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STRONG-COUPLING REGIME OF THE NONLINEARLANDAU�ZENER PROBLEM FOR PHOTO- ANDMAGNETOASSOCIATION OF COLD ATOMSR. Sokhoyan a;b, H. Azizbekyan a, C. Leroy b, A. Ishkhanyan a*aInstitute for Physial Researh, National Aademy of Sienes of Armenia0203, Ashtarak-2, ArmeniabInstitut Carnot de Bourgogne, UMR 5209 CNRS, Université de BourgogneBP 47870, 21078 Dijon, FraneReeived May 28, 2009Revised version Otober 7, 2010We disuss the strong-oupling regime of the nonlinear Landau�Zener problem ourring at oherent photo-and magneto-assoiation of ultraold atoms. We apply a variational approah to an exat third-order nonlineardi�erential equation for the moleular state probability and onstrut an aurate approximation desribing thetime dynamis of the oupled atom�moleule system. The resultant solution improves the auray of the previ-ous approximation [22℄. The obtained results reveal a remarkable observation that in the strong-oupling limit,the resonane rossing is mostly governed by the nonlinearity, while the oherent atom�moleule osillationsourring soon after rossing the resonane are prinipally of a linear nature. This observation is supposedlygeneral for all nonlinear quantum systems having the same generi quadrati nonlinearity, due to the basiattributes of the resonane rossing proesses in suh systems. The onstruted approximation turns out tohave a larger appliability range than it was initially expeted, overing the whole moderate-oupling regime forwhih the proposed solution aurately desribes all the main harateristis of the system evolution exept theamplitude of the oherent atom�moleule osillation, whih is rather overestimated.1. INTRODUCTIONIn ontrast to atomi Bose ondensates [1; 2℄,ahieving moleular ondensates via standard laserooling tehniques [3�5℄ is di�ult sine the laser oo-ling freezes only the entre-of-mass motion of a quan-tum objet. In the ase of atoms this is su�ient. Butmoleules have rotational and vibrational degrees offreedom. Hene, to reate ultraold moleules, di�er-ent approahes should be used. Currently, there areseveral approahes to this problem, among whih themost widely used tehniques are optial laser photoas-soiation [6; 7℄ and magneti Feshbah resonane [8; 9℄.For theoretial disussion of the spei� �eld on-�gurations applied within these tehniques, the Lan-dau�Zener model of linear resonane rossing (Æt(t) == 2Æ0t, Æ0 = onst) at onstant �eld amplitude(U(t) = U0 = onst) is partiularly interesting [10; 11℄.This is beause to ahieve a high onversion e�ieny,*E-mail: aishkhanyan�gmail.om

a level-rossing �eld on�guration must be used [12℄.Then, as is well appreiated, the Landau�Zener modelinevitably emerges as a natural starting point for study-ing suh models. For this reason, this model has been asubjet of intensive investigations over the last deadesin di�erent physial and mathematial ontexts (see,e. g., [13�22℄).In this paper, we re-examine the strong-ouplingregime of the resonane rossing in nonlinear systemsinvolving quadrati nonlinearities generi for all boson�eld theories. We reveal the general property of suhproesses that the time dynamis of the transition pro-ess is e�etively divided into two distint regimes. We�nd that in the strong-oupling limit, the time dynam-is of the atom�moleule onversion proess onsists inrossing the resonane in an essentially nonlinear man-ner, whih is followed by atom�moleule oherent os-illations that are prinipally of a linear nature. Thisseparation of the two proesses is rather unexpetedbeause of generi mixing of the orresponding terms627



