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ANALYTIC APPROACH TO THE APPROXIMATE SOLUTIONOF THE INDEPENDENT DGLAP EVOLUTION EQUATIONSWITH RESPECT TO THE HARD-POMERON BEHAVIORB. Rezaei *, G. R. Boroun **Physi
s Department, Razi University67149, Kermanshah, IranRe
eived April 22, 2010We show that it is possible to use hard-Pomeron behavior to the gluon distribution and singlet stru
ture fun
tionat low x. We derive a se
ond-order independent di�erential equation for the gluon distribution and the singletstru
ture fun
tion. In this approa
h, both singlet quarks and gluons have the same high-energy behavior atsmall x. These equations are derived from the next-to-leading order DGLAP evolution equations. All results 
anbe 
onsistently des
ribed in the framework of perturbative QCD, whi
h shows an in
rease of gluon distributionand singlet stru
ture fun
tions as x de
reases.The Dokshitzer�Gribov�Lipatov�Altarelli�Parisi(DGLAP) evolution equations [1℄ are fundamentaltools in the study of the Q2 and x evolutions ofstru
ture fun
tions, where x is the Bjorken s
alingand Q2 is the four-momenta transfer in deep inelasti
s
attering (DIS) pro
esses [2℄. The measurements ofthe F2(x;Q2) stru
ture fun
tions by DIS pro
essesin the small-x region have opened up a new era inparton density measurements inside hadrons. Thestru
ture fun
tions re�e
t the momentum distribu-tions of partons in a nu
leon. It is also importantto know the gluon distribution inside a hadron atlow x be
ause gluons are expe
ted to be dominant inthis region. The steep in
rease in F2(x;Q2) towardslow x observed at hadron-ele
tron ring a

elerator(HERA) also indi
ates a similar in
rease in the gluondistribution towards low x in perturbative quantum
hromodynami
s (PQCD). In the usual pro
edure,the DIS data are analyzed by the next-to-leadingorder QCD �ts based on the numeri
al solution of theDGLAP evolution equations, and it is found that theDGLAP analysis 
an des
ribe the data well in theperturbative region Q2�1 GeV2 [3℄. As an alternativeto the numeri
al solution, we 
an study the behaviorof quarks and gluons through analyti
 solutions of theevolution equations. Although exa
t analyti
 solutionsof the DGLAP equations are not possible in the entire*E-mail: brezaei�razi.a
.ir**E-mail: boroun�razi.a
.ir

range of x and Q2, su
h solutions are possible under
ertain 
onditions [4; 5℄ and are then quite su

essfulas far as the HERA small-x data are 
on
erned.Small-x behavior of stru
ture fun
tions for �xed Q2re�e
ts the high-energy behavior of the virtual Comp-ton s
attering total 
ross se
tion with in
reasing thetotal 
enter-of-mass energy squared W 2 be
auseW 2 = Q2(1=x� 1):The appropriate framework for the theoreti
al de-s
ription of this behavior is the Regge-pole ex
hangepi
ture [6℄. It 
an be 
on�dently asserted that theRegge theory is one of the most su

essful approa
hesto the des
ription of high-energy s
attering of hadrons.This high-energy behavior 
an be des
ribed by two
ontributions: an e�e
tive Pomeron with its inter
eptslightly above unity (� 1:08) and the leading mesonRegge traje
tories with the inter
ept �R(0)�0:5 [7℄.The hypothesis of the Pomeron with data of thetotal 
ross se
tion shows that a better des
riptionis a
hieved in alternative models with the Pomeronhaving unit inter
ept, but with a harder j singularity(a double pole) [8℄. This model has two Pomeron
omponents, ea
h with the inter
ept �P = 1; one isa double pole and the other one is a simple pole [9℄.It is tempting, however, to explore the possibilityof obtaining approximate analyti
 solutions of theDGLAP equations themselves in the restri
ted domainof low x at least. Approximate solutions of theDGLAP equations have been reported [10�12℄ with440
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onsiderable phenomenologi
al su

ess. Su
h an ap-proximate s
heme involves a Taylor expansion, valid atlow x, and rephrases the DGLAP equations as partialdi�erential equations in x and Q2, whi
h 
an be solvedby standard methods.In the past three de
ades, some authors reporteda detailed analysis of the Regge input to the DGLAPequations [13�15℄. We have shown [16�19℄ that it waspossible to use Regge-like behavior as an input for theDGLAP evolution equations at low x. The small-xregion of the deep inelasti
 ele
tron�proton s
atteringo�ers a unique possibility to explore the Regge limit ofPQCD [6℄. This model gives the following parameteri-zations of the DIS distribution fun
tions:fi(x;Q2) = Ai(Q2)x��i(i = � (singlet stru
ture fun
tion) and g (gluon distri-bution)), where �i is the Pomeron inter
ept minus one;it follows that �i = d ln fi(x;Q2)d ln(1=x)de�nitely in
reases with Q2. In this paper, we 
on
en-trate on the Regge behavior, although good �ts to theresults 
learly show that the gluon distribution and thesinglet stru
ture fun
tion require a model with a hardPomeron. In this s
heme, this behavior, valid at lowx, is used, and the DGLAP evolution equations arerephrased as independent partial di�erential equationsin x and Q2, whi
h 
an be solved by standard methods.Also, we should be able to 
al
ulate �s and �g in thenext-to-leading order (NLO) DGLAP equations.The NLO DGLAP equations for the evolution ofthe singlet stru
ture fun
tion and the gluon distribu-tion 
an be written asdG(x;Q2)d lnQ2 = �s2� �� 1�xZ0 dz �PLO+NLOgg (1� z)G� x1� z ;Q2� +

