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We show that it is possible to use hard-Pomeron behavior to the gluon distribution and singlet structure function
at low 2. We derive a second-order independent differential equation for the gluon distribution and the singlet
structure function. In this approach, both singlet quarks and gluons have the same high-energy behavior at
small 2. These equations are derived from the next-to-leading order DGLAP evolution equations. All results can
be consistently described in the framework of perturbative QCD, which shows an increase of gluon distribution

and singlet structure functions as = decreases.

The  Dokshitzer—Gribov-Lipatov—Altarelli-Parisi
(DGLAP) evolution equations [1] are fundamental
tools in the study of the Q2 and x evolutions of
structure functions, where z is the Bjorken scaling
and Q2 is the four-momenta transfer in deep inelastic
scattering (DIS) processes [2]. The measurements of
the Fy(x,Q?) structure functions by DIS processes
in the small-x region have opened up a new era in
parton density measurements inside hadrons. The
structure functions reflect the momentum distribu-
tions of partons in a nucleon. It is also important
to know the gluon distribution inside a hadron at
low z because gluons are expected to be dominant in
this region. The steep increase in Fy(z,Q?) towards
low x observed at hadron-electron ring accelerator
(HERA) also indicates a similar increase in the gluon
distribution towards low z in perturbative quantum
chromodynamics (PQCD). In the usual procedure,
the DIS data are analyzed by the next-to-leading
order QCD fits based on the numerical solution of the
DGLAP evolution equations, and it is found that the
DGLAP analysis can describe the data well in the
perturbative region Q?>1 GeV? [3]. As an alternative
to the numerical solution, we can study the behavior
of quarks and gluons through analytic solutions of the
evolution equations. Although exact analytic solutions
of the DGLAP equations are not possible in the entire
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range of z and @2, such solutions are possible under
certain conditions [4,5] and are then quite successful
as far as the HERA small-z data are concerned.

Small-z behavior of structure functions for fixed (>
reflects the high-energy behavior of the virtual Comp-
ton scattering total cross section with increasing the
total center-of-mass energy squared W?2 because

W?=Q*(1/z —1).

The appropriate framework for the theoretical de-
scription of this behavior is the Regge-pole exchange
picture [6]. It can be confidently asserted that the
Regge theory is one of the most successful approaches
to the description of high-energy scattering of hadrons.
This high-energy behavior can be described by two
contributions: an effective Pomeron with its intercept
slightly above unity (~ 1.08) and the leading meson
Regge trajectories with the intercept ar(0)~0.5 [7].
The hypothesis of the Pomeron with data of the
total cross section shows that a better description
is achieved in alternative models with the Pomeron
having unit intercept, but with a harder j singularity
(a double pole) [8]. This model has two Pomeron
components, each with the intercept ap = 1; one is
a double pole and the other one is a simple pole [9].
It is tempting, however, to explore the possibility
of obtaining approximate analytic solutions of the
DGLAP equations themselves in the restricted domain
of low z at least. Approximate solutions of the
DGLAP equations have been reported [10-12] with
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considerable phenomenological success. Such an ap-
proximate scheme involves a Taylor expansion, valid at
low x, and rephrases the DGLAP equations as partial
differential equations in # and @2, which can be solved
by standard methods.

In the past three decades, some authors reported
a detailed analysis of the Regge input to the DGLAP
equations [13-15]. We have shown [16-19] that it was
possible to use Regge-like behavior as an input for the
DGLAP evolution equations at low x. The small-z
region of the deep inelastic electron—proton scattering
offers a unique possibility to explore the Regge limit of
PQCD [6]. This model gives the following parameteri-
zations of the DIS distribution functions:

filz, Q%) = A;(Q%)a™N

(i = X (singlet structure function) and ¢ (gluon distri-
bution)), where \; is the Pomeron intercept minus one;
it follows that

N dln f;(z,Q?)
' dn(1/x)

definitely increases with Q2. In this paper, we concen-
trate on the Regge behavior, although good fits to the
results clearly show that the gluon distribution and the
singlet structure function require a model with a hard
Pomeron. In this scheme, this behavior, valid at low
x, is used, and the DGLAP evolution equations are
rephrased as independent partial differential equations
in 2 and Q?, which can be solved by standard methods.
Also, we should be able to calculate A\; and A in the
next-to-leading order (NLO) DGLAP equations.