R. Sokhoyan, H. Azizbekyan, C. Leroy, A. Ishkhanyan ÆÝÒÔ, òîì 139, âûï. 4, 2011in the governing equations. The general nature of thise�et is due to the basi attributes of the spei� formof the quadrati nonlinearity involved.Applying a variational approah to an exatthird-order nonlinear di�erential equation obeyedby the moleular state probability, we develop anapproximation that aurately desribes the timedynamis of the oupled atom�moleule system inthe strong-oupling limit. The formulas improve theauray of the previous result in [22℄ by providingthe next approximation term. It turns out that theproposed approximation is also appliable for theintermediate regime of moderate oupling. In thisregime, the solution aurately desribes all the mainharateristis of the system dynamis exept theamplitude of oherent atom�moleule osillationsourring at the end of the assoiation proess.2. MATHEMATICAL TREATMENTIn the mean-�eld two-mode approximation, bothphotoassoiation and Feshbah resonane are desribedby a basi semilassial time-dependent nonlineartwo-state model [12; 23; 24℄:ida1dt = U(t)e�iÆ(t)a�1a2;ida2dt = U(t)2 eiÆ(t)a1a1; (1)where a1 and a2 are the respetive probability ampli-tudes of atomi and moleular states, and ��� denotesomplex onjugation. Real funtions U(t) and Æ(t) arethe harateristis of the applied �eld. When the pho-toassoiation terminology is used, U(t) is referred toas the Rabi frequeny of the laser �eld, and Æ(t) asthe frequeny detuning modulation funtion. The timederivative of this funtion, Æt(t), is the detuning of thelaser �eld frequeny from that of transition from theatomi state to the moleular one. Hereafter, an alpha-betial subsript denotes di�erentiation with respet tothe orresponding variable. We note that system (1)desribes a lossless proess, and hene the total num-ber of partiles is onserved:ja1j2 + 2ja2j2 = onst = 1:We also note that ja1j2 2 [0; 1℄, whereas ja2j2 2 [0; 1=2℄.Our previous experiene (see, e. g., Refs. [21; 22; 25℄)has revealed that the exat equation obeyed by thequantity p = ja2j2 (onventionally referred to as themoleular state probability) is quite helpful in treatingthe nonlinear two-state problem in (1). Beause the

above equation plays a deisive role in the subsequentdevelopment, we brie�y outline its derivation. First, itan be veri�ed by diret di�erentiation that the fun-tion p = ja2j2 satis�es the relationspt = a�2ta2 + a�2a2t == U2i �a21a�2eiÆ(t) � a�21 a2e�iÆ(t)� ; (2)ptt = UtU pt + U22 (1� 8p+ 12p2) ++ U2 Æt �a21a�2eiÆ(t) + a�21 a2e�iÆ(t)� : (3)Next, straightforward di�erentiation shows that thefuntion Z = a21a�2eiÆ(t) + a�21 a2e�iÆ(t) (4)satis�es the relationZt = �Æt 2ptU : (5)Finally, di�erentiation of Eq. (5) followed by some al-gebrai transformations yields a nonlinear third-orderordinary di�erential equation for the moleular stateprobability in the form [25℄pttt ��ÆttÆt + 2UtU � ptt ++�Æ2t+4U2(1�3p)��UtU �t+UtU �ÆttÆt +UtU �� pt++ U22 �ÆttÆt � UtU � (1� 8p+ 12p2) = 0: (6)It is worth stressing that the normalization onditionis inorporated in this equation.The exat equation (6) for the moleular state pro-bability is onsiderably simpli�ed in the ase of theLandau�Zener model: in this ase, Eq. (6) is written inthe fatored form� ddt � 1t��ptt � �2 (1� 8p+ 12p2)�+ 4t2pt = 0: (7)Here, we have passed to dimensionless time by the sa-ling transformation t! t=pÆ0 and have introdued theonventional Landau�Zener parameter � = U20 =Æ0. Be-ause the initial set of equations (1) and, onsequently,the exat equation for the moleular state probability(7) ontain only one ombined parameter � to hara-terize the external �eld, we onlude that the applia-tion of high laser �eld intensities U20 along with largesweep rates 2Æ0 or, alternatively, small laser �eld inten-sities U20 together with small sweep rates 2Æ0 results in628



ÆÝÒÔ, òîì 139, âûï. 4, 2011 Strong-oupling regime of the nonlinear Landau�Zener problem : : :the same �nal moleular population as t ! 1 if theratio � = U20 =Æ0 remains unhanged.We assume that the system starts from the all-atom state, suh that the initial onditions for sys-tem (1) are a1(�1) = 1 and a2(�1) = 0, and henep(�1) = 0. Then, to �nd the remaining initial on-ditions for Eq. (7), we use Eqs. (2) and (3) that de-�ne the derivatives pt and ptt in terms of atomi andmoleular state probability amplitudes. Equation (2)immediately implies that pt(�1) = 0. As regards theseond derivative of p, we note that the fator Æt in thelast term in the right-hand side of Eq. (3) diverges ast ! �1. Hene, to de�ne the orret limit of ptt ast ! �1, we should take the asymptoti behavior ofthe funtions a1(t) and a2(t) into aount. This behav-ior an be found from the governing set of equations(1) using Piard's suessive approximations and tak-ing the linear Landau�Zener solution as the appropri-ate physial limit at vanishing nonlinearity. As a result,we obtain ptt(�1) = 0. Thus the initial onditions forEq. (7) beomep(�1) = 0; pt(�1) = 0; ptt(�1) = 0: (8)Beause we onsider the strong-oupling regime,we suppose that the Landau�Zener parameter is large(equivalently, the �eld intensity U20 is large enough orthe detuning sweep aross the resonane is su�ientlyslow, i. e., the sweep rate 2Æ0 is small). Hene, the se-ond term in the square brakets in Eq. (7) takes largevalues in general. Beause for large t the last term ofthe equation also takes a large value, we suppose thatthe leading terms in Eq. (7) are the last two, and wean therefore temporarily neglet the term ptt, thus ar-riving at a limit nonlinear equation of the �rst order.This equation admits two trivial stationary solutions,p = 1=2 and p = 1=6, and a nontrivial one.Unfortunately, for the initial ondition p(�1) = 0,the nontrivial solution diverges as t ! 1 [22℄, andhene annot be diretly applied as a proper initial ap-proximation. In Ref. [22℄, an appropriate initial ap-proximation was onstruted via ombination of thenontrivial solution with the trivial one p = 1=2. Withthe onstruted funtion as the zeroth-order appro-ximation, the nonadiabati transition probability hasbeen alulated, and it turned out that the �nal tran-sition probability is expressed as a power of the Lan-dau�Zener parameter [17; 22℄, in ontrast to the fami-liar exponential predition of the linear theory [10; 11℄.However, this approah is rather ompliated and doesnot provide a lear treatment of the time dynamis ofthe assoiation proess.