+ PLO+NLOgq (1� z)�� x1� z ;Q2�� ;d�(x;Q2)d lnQ2 = �s2� �� 1�xZ0 dz �PLO+NLOqq (1� z)�� x1� z ;Q2� ++ 2nfPLO+NLOqg (1� z)G� x1� z ;Q2�� ; (1)
whereG(x;Q2) = xg(x;Q2); �(x;Q2) = 185 F ep2 (x;Q2)(at small x, the nonsinglet 
ontribution Fns2 (x;Q2) isnegligible and 
an be ignored). In the evolution ker-nels and the running 
oupling, we take Nf = 4 (thenumber of a
tive �avors); for simpli
ity, we also ig-nore the threshold fa
tors, whi
h be
ome irrelevant forQ2 � 4M2i , and illustrate our method using two quarkfamilies, u, d, s, and 
. ThenNf =Xe2i = 109 :The Pij are the NLO splitting fun
tions for quarks andgluons. The formal expressions for these fun
tions arefully known in the NLO [20℄.We �rst insert the hard Pomeron behavior of theparton distribution fun
tions (PDFs) in the DGLAPevolution equations. After integrating we �nd a set of
oupled formulas to extra
t the gluon distribution andthe singlet stru
ture fun
tiondGdt = �s2� [G(x; t)�1 +�(x; t)�1℄ ;d�dt = �s2� [G(x; t)�2 +�(x; t)�2℄ ; (2)where�1 = 2CA(1� x�g ) + �s2� (12CFNfTR � 46CANfTR)(1� x�g )�g ;�1 = 2CF (1� x�s) + �s2� (9CFCA � 40CFNfTR)(1� x�s)�s ;�2 = �s2�40CANfTR(1� x�g )�g ; �2 = �s2�40CFNfTR(1� x�s)�s : (3)
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olor Casimir operators. Inthe NLO, the running 
oupling 
onstant �s=2� has theform �s2� = 2�0t �1� �1 ln t�20t � (4)with �0 = 13(33� 2Nf ); �1 = 102� 383 Nf ;and the variable t is de�ned byt = ln�Q2�2�and � is the QCD 
ut-o� parameter.We now 
ombine terms and de�ne a relation bet-ween exponents of the gluon and singlet distributions.A

ording to the Regge theory, the high-energy (low-x)behavior of both gluons and sea quarks is 
ontrolled bythe same singularity fa
tor in the 
omplex angular mo-mentum plane [6℄, and we therefore expe
t�s = �g = �:We have �tted exponents to a power law in the low-x limit that we took for the PDFs. In the Reggetheory, the high-energy behavior of hadron�hadron andphoton�hadron total 
ross se
tions is determined by thepomeron inter
ept �P = 1 + �;and is given by �tot
(h)p(�) / ��:This behavior is also valid for a virtual photon forx� 1, leading to the well-known behaviorF2 / x��of the stru
ture fun
tions at �xed Q2 as x!0 [21�23℄.The power of � is found to be either � = 0 or � = 0:5.The �rst value 
orresponds to the soft Pomeron and these
ond value to the hard (Lipatov) Pomeron inter
ept.The form x��g of the gluon parameterization at smallx is suggested by Regge behavior, but be
ause the 
on-ventional Regge ex
hange is that of a soft Pomeron,with �g � 0, we may also allow a hard Pomeron with�g � 0:5.

The form x��s in the sea-quark parameterization
omes from similar 
onsiderations be
ause the pro
essg ! qq dominates the evolution of the sea quarks atsmall x. Hen
e the �ts to early HERA data have asthe 
onstraint �s = �g = �, be
ause the value of �should be 
lose to 0:5 in quite a broad range of lowx [4; 7�9; 24℄.After su