The NLO DGLAP equations for the evolution of
the singlet structure function and the gluon distribu-
tion can be written as

dG(z,Q%) _ as
dln@Q?> 27
1—z
X /dz [Png0+NL0(1—z)G<1fZ,Q2> +

0

+ Pquo+NLo(1 )T (1 f 27Q2>:| 7
dS(z,Q%) _ as
dlnQ? 27
(1)
X / dz |PLOTNIO(1 - 2)% <—1 — 2,Q2> +
0
+ 20y PpOTNIO(1 - )G <—1 - Z,Q2>] :
where
2 2 2 18 ep 2
G(va )=xg(x,Q )7 Z(va ):EF2 (337@ )

(at small x, the nonsinglet contribution F*(z, Q?) is
negligible and can be ignored). In the evolution ker-
nels and the running coupling, we take Ny = 4 (the
number of active flavors); for simplicity, we also ig-
nore the threshold factors, which become irrelevant for
Q? > 4M?, and illustrate our method using two quark
families, u, d, s, and c¢. Then
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The P;; are the NLO splitting functions for quarks and
gluons. The formal expressions for these functions are
fully known in the NLO [20].

We first insert the hard Pomeron behavior of the
parton distribution functions (PDFs) in the DGLAP
evolution equations. After integrating we find a set of
coupled formulas to extract the gluon distribution and
the singlet structure function

dG  ag
dt  or
d¥  ag
dt 2w

Gz, t)m + Z(z, )],
[G(QD, t)772 + Z(xv t)ﬁ2] )

where

204 (1 — a7 + ;‘—S(HCFNfTR — 46C AN TR)(1 — 2*)
m = u 9
)\9
205 (1 — %) + 22 (9CFC 4 — 40C N Tr)(1 — o)
8y = 2 (3)

1 — )\ 9

Qg A g A
—4OCANfTR(1 - g) —4OOFNfTR(1 - S)

2 = 27 9 62 = 2m

Ag
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For the SU(N) gauge group, we have

N2-1

Ca =N, CF:Wa

1
Tr = NyTgr, Tgr= 3
where C'r and C'4 are the color Casimir operators. In
the NLO, the running coupling constant a /27 has the

form

Qg 2 Bl Int
e i 4
2r Pot [ Bat ] @
with
1 38
6025(33—2]\[)0), 61:102—?]\]}‘,

and the variable ¢ is defined by

(9

A2
and A is the QCD cut-off parameter.

We now combine terms and define a relation bet-
ween exponents of the gluon and singlet distributions.
According to the Regge theory, the high-energy (low-z)
behavior of both gluons and sea quarks is controlled by
the same singularity factor in the complex angular mo-
mentum plane [6], and we therefore expect

Ao =Xy = A\

We have fitted exponents to a power law in the low-
x limit that we took for the PDFs. In the Regge
theory, the high-energy behavior of hadron—hadron and
photon—hadron total cross sections is determined by the
pomeron intercept

ap =14+ A,

and is given by

tot

Uv(h)p(y) X I/>\.

This behavior is also valid for a virtual photon for
r < 1, leading to the well-known behavior

Fy o< A

of the structure functions at fixed Q2 as x—0 [21-23].
The power of X is found to be either A = 0 or A = 0.5.
The first value corresponds to the soft Pomeron and the
second value to the hard (Lipatov) Pomeron intercept.
The form 2~*s of the gluon parameterization at small
x is suggested by Regge behavior, but because the con-
ventional Regge exchange is that of a soft Pomeron,
with Ay ~ 0, we may also allow a hard Pomeron with
Ag ~ 0.5.
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The form =~

s in the sea-quark parameterization
comes from similar considerations because the process
g — ¢qq dominates the evolution of the sea quarks at
small z. Hence the fits to early HERA data have as
the constraint Ay = A\, = A, because the value of A
should be close to 0.5 in quite a broad range of low
x [4,7-9,24].