Here, we make a step forward by proposing a muhsimpler treatment of the problem that gives ompre-hensive understanding of the whole time evolution ofthe system. For this, we use an augmented limit equa-tion that di�ers from that used in Ref. [22℄ by a termof the form A=t, where A is a onstant that is sup-posed to be small ompared with other involved termsin order not to hange the leading asymptotes. Due tothis modi�ation of the limit equation, we manage toonstrut a simple two-term approximation that au-rately desribes the whole time dynamis of the system.Importantly, the onstruted solution reveals the mainharateristis of the proess in a simple and naturalmanner.The augmented limit equation, involving a �ttingonstant A, is written as� ddt�1t����2 (1�8p+12p2)+A�+4t2pt = 0: (9)This equation is integrated via transformation of theindependent variable followed by interhange of the de-pendent and independent variables. This results in afourth-degree polynomial equation for the limit solu-tion p0(t): �4t2 = C0 + p0(p0 � �1)(p0 � �2)9(p0 � �1)2(p0 � �2)2 ; (10)where C0 is the integration onstant and�1;2 = 13 � 16r1 + 6A� ; �1;2 = 12 �r A2� : (11)For the initial ondition p0(�1) = 0, the integrationonstant C0 = 0. We note that at A = 0, quartiequation (10) redues to a quadrati one beause threeof the four parameters �1;2, �1;2 then beome equal,�2 = �1 = �2 = 1=2. The solution of this quadratiequation diverges as t ! 1. However, for positive A,the solution of quarti equation (10) de�nes a bounded,monotonially inreasing funtion that tends to a �nitevalue less than 1/2 as t ! 1 (Fig. 1). This solutionhas all the needed features to be used as an appropriateinitial approximation for solving the problem. We thussee that the introdution of the parameter A is, indeed,an essential point.We onsider the properties of the limit solution p0(t)de�ned by Eq. (10) with C0 = 0. The �nal valuep0(1) is easily found by noting that the left-hand sideof Eq. (10) tends to zero as t ! 1. It is then seenthat either p0(1) = 0 or p0(1) = �1, or p0(1) = �2should hold. Beause p0(t) is a monotonially inreas-ing funtion with p0(�1) = 0 and beause �2 > 1=2,629
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Fig. 1. The limit solution p0(t) for positive A > 0 anda �xed �we dedue that p0(1) = �1. In a similar way, we �ndthat p0(0) = �1. Thus,p0(0) = 13�16r1+6A� ; p0(1) = 12�r A2� : (12)To determine the appropriate value of the parame-ter A, we substitute p0(t; A) in the exat equation forthe moleular state probability (7) and examine the re-mainder R = � ddt � 1t� [p0tt �A℄: (13)Obviously, the better the approximation p0 is, thesmaller the remainder. We next note that if p0tt�A 6=6= 0, the remainder diverges at the resonane rossingpoint t = 0, while it is �nite at all other points of time.We an therefore eliminate this divergene by requiringA to obey the equationp0tt(0)�A = 0: (14)After some algebra, this equation is rewritten asA = 29� �1 + 1� 18A=�(1 + 6A=�)3=2� : (15)An approximate solution of the derived equation anbe onstruted by Newton's suessive approximationsstarting, e. g., from A = 0. It turns out that the �rstapproximation is already good enough. We thereforeset A = 0 in the right-hand side of the equation andobtain A = 49� : (16)This value of A leads to a good zeroth-order ap-proximation p0(t). Numerial simulations show thatfor large �, this funtion aurately desribes the time

evolution of the system in the interval overing the pre-history (up to the resonane point) and an interval af-ter the resonane has been rossed. After that, how-ever, p0 misses several essential features of the proess.For instane, the oherent osillations between atomiand moleular populations that our at a ertain timepoint after the resonane has been passed are not ap-tured by this solution. Furthermore, the �nal transitionprobability as t ! 