rodued in [5℄ (see also [9℄) to avoid hydrodynamialinstability for a perfet �uid with negative pressure.The onstant � in (18) determines the squared speed902



ÆÝÒÔ, òîì 139, âûï. 5, 2011 Perfet �uid and salar �eld : : :of sound of small perturbations, � = 2s, and it mustbe positive. We note that (18) an be regarded as alinear approximation to the general nonlinear equationof state p = p(�) around some point � = �1. Therefore,the results in this setion an be applied to a generiequation of state if j�� �1j is small enough.Using (7) and (8), we an use (4) to alulate the di-mensionless onstant A for the linear equation of stateas A = �1=2x2�� 2�x2�x� � e2�(1��)=2� : (19)The veloity and the energy density as funtions of theradius are determined by solving (4) and (6),f + u2 = ��ux2A �2� ;�+ p�1 + p1 = �� Aux2�1+� : (20)It is possible to express the solutions of the above equa-tions through known analyti funtions for spei� va-lues of �, namely, � = 1=4, 1=3, 1=2, 2=3, 1, 3=2, and2. Below, we present solutions orresponding to somepartiular values of �.We �rst onsider the ase of the sti� �uid: � = 1.For the radial veloity and the energy density we then�nd u2 = (x� x�)x4+(x+ x+)(x2 + x2+)x2 ;� = �02 + ��1 � �02 � (x+ x+)(x2 + x2+)(x� x�)x2 :The density at the horizon is�+ = �02 + ��1 � �02 � 2x+p1� e2 : (21)We note that the energy density diverges at the eventhorizon x+ of an extreme blak hole, e = 1.Solutions for a thermal photon gas, � = 1=3, anbe found aordingly. Indeed, the radial distribution ofthe energy density in this ase is� = �04 + ��1 � �04 ��1 + 2z3f �2 ;where z = 8>><>>: os 2� � �3 ; x+ � x � x�;os �3 ; x > x�

and � = aros�1� 272 A2 f 2x4 � :Phantom energy in this partiular ase orresponds tothe hoie �0 > 4�1. At the event horizon x = x+, wehave �+ = �(x+) = �04 + ��1 � �04 � A2x4+ :The ase of a superluminal �uid is also worth study-ing. As an example, we take � = 2. The in�ow thenonsists of two hydrodynamial branhes:u1;2 = 1p2 A2x4 s1�r1 + 4f x8A4 ;�1;2 = � Au1;2x2�3 : (22)At the outer and inner horizons, we �ndu1(x�) = A2x4� ; u2(x�) = 0:The energy density diverges at r�, and the solutiondoes not exist for r < r�. The behavior of superlumi-nal �uids (s > 1) is quite unusual. Apart from thetransoni solution in (22), there is an in�nite family ofsolutions that are regular at r > 0 and are paramete-rized by A with A > A�. These solutions onsist ofa single hydrodynamial branh, and the soni horizonis absent. A solution with A > A� allows probing thesingularity of a blak hole with small perturbations. Infat, it is not lear how to hoose the �orret� physialsolution for a superluminal �uid2).Contrary to aretion of a superluminal �uid, a so-lution for a subluminal �uid exists only above someminimal radius rmin, 0 < rmin < r�, and hene the in-�owing �uid does not reah the entral singularity (seeSe. 3). The energy density of the �uid has the maxi-mum at rmin. For example, rmin = 2(p2 � 1)M and�(rmin) = (8=3)2(12p2+17)�1 in the ase of aretionof a �uid with � = 1=3 (thermal photon gas) onto theextremely harged blak hole.2) One an argue, however, that all these problems are due tothe unphysial hoie of the equation of state (18). We note that� ! 0 as x ! 0. The equation of state (18) is unphysial for� 6= 1 at �! 0, due to the pathologial behavior of the equationsof motion for  in the limit � ! 0, as it was shown in [10℄. Toure the model in (18) with � 6= 1 for small densities, one anmodify the equation of state, suh that p ! � as � ! 0. Forexample, in terms of the salar �eld, the LagrangianL = (� +X)3=4 � �; (23)with small � satis�es this requirement, also giving a �superlumi-nal� �uid with p = 2� for large densities.903



