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ADSORPTION OF POLYMER CHAINSAT PENETRABLE INTERFACESI. V. Gerasimhuk a*, J.-U. Sommer b;d, V. S. Gerasimhuk aInstitute of Magnetism,National Aademy of Sienes of Ukraine and Ministry of Eduation and Siene of Ukraine03142, Kyiv, UkrainebLeibniz Institute of Polymer Researh Dresden e.V.D-01069, Dresden, GermanyNational Tehnial University of Ukraine �Kyiv Polytehni Institute�03056, Kyiv, UkrainedInstitute for Theoretial Physis, Tehnishe Universität DresdenD-01069, Dresden, GermanyReeived July 25, 2010We investigate the problem of adsorption (loalization) of polymer hains in the system of two penetrableinterfaes within the mean-�eld approximation. The saturation of the polymer system in the limit ase of zerobulk onentration is studied. We �nd the exat solution of this mean-�eld polymer adsorption problem thatopens the possibility to treat various loalization problems for polymer hains in suh environments using theappropriate boundary onditions. The exat solution is ontrolled by a single saling variable that desribes theoupling between the interfaes due to the polymer hains. We obtain a nonmonotoni behavior of the amountof adsorbed polymers as a funtion of the distane between the interfaes. This leads to a high-energy anda low-energy phase for the double layer with respet to the amount of polymers loalized. At the saturationpoint, we �nd the total energy of the system and determine the fore ating between the interfaes to be stritlyattrative and to monotonially deay to zero for interfae distane inreases.1. INTRODUCTIONThe loalization of polymer hains at surfaes orat penetrable interfaes is of great interest from boththeoretial and tehnologial standpoints beause of itsvarious appliations. From a pratial point of view,adsorption phenomena in polymeri solutions are im-portant in proesses suh as lubriation, adhesion, andsurfae protetion, as well as in biologial proesses ofinteration between membranes and polymers.Penetrable interfaes reside in strutured surfaesor in layered environments that an be formed in mi-rophase separated blok opolymers, liquid rystallineor lipid systems. Here, it has been shown [1℄ that in-terfaes between two media an at as attrative andpenetrable interfaes for both alternating and randomopolymers. The understanding of polymers in envi-*E-mail: igor.gera�gmail.om

ronments of multiple interfaes an lead to novel appli-ations for seletion and reognition of polymer prop-erties [2, 3℄.In the adsorbed state, onformations of loalizedhains are the result of the interplay between adsorp-tion energy, entropy redution due to on�nement inthe adsorbed state, and the exluded volume repulsionbetween the monomers [4℄. The last e�et is responsib-le for the formation of large loops and tails and henefor an extended adsorption layer [5℄. Only the exludedvolume of monomers leads to saturation e�ets at sur-faes or interfaes. Therefore, taking exluded volumee�ets into aount is most important for understan-ding the physis of real polymers lose to surfaes orinterfaes.Unfortunately, it is virtually impossible to solve themany hain problem for polymer adsorption inludingall e�ets of onformation statistis and exluded vo-lume. On the other hand, the e�ets of exluded vo-587



I. V. Gerasimhuk, J.-U. Sommer, V. S. Gerasimhuk ÆÝÒÔ, òîì 139, âûï. 3, 2011lume interations an be understood using mean-�eldonepts (see, e. g., [4℄), thus negleting �utuation ef-fets around the most probable polymer state funtion(ground state dominane) in a given geometry and ex-ternal potentials. Generally, the mean-�eld model anbe regarded as a versatile tool for understanding the es-sential e�ets of exluded volume interations in manyhain systems under geometri onstraints, boundaryonditions, and external potentials [4, 6℄. One of themerits of the mean-�eld model is that it provides ex-at solutions of the orresponding stationary nonlinearShrödinger equation (NLSE) for pieewise onstantpotentials. We note that the solutions of the NLSE arealso very important in many diretions of modern non-linear physis suh as nonlinear