1 predited by p0 is always lowerthan what is shown by numerial solution of the exatequation.It is understood that the shortomings of the sug-gested limit solution are due to the singularity of theproedure used to obtain it. Indeed, we have on-struted p0 by negleting the term ptt in the squarebrakets in Eq. (7), i. e., the two highest-order deriva-tive terms of the equation. Certainly, when determi-ning the appropriate value of A by imposing Eq. (14),we have taken these terms into aount (in fat, tosome extent). Yet, this was an indiret proedure andwe have onvined ourselves that it does not su�e.Therefore, to improve the result, we need a or-retion that aounts for the seond and third-orderderivatives of p. This is not a simple task beause theequation obeyed by the orretion term u � p � p0 isstill essentially nonlinear. Moreover, attempting to li-nearize the exat Eq. (7) using p0 as the zeroth-orderapproximation and supposing the orretion u to besmall ompared with p0 (u� p0), we arrive at a om-pliated equation with variable oe�ients (dependingon p0), whose solution is not known.We now introdue an approah that allows overom-ing these di�ulties. Importantly, the resultant solu-tion not only orretly aounts for the higher-orderderivate terms in the equation for the orretion termu but also takes the nonlinear terms into aount toa very good extent. The onstruted solution displaysmuh more improved results. It both treats the osilla-tions aurately and �ts the �nal transition probabilitywell. For the most part of the variation range of theLandau�Zener parameter � � 1, the resultant graphsare pratially indistinguishable from the numerial so-lution.We onsider a orretion u de�ned asp = p0 + u: (17)This funtion obeys the exat equation� ddt � 1t��utt + 4�(1� 3p0)u+ p0tt �� A� 6�u2�+ 4t2ut = 0: (18)630



ÆÝÒÔ, òîì 139, âûï. 4, 2011 Strong-oupling regime of the nonlinear Landau�Zener problem : : :Taking the initial onditions disussed here into a-ount, we impose the onditionsu(�1) = 0; ut(�1) = 0; utt(�1) = 0: (19)Beause the limit solution p0(t) is supposed to be agood approximation, the orretion u is expeted tobe small. We therefore temporarily neglet the nonli-near term �6�u2 in Eq. (18), thus arriving at a linearequation. Although we now have a linear equation,there is only little progress sine the solution of the de-rived equation is not known in the general ase of avariable p0(t). However, we note that in the ase ofa onstant p0, we an onstrut the solution using thesaling transformationu = A2�(1� 3p0) �: (20)As a result, we then obtain a linear Landau�Zener prob-lem for � with the e�etive Landau�Zener parameter�1 = �(1� 3p0).This observation suggests the onjeture that theexat solution of Eq. (18) an be approximated asu = C1 pLZ(�1; t)pLZ(�1;1) ; (21)where pLZ(�1; t) is the solution of the linear Lan-dau�Zener equation with an e�etive Landau�Zenerparameter �1,� ddt�1t� (pLZtt+4�1pLZ�2�1)+4t2pLZt = 0; (22)satisfying initial onditions (8). This solution is onve-niently written in terms of the Kummer hypergeometrifuntions [26℄ (see, e. g., [21℄).This proves to be a good onjeture. Numerial si-mulations show that C1, �1, and A an always be foundsuh that approximate solution (21) aurately �ts thenumerial solution of Eq. (18).Now, to derive analyti formulas for the �tting pa-rameters C1 and �1, we substitute expression (21) inthe exat Eq. (18) and try to minimize the remainderR = � ddt � 1t��4 [�(1� 3p0)� �1℄ pLZ(�1; t)pLZ(�1;1) ++ 2�1pLZ(�1;1) + 1C1 (p0tt �A)�� 6�C1 p2LZ(�1; t)p2LZ(�1;1)� (23)by appropriately hoosing these parameters.
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R. Sokhoyan, H. Azizbekyan, C. Leroy, A. Ishkhanyan ÆÝÒÔ, òîì 139, âûï. 4, 2011�R�C1 = � ddt � 1t��� �� 1C21 (p0tt �A)� 6� p2LZ(�1; t)p2LZ(�1;1)� = 0: (27)Beause the last term of this equation is proportionalto (large) � and pLZ(�1; t)=pLZ(�1;1) is an inreasingfuntion of time, it is lear that the �worst� point ist =1. Hene, we onsider the minimization at t =1.This immediately leads to the following value for C1:C1 =pA=6� : (28)This result, together with relation (24), is of onside-rable general importane. Indeed, we see that althoughwe use the solution pLZ(�1; t) of a linear equation, theparameters of this solution, �1 and C1, are essentiallyhanged due to the nonlinear terms involved.The obtained formulas (24) and (28) provide arather good approximation. As an be heked nume-rially, solution (17), p = p0 + u, where p0 is the ex-at solution of the limit equation (9) and u is a linearLandau�Zener funtion, desribes