E. O. Babihev, V. I. Dokuhaev, Yu. N. Eroshenko ÆÝÒÔ, òîì 139, âûï. 5, 2011We note that similar behavior was found forgeodesi motion of test partiles with a nonzero mass[11, 12℄ in the RN metri. In partiular, the radial om-ponent of the 4-veloity for paraboli radial geodesis(i. e., for partiles with zero veloity at in�nity) isup(x) = �p2x� e2x : (24)The partile bounes at rmin = Q2=2M andup(rmin) = 0, but ju0p(rmin)j =1 aording to (24).The orresponding solutions for an areting sublu-minal �uid are singular at r = rmin, namely, u0(rmin) ==1 and �0(rmin) = �1 (although both the 4-veloityand the energy density are �nite at r = rmin). As a re-sult, ontinuity equation (3) is ill-de�ned at r = rmin.In what follows, we assume that (i) the �uid an havedouble-valued solutions, and hene in�ow and out�owsolutions an oexist at the same point of the mani-fold, and (ii) the �uid passes through the singularityin the solution at r = rmin. Formally, these assump-tions imply that we an math solutions for the in�owand out�ow at rmin, suh that �inflow(x) = �outflow(x)and uinflow(x) = �uoutflow(x). A physial interpreta-tion is then as follows: the �uid aretes onto a blakhole, then it bounes at rmin and �ows outwards to theasymptotially �at internal spaetime. Beause the in-�ow and the out�ow are symmetri by onstrution, wepresent the results for the in�ow only.The resulting distribution for the energy density�(x) for the thermal photon gas is shown in Fig. 2.In Fig. 3, the orresponding distributions for the ra-dial omponent of the 4-veloitiy are shown. In Fig. 4,we plot the radial 3-veloity v(x) with respet to lo-al stati observers. We note that v(x) is equal to thespeed of sound, v(rmin) = s, at the minimal radiusrmin for a generi equation of state.In Fig. 5, we depit a part of the Carter�Penrosediagram for the the RN metri [13, 14℄, ontaining anareting �uid. This diagram is symmetri and time-reversible due to the stationarity of the proess. Wenote that for �astrophysial� blak holes formed bygravitational ollapse of massive objets, the internalspae�times are absent and the in�owing �uid an beexpeted to modify the metri inside the event horizon(see, e. g., [15�25℄ and the referenes herein).In the Carter�Penrose diagram, the streamlines ofthe out�owing �uid interset the in�owing ones in theregion rmin < r < r� (note the interseting dashedlines in Fig. 5). As we disussed before, we assumethe in�ow and out�ow do not interat and they freelypass through eah other (similarly to the motion of testpartiles). If the �uid is visous, the piture should be