After successive differentiations of both sides of
Eqgs. (2), multiplication by G~(z,t), and some re-
arrangments, we find independent inhomogeneous se-
cond-order differential equations for A, and A, as func-
tions of t:

B?Zs lnxd;t);g _ [771;1,32 B QWd(ﬂlgts)_l +
+ ,B?Zs lnx%] {lnx% +
A 0 )
and
njzs lnxd;t);s _ {771;2& _ 27Td(n23t8)71 n
2
5 ()] =0 o

The presented results give independent evolution equa-
tions for the gluon and also the singlet structure func-
tion exponents at small x. These equations show that
the exponents are functions of Q2. The ln Q? depen-
dence of the exponents has a second-degree polynomial
behavior. By solving these evolution equations, we can
determine exponents with the starting parameteriza-
tions of exponents

dln fi(év,to)

Ailto) = =7

respectively given by the input distribution of the par-
tons and its derivatives [25-28]. Therefore, the effec-
tive power-law behavior of the gluon distribution and
the singlet structure function corresponds to
filw,t) = fi(x,to)a= MO MD =5 6 (T)
If we want to perform parton distribution functions,
we need to fix these at the initial scale

Q4

t0=1nA2.
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Fig.1. The gluon distribution vs. z at fixed Q* values (circles) compared with the DL fit [7, 28] (solid lines) and the GRV
parameterization [27] (dashed lines)
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Fig.2. The calculated values of the structure function F: for several values of Q2 plotted as a function of = with the starting

parameterization of the structure function at Q3 = 5 GeV? (circles), compared with the next-to-leading-order QCD fit to

the H1 data with total errors (triangles), and also with the DL fit [7, 28] (solid lines). The dashed lines represent the results
in [23] for the GRV parameterization of the gluon distribution function and the parton structure function

Here, we used the QCD cut-off parameter A?M—S =
= 0.323 GeV [11] for as(M,2) = 0.119. In our calcula-
tions, we also need the initial conditions f;(x,t) and
Ai(to) that correspond to the input parameterization.
To test the validity of our gluon distribution, we cal-
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culate the gluon (or singlet) distribution functions and
exponent of the gluon (or singlet) distribution using
Eq. (7) and compare them with the theoretical predic-
tions starting with the evolution at Q3 = 5 GeV?. The
results of calculation are shown in Figs. 1 and 2 at se-
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veral Q2 values. As can be seen from these figures, the
values of fi(z,Q?) increase as = decreases. In these fi-
gures, we compare our results for the gluon distribution
function and for the proton structure function with the
Donnachie-Landshoff (DL) fit [7,28] and H1 data [25]
with the total errors at Q% values. Also, we compared
our predictions for the proton structure function with
Ref. [23]. The proton structure function corresponds to
the gluon distribution function at z, ~ 2z upon inte-
gration of the DGLAP equation. In this integration,
we used from the standard Gluk—-Reya—Vogt (GRV)
parameterizations. We have taken the DL paramet-
ric form for the starting distribution at Q2 = 5 GeV?
given by

zg(z,Q%) = 0.95(Q%) T (1+Q?/0.5) 1 ~c0/2p <0,

where ¢g = 0.437 according to a hard-Pomeron ex-
change. We can see that these distribution function
values increase as x decreases, but with a somewhat
smaller rate. This behavior is associated with the ex-
change of an object known as the hard Pomeron. Ha-
ving concluded that the data for F» require a hard-po-
meron component, it is necessary to test this with our
results, as in Fig. 2.

To conclude, we have obtained independent solu-
tions for the gluon and singlet exponents based on the
DGLAP evolution equations with respect to the Regge
behavior in the next-to-leading order at low . Careful
investigation of our results shows an agreement with
the previously published parton distributions based
on QCD. The gluon distribution and singlet structure
functions increase as usual, as = decreases. The form
of the obtained distribution functions for the gluon dis-
tribution and the singlet structure functions are simi-
lar to the one predicted from the parton parameteri-
zation. The formulas used to generate the parton dis-
tributions are in agreement with the increase observed
in H1 experiments. These results also show that the
exponents increase nonlinearly with respect to InQ? as
x decreases. The behaviors of the distribution func-
tions at low x are consistent with a power-law beha-
vior. The obtained results give strong indications that
the proposed formulas, being very simple, provide re-
latively accurate values for the gluon distribution and
structure functions.
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