the proess qualita-tively well. This solution an then be used as an ini-tial approximation for linearization of the initial equa-tion (7).However, more elaborate approahes an be sug-gested. For example, an immediate observation is thatif we try approximation (17), (21) without imposingthe initial restrition that the introdued parameter Abe already determined by Eq. (14), we an modify thislast equation suh that the resultant value of A wouldtake the orretion term u into aount. Following thisapproah leads to the formulas�1 = ��2 + � ln�1 + 1�� ; (29)C1 = 14� + 127�3 : (30)These formulas de�ne a fairly good approximation.Indeed, starting already from � = 3, the produedgraphs (Fig. 3) are pratially indistinguishable fromthe numerial solution of the exat Eqs. (1). Thederived approximation notably improves the aurayof the previous approximation in Ref. [22℄. However,importantly, it is appliable far beyond the strong-oupling limit and provides a su�iently good desrip-tion also for the intermediate regime of moderate �eldintensities (or sweeping rates) down to � = 1 and evenslightly less (0:95 < � < 1) (Fig. 4). Although the am-plitude of osillations predited in this regime di�ersfrom that displayed by the numerial solution, it is seen
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ÆÝÒÔ, òîì 139, âûï. 4, 2011 Strong-oupling regime of the nonlinear Landau�Zener problem : : :alulation was assumed to be small ompared with thelimit solution.We note in onlusion that the obtained formulasshow that the �nal probability of the moleular stateis given by the simple formulap(1) = �1 + C1: (31)Hene, the formula derived in Ref. [22℄ for thestrong-oupling limit �� 1 is modi�ed to also inludethe intermediate regime of moderate ouplings � � 1as follows:p(1) = 12 � p23 � 14! 1� + 127�3 �� 12 � 0:2214� + 127�3 : (32)Therefore, for the quadrati nonlinear interation wehave disussed here, the �nal probability for the sys-tem to stay in its initial all-atom state, ja1(1)j2 == 1�2p(1), is not given by an exponential as preditedby the linear Landau�Zener theory [10; 11℄. Instead, inthe strong-oupling limit, it is a linear funtion of thesweep rate 2Æ0 � 1=� if the leading order of the approx-imation is disussed [17; 22℄. This linear dependene ofthe nontransition probability on the sweep rate is alsoon�rmed by many-body alulations [18�20℄. We �-nally note that formula (32) suggests the next approx-imation term as 1=27�3.To onlude this setion, we disuss the relation ofthe Landau�Zener model to ontemporary physial ex-periments. The ramping of an external magneti �eldaross a Feshbah resonane is the most ommonlyadopted sheme to form Feshbah moleules. A typ-ial example is the 85Rb experiment by Hodby and o-workers at JILA [27℄, where a oherent formation ofRb2 moleules via sweeping the magneti �eld arossthe Feshbah resonane is realized. The magneti �eldis hanged at a given linear sweep rate _B, and themoleule onversion e�ieny is measured as a funtionof the inverse sweep rate. The external �eld on�gura-tion used in this experiment therefore orresponds tothe Landau�Zener model.Another experiment that an be desribed bythe Landau�Zener model was performed by Xu andoworkers at MIT [28℄. In this experiment, a quan-tum-degenerate gas of 105 old sodium moleules hasbeen reated. This was ahieved with a fast mag-neti �eld sweep through a Feshbah resonane, fol-lowed by quik removal of the remnant atoms with re-sonant light. This puri�ation was neessary to avoid

heating and deay of the moleules via inelasti olli-sion proesses. 3. CONCLUSIONWe have presented an analysis of a quadratiallynonlinear version of the Landau�Zener problem thatours in various physial situations, e. g., in photo-assoiation of an atomi Bose�Einstein ondensate, inontrolling the sattering length of an atomi onden-sate by means of a Feshbah resonane, in seond-harmoni generation, and generally in nonlinear �eldtheories involving a Hamiltonian with a 2 : 1 resonane.Using an exat third-order nonlinear di�erential equa-tion for the moleular state probability, we have de-veloped an e�etive variational method for onstrut-ing the approximate solution of the problem in thestrong-oupling limit orresponding