0:5 1:0 1:5 2:0 x0100200300�=�1

Fig. 2. Energy density �(x) for the in�owing �uid with� = 1=3 (thermal photon gas) in the RN metri withthe harge e = 0:99. After reahing the boune point(marked by the dot) at the minimal radius rmin, the�uid expands to the internal asymptotially �at uni-verse. x+� = 2:04, x+ = 1:14, x�� = 0:96, x� = 0:86,xmin = 0:79
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Fig. 3. Radial 4-veloity u(r) (thik urve) for the in-�owing �uid with � = 1=3 (thermal photon gas) in theRN metri with the harge e = 0:999. Thin urvesorrespond to the unphysial hydrodynamial branhesand us is the 4-veloity at the ritial (sound) point904
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Fig. 4. Radial 3-veloity v(x) for the in�owing �uid(� = 1=2, e = 0:999) with respet to the loalstati observers in the R-regions r+ < r < 1 and0 < r < r�. In the T -region r� < r < r+, the loalstati observers do not exist, and hene the 3-veloityis unde�nedmodi�ed (at least for r < r�, but not for r > r�),beause interseting streamlines interat. The result-ing �ow may beome time dependent, turbulent or/andaompanied by formation of shoks.4.2. Chaplygin gasAnother analytially solvable example we onsiderhere is the Chaplygin gas,p = ��� ;where a onstant � > 0 orresponds to a hydrodyna-mially stable �uid. The Chaplygin gas with �2 < �represents phantom energy with a superluminal speedof sound. The opposite ase, �2 > �, orresponds todark energy with �+ p > 0 and 0 < 2s < 1.We �nd the following relations at the ritial point:f� = � � 1� ;x�� = � "1�s1� e2� # ; A = x2�p� ; (25)where � = �21=�. The soni point exists and the a-retion is transoni for � � e2, i. e., when the square
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E. O. Babihev, V. I. Dokuhaev, Yu. N. Eroshenko ÆÝÒÔ, òîì 139, âûï. 5, 2011u = � Ax2s � � 1�(�=�1)2 � 1 ; (26)��1 =sf �A2(� � 1)x�4�(f � 1) + 1 : (27)The value of the energy density at the event horizonis �(r+)=�1 = A=x2+. In the speial ase � = 1, so-lution (26) orresponds to the vauum state with p == �� = ��1 and u = 0. The energy density of thenonphantom Chaplygin gas diverges at the inner riti-al point xmin = x�� = � �1�p1� e2=� � :5. SOLUTIONS FOR A NAKED SINGULARITYAs was disussed in Se. 3, only �superluminal� �u-ids reah a naked singularity in steady-state aretion.More preisely, when formulated in terms of a salar�eld, a solution well-behaved at r > 0 exists onlyif the Lagrangian satis�es the relation dL=dX ! 1as X ! 03). In this ase one an speify the se-ond boundary ondition for aretion at the singularity,r = 0.In the ase of a �subluminal� �uid, the ritial so-lution for steady-state aretion exists not for all r butonly for r > rmin. This is in fat similar to the ase ofan RN blak hole, when a �uid bounes from the singu-larity, as was disussed in Se. 4. The radial 4-veloityas a funtion of r is similar to that for the RN blakhole, plotted in Fig. 3. But the 3-veloity does not havea gap with unde�ned values, in ontrast to the ase ofthe blak hole. Thinking in terms of a super�uid, thesolution for the ritial �ow an be interpreted as twophysial solutions: the in�ow and the out�ow, mathedat the point rmin. We note, however, that in the ase ofa blak hole, the mathing point rmin (where the solu-tion beomes singular) is hidden by the horizon, whilein the ase of an RN naked singularity, the singularmathing point is reahable by a stati observer. Itshould be expeted that an arbitrarily small visosityof the �uid drastially hanges the solution, beausethe in�owing and out�owing omponents of the �uidinterat in the whole spae�time. We an thereforeonlude that for any realisti �uid, the steady-statearetion does not our for the RN singularity.3) As was disussed in Se. 3, the ondition dL=dX ! onst asX ! 0 must hold for the �uid to be nonpathologial. Therefore,stritly speaking, a �nonpathologial� superluminal �uid does notreah a naked singularity either.

