ОБРАЗОВАНИЕ НЕУПОРЯДОЧЕННОЙ (СТЕКОЛЬНОЙ) ФАЗЫ В ДЕФОРМИРОВАННОМ ТВЕРДОМ ⁴Не В ОБЛАСТИ СУПЕРСОЛИД-СОСТОЯНИЯ

И. А. Дегтярев, А. А. Лисунов, В. А. Майданов, В. Ю. Рубанский^{*}, С. П. Рубец, Э. Я. Рудавский, А. С. Рыбалко, В. А. Тихий

> Физико-технический институт низких температур им. Б. И. Верника Национальной академии наук Украины 61103, Харьков, Украина

> > Поступила в редакцию 2 апреля 2010 г.

Предложена методика создания беспорядка в кристаллах гелия путем их деформирования непосредственно в ходе эксперимента и проведены прецизионные измерения давления при постоянном объеме в образцах разного качества. Обнаружено, что в деформированных кристаллах, наряду с фононным вкладом в давление, наблюдается избыточное давление, имеющее квадратичную зависимость от температуры, типичную для неупорядоченной стекольной фазы, а также для дислокационного вклада в давление. Эффект наблюдается в суперсолид-области и исчезает после тщательного отжига кристаллов. В процессе отжига кристаллов обнаружена ультрамедленная релаксация давления, что также типично для стекольной фазы. Полученные экспериментальные результаты анализируются в рамках дислокационной модели и модели двухуровневых туннельных состояний.

1. ВВЕДЕНИЕ

В последнее время очень интенсивно ведутся экспериментальные и теоретические исследования возможностей реализации в твердом ⁴Не особого состояния (суперсолид), когда система одновременно обладает кристаллическим порядком и сверхтекучестью (см., например, обзоры [1–3]). В торсионных экспериментах был обнаружен неклассический вращательный момент инерции [4], в акустических экспериментах было зарегистрировано аномальное поведение сдвигового модуля [5], неожиданные результаты были получены в экспериментах по поиску массопереноса в твердом гелии [6]. Однако обнаружение особенности в поведении твердого ⁴Не при низких температурах пока не удается однозначно объяснить в рамках какого-то механизма.

Было показано теоретически, что идеальный ГПУ-кристалл ⁴Не не может быть сверхтекучим (см. [1]). Большинство авторов согласны в том, что для образования суперсолид-фазы в кристалле должен быть какой-то тип беспорядка — дефекты, границы зерен, жидкие или стекольные включения. Возможность образования стекольной фазы при очень быстром охлаждении образца ⁴Не была предсказана в работе [7] на основе моделирования методом Монте-Карло. Термодинамический анализ твердого ⁴Не при низких температурах, проведенный в работах [8, 9], позволил авторам также сделать заключение о стеклоподобном поведении, причем было отмечено, что стекольная фаза может быть индуцирована дислокациями. Принципиальная возможность объяснения неклассической вращательной инерции в рамках стекольной модели была продемонстрирована в работе [10], где рассматривалось коррелированное туннельное движение группы атомов, образующих двухуровневую систему.

Образование стекольной фазы в твердом ⁴Не в области суперсолид-эффектов было обнаружено с помощью прецизионных измерений давления [11,12]. Эксперименты показали, что в кристалле, получаемом при быстром охлаждении, наряду с фононным вкладом в давление, присутствует вклад стекольной фазы, который при низких температурах становится доминирующим. Было также установлено, что после тщательного отжи-

^{*}E-mail: rubanskiy@ilt.kharkov.ua

га стекольный вклад практически отсутствовал, причем отжиг дефектных образцов сопровождался огромной релаксацией давления. Поведение давления в кристаллах гелия с дефектами роста исследовалось затем в работе [13], где были подтверждены результаты [11, 12].

Поскольку образование стекольной фазы в твердом гелии естественно связать с каким-то типом беспорядка в кристалле, то представлялось целесообразным создавать беспорядок непосредственно в ходе эксперимента и исследовать при этом условия возникновения стекольной фазы. В данной работе предложен метод создания беспорядка путем деформирования исследуемого кристалла in situ. Метод прецизионной барометрии используется для поиска стекольной фазы как в деформированном кристалле, так и после тщательного отжига. В работе также рассматриваются особенности релаксации давления при отжиге деформированных кристаллов и связь наблюдаемых эффектов с дислокационной моделью и моделью двухуровневых туннельных состояний. Первые полученные результаты были представлены на конференции по квантовым жидкостям и кристаллам QFS-2009 и опубликованы в трудах конференции [14].