periodi strutures inoptis [7℄, Bose�Einstein ondensations in optial lat-ties [8℄, and many others.In this work, we propose a formalism for exatlysolving the mean-�eld polymer adsorption problem forthe system of two penetrable interfaes. We investigatethe saturation behavior of polymers in suh environ-ments. In subsetion 2.1, we introdue the model fora single penetrable interfae, and in subsetion 2.2, wepresent the exat solution in the ase of two penetrableinterfaes.2. LOCALIZATION OF POLYMER CHAINS ATADSORBING PENETRABLE INTERFACESIt is well known that polymer hain statistis isdominated by the ground state solution of the Edwardsequation (see [9℄) given by�u(x) = �a26 d2u(x)dx2 + 1kBT Uext(x)u(x); (1)where u(x) is the part of the state funtion of the poly-mer hain assoiated with the eigenvalue �, a is thelength of a statistial (Kuhn) segment, Uext(x) is thepotential energy of a segment at the position x, andkBT is the usual produt of Boltzmann's onstant andabsolute temperature. For simpliity, we use only onespatial oordinate related to the symmetry of the po-tential. We study plane interfaes where the loaliza-tion ours in the diretion perpendiular to the inter-faes only.The ground state dominane argument an be easilyseen from the formal solution for the partition funtionof the hain given byZ(x; x0) =Xk expf�N�kguk(x)uk(x0); (2)

where the index k ounts the various solutions ofEq. (1). For large values of N , the lowest value of� (the ground state solution) dominates the partitionfuntion. In what follows, we only onsider the groundstate solution, and drop the index k for simpliity.2.1. Polymer hain loalization at an adsorbinginterfaeIn the presene of an interfae (trap) and in the ab-sene of exluded volume e�ets, the external potentialUext(x) an be written asUext(x) = �kBT�Æ(x): (3)Here, the interfae is haraterized by a positivevalue of the parameter � in the ase of attration ofmonomers by the interfae and by a negative valueof � in the opposite ase, the repulsion of monomersfrom the interfae. We note that the parameter � hasthe dimension of length. Then Edwards equation (1),whih formally orresponds to the time-independentShrödinger equation for the funtion u, takes the form�u(x) = �a26 d2u(x)dx2 � �Æ(x)u(x); (4)where the x axis is direted perpendiular to the in-terfae. In suh a linear system, a loalized polymerstate an exist only in the ase of an attrative inter-fae (� > 0).The solution of Eq. (4) redues to the solution ofthe homogeneous equationa26 d2u(x)dx2 + �u(x) = 0 (5)in the regions x > 0 and x < 0 with the followingboundary onditions at x = 0:uj+0 = uj�0; (6)dudx ����+0 � dudx �����0 = � 6a2�uj0: (7)The loalized ground state solution of Eq. (5) satis-fying boundary onditions (6) and (7) is given byu(x) = p3�a exp��3�jxja2 � ; (8)and the eigenvalue � orresponding to this loalizedstate is �l = �3�22a2 : (9)588



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Adsorption of polymer hains : : :The region of loalization of the solution is hara-terized by the loalization lengthL � a23�:If we desribe the real hain in a self-onsistent �eld,we suppose that the interations between monomers arerepulsive and loal. The presene of other segmentsprovides a repulsive potential proportional to the den-sity (x) [4, 10, 11℄:Uev(x) = kBT�a(x);where � is the (dimensionless) exluded volume param-eter. Consequently, we an desribe eah hain as anideal hain subjeted to the external potential Uev(x).The density (x) is proportional to ju(x)j2 for groundstate dominane [4℄. Thus, Eq. (1) an be rewritten as�u = �a26 d2udx2 + �ajuj2u+ 1kBT Uext(x)u: (10)In the presene of an interfae, the external poten-tial Uext(x) takes the form (3) and the nonlinear equa-tion for a real polymer hain �nally beomes�u = �a26 d2udx2 + �ajuj2u� �Æ(x)u: (11)Resaling the variables as2j�j�! �; 2p3apj�j�! �; xl ! x; (12)where l = ap3j�jis the exluded volume length, and introduing the di-mensionless state funtion aording to pau ! u, wean rewrite SNLSE (11) in the standard form�u = �d2udx2 + 2�juj2u� �Æ(x)u; (13)where the sign funtion � = �1 (with the respetiveexluded volume � > 0 and � < 0) stands for repulsionand attration between monomers.To return to the initial parameters of the system,transformations (12) have to be applied one.The solution of Eq. (13) redues to the solution ofthe orresponding homogeneous equation in the regionsx > 0 and x < 0 supplemented with the followingboundary onditions at x = 0 (see Ref. [12℄):uj+0 = uj�0; (14)