essive di�erentiations of both sides ofEqs. (2), multipli
ation by G�1(x; t), and some re-arrangments, we �nd independent inhomogeneous se-
ond-order di�erential equations for �g and �s as fun
-tions of t:2��1�s lnxd2�gdt2 � ��1 + �2�1 � 2�d(�1�s)�1dt ++ 2��1�s lnxd�gdt � �lnxd�gdt ++ d(�1��11 )dt � �s2� ��1�2�1 � �2�� = 0 (5)and2��2�s lnxd2�sdt2 � ��1 + �2�2 � 2�d(�2�s)�1dt ++ 2��2�s lnxd�sdt ��lnxd�sdt + d(�2��12 )dt �� �s2� ��1�2�2 � �1�� = 0: (6)The presented results give independent evolution equa-tions for the gluon and also the singlet stru
ture fun
-tion exponents at small x. These equations show thatthe exponents are fun
tions of Q2. The lnQ2 depen-den
e of the exponents has a se
ond-degree polynomialbehavior. By solving these evolution equations, we 
andetermine exponents with the starting parameteriza-tions of exponents�i(t0) = d ln fi(x; t0)d ln(1=x)respe
tively given by the input distribution of the par-tons and its derivatives [25�28℄. Therefore, the e�e
-tive power-law behavior of the gluon distribution andthe singlet stru
ture fun
tion 
orresponds tofi(x; t) = fi(x; t0)x�(�i(t)��i(t0)); i = �; g: (7)If we want to perform parton distribution fun
tions,we need to �x these at the initial s
alet0 = ln Q20�2 :442



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Analyti
 approa
h to the approximate solution : : :G(x;Q2)

051015
20253035
404550

051015
20253035
404550

051015
20253035
404550G(x;Q2)G(x;Q2)

10�4 10�3 0:01 0:1 10�4 10�3 0:01 0:1 10�4 10�3 0:01 0:1xxx

Q2 = 20 GeV2 Q2 = 50 GeV2 Q2 = 100 GeV2

Fig. 1. The gluon distribution vs. x at �xed Q2 values (
ir
les) 
ompared with the DL �t [7; 28℄ (solid lines) and the GRVparameterization [27℄ (dashed lines)
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Fig. 2. The 
al
ulated values of the stru
ture fun
tion F2 for several values of Q2 plotted as a fun
tion of x with the startingparameterization of the stru
ture fun
tion at Q20 = 5 GeV2 (
ir
les), 
ompared with the next-to-leading-order QCD �t tothe H1 data with total errors (triangles), and also with the DL �t [7; 28℄ (solid lines). The dashed lines represent the resultsin [23℄ for the GRV parameterization of the gluon distribution fun
tion and the parton stru
ture fun
tionHere, we used the QCD 
ut-o� parameter �4MS == 0:323 GeV [11℄ for �s(Mz2) = 0:119. In our 
al
ula-tions, we also need the initial 
onditions fi(x; t0) and�i(t0) that 
orrespond to the input parameterization.To test the validity of our gluon distribution, we 
al- 
ulate the gluon (or singlet) distribution fun
tions andexponent of the gluon (or singlet) distribution usingEq. (7) and 
ompare them with the theoreti
al predi
-tions starting with the evolution at Q20 = 5 GeV2. Theresults of 
al
ulation are shown in Figs. 1 and 2 at se-443



B. Rezaei, G. R. Boroun ÆÝÒÔ, òîì 139, âûï. 3, 2011veral Q2 values. As 
an be seen from these �gures, thevalues of fi(x;Q2) in
rease as x de
reases. In these �-gures, we 
ompare our results for the gluon distributionfun
tion and for the proton stru
ture fun
tion with theDonna
hie�Landsho� (DL) �t [7; 28℄ and H1 data [25℄with the total errors at Q2 values. Also, we 
omparedour predi
tions for the proton stru
ture fun
tion withRef. [23℄. The proton stru
ture fun
tion 
orresponds tothe gluon distribution fun
tion at xg � 2x upon inte-gration of the DGLAP equation. In this integration,we used from the standard Gluk�Reya�Vogt (GRV)parameterizations. We have taken the DL paramet-ri
 form for the starting distribution at Q20 = 5 GeV2given byxg(x;Q2) = 0:95(Q2)1+�0(1+Q2=0:5)�1��0=2x��0 ;where �0 = 0:437 a

ording to a hard-Pomeron ex-
hange. We 
an see that these distribution fun
tionvalues in
rease as x de
reases, but with a somewhatsmaller rate. This behavior is asso
iated with the ex-
hange of an obje
t known as the hard Pomeron. Ha-ving 
on
luded that the data for F2 require a hard-po-meron 
omponent, it is ne
essary to test this with ourresults, as in Fig. 2.To 
on
lude, we have obtained independent solu-tions for the gluon and singlet exponents based on theDGLAP evolution equations with respe
t to the Reggebehavior in the next-to-leading order at low x. Carefulinvestigation of our results shows an agreement withthe previously published parton distributions basedon QCD. The gluon distribution and singlet stru
turefun
tions in
rease as usual, as x de
reases. The formof the obtained distribution fun
tions for the gluon dis-tribution and the singlet stru
ture fun
tions are simi-lar to the one predi
ted from the parton parameteri-zation. The formulas used to generate the parton dis-tributions are in agreement with the in
rease observedin H1 experiments. These results also show that theexponents in
rease nonlinearly with respe
t to lnQ2 asx de
reases. The behaviors of the distribution fun
-tions at low x are 
onsistent with a power-law beha-vior. The obtained results give strong indi
ations thatthe proposed formulas, being very simple, provide re-latively a

urate values for the gluon distribution andstru
ture fun
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