to large values ofthe Landau�Zener parameter, � � 1. In the ase ofphotoassoiation, this implies that the intensity of theapplied laser �eld is large enough or, equivalently, thesweep rate aross the resonane is su�iently slow.We have shown that the approximation desribingtime evolution of the moleular state probability anbe written as a sum of two distint terms. In thestrong-oupling limit, the �rst term, being a solutionof a limit �rst-order nonlinear di�erential equation, ef-fetively desribes the proess of moleule formation,while the seond one, being the saled solution of thelinear Landau�Zener problem (but with a negative ef-fetive Landau�Zener parameter as long as the strong-oupling limit of high �eld intensities or, equivalently,slow sweeping rates are onsidered), desribes the os-illation that ours some time after the system haspassed through the resonane. From this, we an on-lude that in the strong-oupling limit, the time dy-namis of the atom�moleule onversion onsists of theessentially nonlinear proess of resonane rossing fol-lowed by atom�moleule oherent osillations that areprinipally linear in nature. The possibility of suh adeomposition is quite surprising beause the Hamilto-nian of the system is essentially nonlinear.The onstruted approximation desribes themoleule formation proess with high auray. For� > 3, the produed graphs are pratially indis-tinguishable from the exat numerial solution (seeFig. 3). Interestingly, the approximation also worksrather well in the regime of moderate ouplings downto � = 1 (see Fig. 4) and slightly less, 0:95 < � < 1.It orretly desribes many properties of the systemtime evolution, inluding the e�etive transition633



R. Sokhoyan, H. Azizbekyan, C. Leroy, A. Ishkhanyan ÆÝÒÔ, òîì 139, âûï. 4, 2011time, the �nal transition probability, and the periodof atom�moleule osillations. The only notieabledisrepany is that the approximate solution overes-timates the amplitude of the osillations (the largestdeviation is observed at the points of maxima andminima of the probability within the time intervalovering �rst several periods of osillations). Theappliability of the proposed approximation to theintermediate regime of moderate oupling is, indeed, arather unexpeted result beause at � � 1 : : : 1:5, thelimit solution p0(t) is very far from the exat solution;hene, it is not the limit solution that mostly de�nesthe evolution of the system in this regime. Using theonstruted approximation, we an easily �nd themain harateristis of the assoiation proess suh asthe tunneling time, the frequeny of the osillationsof the transition probability that start soon afterrossing the resonane, as well as the �nal transitionprobability to the moleular state. In partiular, wehave on�rmed that the nontransition probability inthe leading approximation order is a linear funtion ofthe sweep rate. In addition, we have found that thenext approximation term is 1=27�3.We �nally note that the presented approah is notrestrited to the Landau�Zener model only. It an alsobe generalized to other time-dependent level-rossingmodels [29; 30℄. Also, it an be used in exploringother nonlinear regimes beyond by the Landau�Zenermodel [31℄. Importantly, the developed approahallows treating the extended version of the nonlineartwo-state state problem, when higher-order nonlineari-ties involving funtions of the transition probability areadded to the basi system (1). For example, one ananalyze the role of the inter-partile elasti satteringdesribed by Kerr-type ubi nonlinear terms [32℄.Hene, the developed method may serve as a generalstrategy for attaking analogous nonlinear two-stateproblems involving the generi quadrati nonlinearityas disussed here.This work was supported by the ArmenianNational Siene and Eduation Fund (ANSEFGrant Nos. PS-1692 and PS-2591) and the Interna-tional Siene and Tehnology Center (ISTC GrantNo. A-1241). R. Sokhoyan and H. Azizbekyan a-knowledge the Frenh Embassy in Armenia for theGrants Nos. 2006-4638 and 2007-3849 (Boursiers duGouvernement Français). A. Ishkhanyan aknowledgesInstitut Carnot de l'Université de Bourgogne for theinvited professorship in 2007 and 2009.
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