dudx ����+0 � dudx �����0 = ��uj0: (15)Beause the ground state is dominant, we an omit themodulus and rewrite Eq. (13) in the regions outside theinterfae as d2udx2 + �u� 2�u3 = 0: (16)Our physial system orresponds to the ase of re-pulsion between monomers (� = +1, exluded volume� > 0) and attration of monomers by the interfae(� > 0). In this ase, we have the following expressionfor the solution satisfying the boundary onditions andhaving zero density far from the interfae (u(x) ! 0for jxj ! 1): u(x) = �sh[�(jxj � x0)℄ ; (17)where � = p��: (18)The parameter x0 an only be negative.The solution in (17) is ompletely haraterized bythe value of the parameter � (or �). The parameter x0is expressed in terms of � due to boundary ondition(15), whih for our solution (17) an be rewritten as2� th(�x0) = ��: (19)It an be seen from this relation that as a onsequeneof x0 < 0, � an only be positive in the ase of � > 0,i. e., the loalized state exists only in the ase of anattrating interfae.Equation (13) requires the normalization ondition,whih in fat de�nes the total number of monomers per(dimensionless) unit area:N = 1Z�1 ju(x)j2dx: (20)We note that in the standard framework of the me-an-�eld approah, all monomers in the system are as-sumed to belong to a single hain and partiular e�etsof the hain ends are ignored. For simpliity, we let Ndenote the total number of monomers in the system.We note that in ontrast to the ase of a linear sys-tem (see Eq. (4)), in the nonlinear ase the normaliza-tion leads to a relation between the parameters � andN (or � and N). Substituting our solution (17) in (20)and taking the relation (19) between x0 and � into a-ount, we an �nally obtain the dependene N = N(�)589



I. V. Gerasimhuk, J.-U. Sommer, V. S. Gerasimhuk ÆÝÒÔ, òîì 139, âûï. 3, 2011or, vie versa, � = �(N) (or � = �(N)). For our system(� > 0 and � > 0), we arrive at the following result:N = �� 2�: (21)It is shown in Ref. [12℄ that three di�erent typesof nonlinear loalized states an exist for Eq. (13) de-pending on the relations between the parameters � and�. In the �rst ase (� < 0 and � > 0), the interfae isattrative, and the maximum of the amplitude of theloalized state is at the point of the interfae (trap).The loalized state in the ase where � < 0 and � < 0has the amplitude maxima loated symmetrially onboth sides of the interfae. And the last (third) asewhere � > 0 and � > 0 orresponds to our physialsituation.The maximum value of N in our ase is equal toNsat = �. This point orresponds to the limit ase� ! 0 (or � ! 0). No more monomers an be addedto the interfae in this ase. Thus, this point orre-sponds to the saturated state of the interfae. We notethat the eigenvalue �l of the linear system is given inresaled units by �l = ��24 : (22)Equation (13) an be alternatively derived from avariational priniple using the energy funtional E [u℄(see Ref. [4℄),E = 1Z�1 "�����u�x ����2 + �juj4 � �Æ(x)juj2# dx: (23)Substituting our solution (17) in Eq. (23) and usingexpression (21), we �nd the following relation betweenthe total energy E and the total number of monomersin the hain N (see [12℄):E = �lN � N312 + �N24 : (24)The �rst term in this relation desribes the energy ofN noninterating monomers in the hain and orre-sponds to the desription of the system in the linearapproximation; the seond term desribes the energyof interation of monomers in a pure soliton (as if theinterfae were absent); and the third term desribes theinteration of bound monomers through the interfae.We note that the sign of the trap (the sign of �) deter-mines only the last term; for � > 0, the presene of anattrative interfae inreases the energy of the loalizedstate (the interfae attrats the monomers, whih repeleah other).