5.1. Stati �uid atmosphereIt is interesting that in ontrast to the blak holease, a stati solution for a naked singularity an beonstruted. Suh a solution desribes a stati light at-mosphere with zero in�ux. Indeed, from (6), assumingu = 0, we �nd a stati distribution of a test perfet�uid around the RN naked singularity�+ p�1 + p(�1) exp24� �Z�1 d�0�0 + p(�0)35 = f�1=2:In the partiular ase of linear equation of state (18),we obtain�(r) = ��01 + � +��1 � ��01 + �� f�(1+�)=2� (28)for a stati atmosphere. The energy density of ordinarymatter (with �0 = 0 and � > 0) approahes zero at thesingularity, � / x1+1=� as x! 0. The phantom energydensity is �nite at x = 0, and hene the phantom �uid�overomes� the naked singularity repulsiveness.In the ase e2 > 1, setting u = A = 0 in Eq. (26), we�nd a stati distribution of the Chaplygin gas arounda naked singularity.5.2. Stati salar �eld atmosphereWe note that the solutions for a stati atmosphereof the �uid onsidered above orresponds to the follo-wing solution in terms of the salar �eld,���t = onst; ���r = 0:However, zero energy �ux,T 10 = �fLX�0� �1� = 0;is also ahieved by setting �0� = 0. Then the equationof motion beomes��r �r2LXf ���r� = 0: (29)We restrit ourselves to the anonial salar �eld,L(X) = X . The respetive solutions of (29) for anRN blak hole and a naked singularity are�(x) = �1M(x+ � x�) ln ����x� x+x� x� ����+ �2;�(x) = �1Mpe2 � 1artg� x� 1pe2 � 1�+ �2; (30)906



ÆÝÒÔ, òîì 139, âûï. 5, 2011 Perfet �uid and salar �eld : : :where �1 and �2 are onstants. We note that �(1) = 0in (30) for any e 6= 0, but �(0) is not neessarily zero.The energy density of the salar �eld is T 00 = �21=2r4f .In the ase of an RN blak hole, it diverges at the hori-zon, while for a naked singularity, the energy densityis singular at r = 0. However this singularity is inte-grable and the mass of the salar �eld atmosphere is�nite inside any �nite r.6. APPROACH TO THE EXTREME STATEA blak hole an approah the extreme state by ap-turing partiles with an eletri harge and/or angularmomentum, but an in�nite time is required to reahthe extreme state [7, 26, 27℄. This is a manifestation ofthe third law of the blak hole thermodynamis [7℄. Wenote that during aretion of neutral phantom energy,the eletri harge of the RN blak hole is unhanged,Q = onst, while the blak hole mass dereases. As aresult, the blak hole approahes a near-extreme statebeause the ratio e = Q=M(t) inreases. In the test�uid approximation, the blak hole reahes the extremestate in a �nite time t = tNS de�ned by the relationQ = M(tNS). Indeed, using (10), the time tNS for ablak hole with the initial mass M = M(0) and theeletri harge Q = onst an be alulated from theequation tNSZ0 _mdt = Q�M(0): (31)If we neglet the osmologial evolution of �1, then inthe partiular ase of phantom with the sti� equationof state (s = 1), it follows from (10), (19) and (31)that tNS = e30 � 3e20 + 2� 2(1� e20)3=23e40 �; (32)where e0 = Q=M(0) and � = �f4�[�1+p(�1)℄M(0)g�1is the harateristi aretion time.The �niteness of the time tNS in (32) implies viola-tion of the third law of the blak hole thermodynamisin the onsidered test �uid approximation4).We note that in deriving the above result, we as-sumed that the �uid does not bak-reat. But this as-sumption may not be valid for the near-extreme blakholes/naked singularities. Indeed, in the ase � � 1,the energy density of the areting �uid diverges at4) Possibility for a blak hole to be transformed into a nakedsingularity by phantom aretion was �rst disussed in [28℄.