Di�erentiating expression (24) with respet to Nand using relation (21) for N(�), we an easily verifythe relation �E�N = �:Hene, the eigenvalue � plays the role of hemial po-tential for monomers bound in a loalized state.2.2. Polymer hains loalization at twoadsorbing interfaesWe desribe a polymer hain in the system of twopenetrable interfaes. In the presene of two interfaes,the external potential Uext(x) in the initial variableshas the form (ompare with (3))Uext(x) = �kBT�[Æ(x+ d) + Æ(x � d)℄; (25)where the interfaes are haraterized by the value ofthe parameter �. As before, in the ase of attrationof monomers by interfaes the parameter � is positive,the x axis is direted perpendiular to the interfaes,and 2d is the distane between the interfaes.Using transformations (12) by means of whihEq. (13) had been obtained, we obtain the resaledSNLSE in the form�u = �d2udx2+2�juj2u��[Æ(x+d)+Æ(x�d)℄u; (26)with the sign funtion � = �1 for the respetive asesof repulsion and attration between monomers, and, asbefore, we use the initial symbols of variables �, x, d,and �.The Lagrangian density orresponding to Eq. (26)has the formL = � ����dudx ����2 � �juj4 ++ �[Æ(x+ d) + Æ(x� d)℄juj2 + �juj2: (27)Equation (26) redues to the orresponding homo-geneous equation of form (16) in the regions outsidethe interfaes with the boundary onditionsuj�d+0 = uj�d�0; (28)dudx �����d+0 � dudx �����d�0 = ��u���d: (29)Again, we onsider a positive exluded volume(� = +1) and the attration of monomers by interfaes(� > 0). For a positive exluded volume, three diffe-rent types of stationary loalized states an exist [13℄:590



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Adsorption of polymer hains : : :the in-phase symmetri state, the antisymmetri state,and the anti-phase asymmetri (inhomogeneous) state.The state with the asymmetri distribution of the den-sity near two interfaes splits o� in a bifuration man-ner from the antisymmetri solution. But beause theground state is dominant, we are only interested inthe in-phase symmetri solution whih in the regionsx < �d (1), x > d (2), and jxj < d (3) has the follo-wing form: u1;2(x) = � �sh[�(x� x1;2)℄ ;u3(x) = q0�n(�x; q) ; (30)where x2 < d and x1 = �x2. Here, n(�x; q) is theJaobi ellipti funtion with the modulus q. Also, weintrodue q0 =p1� q2; � = �p2q2 � 1 ; (31)where � is de�ned in (18). The ellipti modulus q variesin the range from 1=p2 to 1.The advantage of our method ompared with otherapproahes is that we deal with the exat solution.This allows onsidering all pieewise onstant poten-tial forms in a straightforward manner. Solution (30)is a one-parameter solution and is ompletely hara-terized by the value of the parameter � (or �). Theother two parameters q and x1 (or x2) are expressedin terms of � from boundary onditions (28) and (29),whih for our solution (30) an be rewritten as�sh[�(d� x2)℄ = q0�n(�d; q) ; (32)q0�2sn(�d; q)dn(�d; q)n2(�d; q) + �2 h[�(d� x2)℄sh2[�(d� x2)℄ == ��sh[�(d� x2)℄ : (33)Beause two interfaes attrat the monomers, a on-venient harateristis of a loalized state is representedby the amplitudes A1 = u(x = �d)and A2 = u(x = d)at these interfaes [3; 13; 14℄. Due to the symmetry ofthe loalized state, we an setA1 = A2 � A:
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Fig. 1. The dependene �(N) for the in-phase sym-metri state in the system with a positive exluded vo-lumeThen boundary onditions (32) and (33) an be rewrit-ten in terms of the amplitude A as follows:A = u(�d) = u(d) = �sh[�(d� x2)℄ = q0�n(�d; q) ; (34)pA2 � q02�2pA2 + q2�2 +ApA2 + �2 = �A: (35)Equation (35) an be redued to the formpA4 +A2�2 � q2q02�4 +ApA2 + �2 = �A: (36)The three relations in (34) and (35) (or (34) and(36)) determine the parameters A, x2, and q as fun-tions of the parameters � and d. In the general ase, itan be exatly solved numerially. However, a solutionan be obtained analytially in the limit ases �d � 1and � ! 0 (or � ! 0). In the limit �d � 1 (weakoupling between interfaes), the problem redues tothe e�etive system of two oupled anharmoni osilla-tors with a �hard� nonlinearity when the eigenvalue �inreases with the amplitude of the solution. This prob-lem is desribed analytially in more detail in Ref. [13℄.After the substitution of our in-phase symmetri so-lution (30) in the integral (20) de�ning the total num-ber of monomers in the hain, we an �nally obtainthe dependene N = N(�) and the inverse dependene� = �(N) (or � = �(N)), whih is presented in Fig. 1.It an be shown that the dependene for the in-phasesymmetri state terminates at the edge of the spetrumof linear waves (� = 0), and the pro�le of this spatiallyloalized state near the interfaes has the form of al-gebrai solitons with a power-law asymptoti behaviorat large distanes [15℄. This ase orresponds to thesituation where the total number of monomers tendsto its maximum value. A total number of monomers591



I. V. Gerasimhuk, J.-U. Sommer, V. S. Gerasimhuk ÆÝÒÔ, òîì 139, âûï. 3, 2011greater than the maximum value Nsat, orrespondingto the boundary of the band of linear bulk waves � = 0,annot be loalized in the system.Taking the symmetry of the in-phase symmetri so-lution (30) into aount and alulating the total num-ber of monomers, we obtain the exat resultN = 1Z�1 juj2dx = 2�[th[�(d� x2)℄� 1℄ ++ 2� sn(�d; q)dn(�d; q)n(�d; q) � 2� E(am(�d; q); q) ++ 2q02�2d; (37)where E('; q) is the ellipti integral of the seond typeand am('; q) = arsin[sn('; q)℄is the ellipti amplitude. Two parameters x2 = x2(�; d)and q = q(�; d) are determined from boundary ondi-tions (34) and (35) (or (36)).Using relation (32), we an eliminate the parameterx2 and then rewrite Eq. (37) asN = 2"s q02�2n2(�d; q) + �2 � �#++ 2� sn(�d; q)dn(�d; q)n(�d; q) �� 2�E(am(�d; q); q) + 2q02�2d: (38)We study the peuliarities of our system in the limitase �d � 1. (Note that we are not at the saturationlimit yet.) It follows from Eq. (34) that A � q0�. Fromboundary ondition (36) (or (35)), we then obtain therelation q�p2q2 � 1 = � or q� = �: (39)It follows from (39) that � = �=q, and, taking theinequality �d� 1 into aount, we obtain the followinglimitation for the distane d:d� q=� or d� 1=�: (40)In this limit ase, the total number of monomers (38)an be redued to the formN � 2 1�s1� q02q2 !�: (41)We next study the behavior of the system at thesaturation point de�ned by�! 0 and � ! 0: (42)

In this ase, we an rewrite solution (30) for u1;2(x) inthe formu1;2(x) = � �sh[�(x� x1;2)℄ � � 1x� x1;2 ; (43)and, as follows from (34), the amplitude at the interfaeis equal to A � 1d� x2 : (44)If we suppose that �d � 1, then we have A � q0�from (34). Substituting this expression in boundaryondition (35) (or (36)), we obtain the following resultfor the parameter q:q2 � 12 �1 + �22�2� : (45)But this means that the parameter �, whih is equal to� = �p2q2 � 1 � p2�; (46)is not small in the limit ase �d � 1 beause the pa-rameter � has an arbitrary value. This means thatthe parameter q is lose to 1=p2. Thus, the inequali-ty � � 1 leads to the limit ase for the parameter q,spei�ally, q ! 1=p2.We now suppose that the distane d is not small.The amplitude A is also not small, and boundary on-dition (34) an be rewritten asA � 1d� x2 � 1p2 �n ��d; 1=p2 � : (47)The dependene of the parameter q = q(�; d) (or,equivalently, � = �(�; d)), whih is neessary in order toobtain N in (38), in this ase should be found after thesubstitution of A from (47) in boundary ondition (36).In this general ase, as a result of this substitution, weobtain the following equation for the variable �:�2n3 ��d; 1=p2�+ 2�2n��d; 1=p2��� 2p2�� = 0: (48)It is now possible to redue one variable by intro-duing the saling variablesg� = �=� and y = �d: (49)We note y gives the overlap of the interfae pro�les interms of the linear solution. Here, y � 1 orrespondsto strongly overlapping interfaes, and y � 1 orre-sponds to a weak overlap. Using Eq. (49), we obtain592
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I. V. Gerasimhuk, J.-U. Sommer, V. S. Gerasimhuk ÆÝÒÔ, òîì 139, âûï. 3, 2011The distane d between two interfaes annot be ar-bitrary. It is limited by the maximum length of a hain,i. e., by the total number of monomers times the statis-tial segment length of the hain, dmax = (N�1)a. Theminimal distane dmin is de�ned by the parameter a.The total energy (per unit area) of the system E isde�ned by the integralE = 1Z�1 (�����u�x ����2 + �juj4 �� �[Æ(x+ d) + Æ(x� d)℄juj2) dx: (54)Substituting ground state solution (30) in Eq. (54) andtaking boundary ondition (34) into aount, we �ndthe exat expression for the total energy of the system:E = 2�33 + 23 � 2q02�2n2(�d; q) � �2�s q02�2n2(�d; q) + �2 ++ 4q02�33 sn(�d; q) � dn(�d; q)n3(�d; q) + 2(1� 2q2)�33 ��� sn(�d; q)dn(�d; q)n(�d; q) �E [am(�d); q℄�++ 2q02�13 � q2� �4d� 2�q02�2n2(�d; q) : (55)Again, we an introdue the saling variables y andg� and de�ne the appropriately redued energy of thesystem "sat = Esat=�3:In the limit ase � ! 0, we then obtain"sat � p2g3�3n3 �g�y; 1=p2 � h1+p2sn�g�y; 1=p2� �� dn�g�y; 1=p2�i� g2�n2 �g�y; 1=p2 � � g4�y6 : (56)Using the solution g�(y) of Eq. (50), we obtain asingle variate funtion "sat(y). The minimum value of"sat, as follows from (56), is equal to "minsat = �2=3.The universal dependene "sat = "sat(y) is presentedin Fig. 4. The energy of the saturated system is thusa monotonially inreasing funtion of the distanebetween the traps. We note that the ondition ofsaturation implies an exhange of hains by hangingthe distane aording to the result in Fig. 3. Thus, thesystem is onsidered in equilibrium with free hains ina highly dilute solution ( ! 0) populating the inter-faes until saturation is reahed. We note that there isno ontradition between the requirement of saturationand a highly diluted bulk solution for an adsorption
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ÆÝÒÔ, òîì 139, âûï. 3, 2011 Adsorption of polymer hains : : :strength per monomer (related by �) of the order of afew kT [16℄. In partiular, for hanges of the distanebetween the interfaes, where the saturation value nsatis dereased, hains have to be released beause of over-saturation (positive free energy exess).In Fig. 5, we plot the funtion "sat(nsat). Thislearly indiates two di�erent values (branhes) of thetotal exess energy of the two-interfae system for thesame value of the total number of monomers N loal-ized at the interfaes. These branhes orresponding tothe same value of the parameter N are related to twodi�erent distanes d1 and d2 between the interfaes, as