the horizon, as the blak hole approahes the extremestate. This an be seen from (19), (21), and (20). Si-milarly, violation of the test �uid approximation oursat the radius r = M for the stati atmosphere arounda near-extreme naked singularity due to the divergeneof the energy density, as an be veri�ed from Eqs. (28).It is worth noting that in the ase of a near-extremeKerr�Newman naked singularity, the energy density di-verges at r =M for an atmosphere of a �uid [29℄.Meanwhile, when 0 < � < 1, the energy density ofthe areting �uid remains �nite even for the extremeblak hole. It an nevertheless be argued that the test�uid approximation is violated for the following reason.The test �uid approximation is valid if the bak rea-tion of an areting �uid is small. But for an almostextreme blak hole, with jm � ej � m, the bak re-ation an be alulated from the perturbed Einsteinequations, ÆG�� = 8�GT�� ; (33)where ÆG�� is the deviation of the Einstein tensor dueto the presene of the areting �uid with the ener-gy�momentum tensor T�� . Even if the perturbation ofthe metri alulated from (33) is small, the preseneof the �uid may have a drasti e�et on the metri inthe limit as M ! Q. Hene, the bak reation e�etsin the ase of near-extreme blak holes must be on-sidered arefully, even if the areting �uid has a smallenergy�momentum tensor. The bak reation of thearetion �ow may prevent onversion of a blak holeinto a naked singularity5). This question, however, isbeyond the sope of this paper, and we leave it for fu-ture investigation.7. CONCLUSIONWe have studied the steady-state distribution ofa test perfet �uid with a general equation of state,p = p(�), and a salar �eld in the Reissner�Nordströmmetri. Similarly to the ase of steady-state aretionof a perfet �uid onto a Shwarzshild blak hole, theorresponding solution for the aretion exists also inthe ase of the RN blak hole. On the other hand, nosteady-state aretion of a perfet �uid exists onto theRN naked singularity, unless the double-valued veloi-ty, energy density, and the pressure of a �uid are intro-dued in order to desribe the in�ow and the out�ow5) The importane of bak reation was disussed in [30℄ inthe ontext of absorption of salar partiles with a large angularmomentum by a near-extreme blak hole.907



E. O. Babihev, V. I. Dokuhaev, Yu. N. Eroshenko ÆÝÒÔ, òîì 139, âûï. 5, 2011ourring in the same points of spae�time. Insteadof a steady-state aretion, a stati atmosphere of the�uid is formed around a naked singularity. For both theblak hole and the naked singularity, we found analytisolutions of the problem of the steady state on�gu-rations of perfet �uids with an arbitrary equation ofstate p = p(�). As partiular ases, we studied a �uidwith the linear equation of state, p = �(� � �0) andthe Chaplygin gas, p = �=�. We also found a statidistribution of a salar �eld around the RN naked sin-gularity.When the areting �uid is phantom, � + p < 0,the mass of the RN blak hole dereases. This resultis in agreement with the previous �ndings [5, 31℄. Thisposes a question of whether it is possible to onvertan RN blak hole into a naked singularity by aretionof phantom. Under the assumptions we made, suh aonversion is possible, beause the areting phantomdereases the blak hole mass, while the eletri hargeof the blak hole remains the same. The onversion ofan RN blak hole into a naked singularity in the aseof aretion of exoti matter with a negative energydensity � < 0 was already studied in [25, 32℄. It is in-teresting to verify the possibility of similar onversionin the ase of a phantom �uid with a positive energydensity � > 0 by taking bak reation into aount,whih, as we expet, plays an important role in thease of near-extreme states. We leave this question forfuture study.Although the test �uid approximation seemsto break down for the near-extreme state of theblak hole/naked singularity, we stress that for thefar-from-extreme state of a blak hole (in partiular,for the Shwarzshild solution), the parameters of theperfet �uid and the boundary ondition at the in�nityan be tuned suh that the test �uid approximationdesribes the aretion proess well.We thank V. Beskin, V. Lukash, Ya. Istomin,A. Vikman, K. Zybin, and S. Chernov for useful disus-sions. The work of EB was supported by the EU FP6Marie Curie Researh and Training Network �Uni-verseNet� (MRTN-CT-2006-035863). The work of theother oauthors was supported in part by the RFBR(grant � 10-02-00635) and by the grant of the LeadingSienti� Shools 3517.2010.2.REFERENCES1. H. Bondi, Month. Not. Roy. Astron. So. 112, 195(1952).
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