an be easily seen from the dependene for the totalnumber of monomers presented in Fig. 3. Hene, thereexist a high-energy phase (large separation) and a low-energy phase (lose interfaes).Also, we an alulate an important harateristiof the system for pratial measurements, the fore perunit area ating between the interfaes. In the generalase, F = �dE(d; �)dd ;and at the saturation limit we haveFsat = �dEsat(d)dd = p2 �3(�0d+ �)3 p2 + 3 sn ��d; 1=p2 � dn ��d; 1=p2 �n4 ��d; 1=p2 � ++p2 �2 �0 +p2 [�0 � � (�0d+ �)℄ sn ��d; 1=p2 � dn ��d; 1=p2 �n3 ��d; 1=p2 � ++ � ��2 (�0d+ �)� 18��0�9 n2 ��d; 1=p2 � � �3 (14�0d+ 5�)18 : (57)The parameter �0 � d�=dd an be easily found by di�erentiating Eq. (48), whih gives�0 = � �3�2n2 ��d; 1=p2 �+ 2j�j2� sn ��d; 1=p2 � dn ��d; 1=p2 �2�n3 ��d; 1=p2 �� d �3�2n2 ��d; 1=p2 �+ 2j�j2� sn ��d; 1=p2 � dn ��d; 1=p2 �� 2p2 j�j : (58)If we introdue the redued fore fsat = Fsat=�4 and the new funtion g�0(y) = �0=�2, then we an rewriteEq. (57) in the formfsat = � p2g2�g�0n3 �g�y; 1=p2 � n1 +p2sn�g�y; 1=p2� dn�g�y; 1=p2�o�� p2g3�(g�0y + g�)sn �g�y; 1=p2 � dn(g�y; 1=p2)n4 �g�y; 1=p2 � n1 +p2sn�g�y; 1=p2� dn�g�y; 1=p2�o++ 2g2�(g�0y + g�)sn �g�y; 1=p2 � dn �g�y; 1=p2 �n3 �g�y; 1=p2 � + 2g�g�0n2 �g�y; 1=p2 � � g4�2 ; (59)where g�0(y) = g� �3g2�n2 �g�y; 1=p2 �+ 2� sn �g�y; 1=p2 � dn �g�y; 1=p2 �2g�n3 �g�y; 1=p2 �� y �3g2�n2 �g�y; 1=p2 �+ 2� sn�g�y; 1p2 � dn �g�y; 1=p2 �� 2p2 ; (60)and g�(y) is the solution of Eq. (50).For di�erent values of the parameter �, we obtainthe universal dependene fsat = fsat(y) presented inFig. 6. In the limit y ! 0, we have g�0 � �2p2, andthe minimum value of fsat from Eq. (59) is equal tofminsat = �2. This behavior is in agreement with thatpredited by de Gennes in Ref. [4℄.

3. CONCLUSIONSWe have obtained exat solutions for the problem ofadsorption of real polymer hains in systems with twoadsorbing interfaes within the mean-�eld approxima-tion. We desribed loalized states with zero bulk on-595 12*



I. V. Gerasimhuk, J.-U. Sommer, V. S. Gerasimhuk ÆÝÒÔ, òîì 139, âûï. 3, 2011entration having �dynamial� equilibrium at the sat-uration limit. This an be realized for the adsorptionfrom highly diluted polymer solutions and strongly at-trating interfaes as disussed above. Beause of thehuge gain of free energy per hain in polymer adsorp-tion, highly diluted polymer solutions lead to saturatedsurfae states (see [4℄). Using the exat solution forthe SNLSE on intervals of onstant potentials opensthe possibility to treat various loalization problemsfor polymer hains in suh environments using the ap-propriate boundary onditions.For the saturation limit, we derived an exat salingsolution in whih the only relevant ontrol parameteris the measure of the overlap between the interfaesgiven by the saling variable that an be onsidered asa oupling parameter of the interfae�polymer system.We found that the saturation density of monomers be-haves nonmonotonially as a funtion of the distanebetween the interfaes, whih results in �two-phase� be-havior of the free energy as a funtion of the amountof adsorbed polymers (see Fig. 5). When the distanebeomes small, the polymer double layer an relax theexluded volume onstraints by forming larger loopsand tails in the outer region of the interfaes. Changingthe distane between the interfaes hanges the numberof hains adsorbed. A low-energy phase orrespondsto small distanes between the interfaes, and a high-energy phase orresponds to large distanes betweenthem. We note that the system is taken in the dynam-ial equilibrium at the saturation point.We found the energy of the system, whih turnedout to be stritly negative, and the fores ating bet-ween both interfaes due to the polymer�interfae ou-pling. The fores are found to be attrative and tomonotonially approah zero with inreasing the dis-tane between the interfaes, whih is in agreementwith the behavior predited by de Gennes [4℄.
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