2. ЯЧЕЙКА ДЛЯ ДЕФОРМАЦИИ КРИСТАЛЛА

Для создания беспорядка в образце твердого гелия использовалась двухкамерная ячейка, схема которой приведена на рис. 1. Ячейка содержала две

Рис.1. Схема двухкамерной измерительной ячейки: 1 — измерительная камера, 2 — управляющая камера, 3 — мембрана, 4 — подвижные электроды емкостных датчиков давления, 5 — неподвижные электроды, 6 — линии заполнения камер, 7 слабая тепловая связь, 8 — тонкостенные опоры, 9 — термометры сопротивления, 10 — плита камеры растворения

камеры — измерительную 1 и управляющую 2, которые были разделены мембраной 3 из бериллиевой бронзы толщиной около 2 мм. Исследуемый образец выращивался в камере 1 и имел форму диска диаметром 35 мм и высотой 0.5 мм. В управляющую камеру 2 можно было конденсировать жидкий гелий до требуемого давления и в результате прогиба мембраны деформировать кристалл непосредственно в ходе эксперимента. При этом в каждый момент времени можно было контролировать давление в измерительной и управляющей камерах с помощью емкостных датчиков давления, имеющих подвижные электроды 4 и неподвижные электроды 5. Каждый датчик обеспечивал разрешение по давлению ± 3 Па.

Измерительная ячейка имела слабую тепловую связь 7 с плитой камеры растворения 10, что обеспечивало возможность в широких пределах изменять скорость охлаждения образца. Тонкостенные стальные трубки 8 служили опорами для крепления ячейки. Для измерения и стабилизации температуры использовались два термометра сопротивления RuO₂, которые располагались на корпусе самой ячейки.

Деформирование кристалла производилось по процедуре, схема которой приведена на рис. 2, где показано изменение со временем температуры ячейки Т (рис. 2*a*), давления в измерительной камере P_m (рис. 26) и давления в управляющей камере P_c (рис. 2в). Деформация начиналась в момент времени 1, когда температура ячейки составляла около 50 мК, а давление в измерительной камере было около 41 бар. В этот момент начиналось заполнение жидким ⁴Не управляющей камеры, которое проводилось ступеньками до давления примерно 24 бар. При этом на каждой ступеньке во время заполнения управляющей камеры жидкостью температура ячейки слегка поднималась за счет выделения теплоты конденсации, а затем постепенно релаксировала к своему первоначальному значению. Что же касается давления в измерительной камере P_m , то оно ступенчатым образом увеличивалось в меру прогиба мембраны и при $P_c \approx 24$ бар давление P_m увеличилось примерно на 7 бар.

В момент времени 2 был произведен быстрый сброс давления в управляющей камере до нуля, а давление в измерительной камере довольно быстро вернулось к своему начальному значению. Во время быстрого сброса давления наблюдался небольшой всплеск температуры ячейки, что, по-видимому, обусловлено подплавлением кристалла и последующим выделением теплоты кристаллизации.

В экспериментах использовался ⁴Не коммерческой чистоты, а образцы выращивались из газовой

Рис.2. Временной режим создания избыточного давления для деформирования исследуемого кристалла: *a* — изменение температуры измерительной ячейки, *б* — изменение давления измерительной камеры, *в* — изменение давления управляющей камеры

фазы методом блокировки капилляра. Высокое давление создавалось с помощью адсорбционного газификатора, при этом первые порции десорбированного газа, богатого ³Не, удалялись. Это позволило уменьшать концентрации ³Не в исследуемых образцах. Об отсутствии заметного количества примеси ³Не свидетельствовал тот факт, что при охлаждении образца примерно до 30 мК не было обнаружено фазовое расслоение. Исследования проводились в области температур 70–650 мК и давлений 41–45 бар.

3. ВКЛАД СТЕКОЛЬНОЙ ФАЗЫ В ДАВЛЕНИЕ ДЕФОРМИРОВАННОГО КРИСТАЛЛА

Проведенные ранее [11, 12] прецизионные измерения температурной зависимости давления качественных кристаллов ⁴Не, выращенных при посто-

Рис. 3. Температурная зависимость давления одного из исследуемых кристаллов для двух различных условий: • — отожженный кристалл до деформации, ■ — кристалл после деформации. Сплошные линии: 1 — расчет по формуле (2), 2 — расчет по формуле (4)

янном объеме, показали, что полное давление P(T)можно записать в виде суммы фононного $P_{ph}(T)$ и вакансионного $P_v(T)$ вкладов:

$$P(T) = P_0 + P_{ph}(T) + P_v(T), \qquad (1)$$

где P_0 — давление при T = 0. Вакансионный вклад в термодинамические свойства твердого ⁴Не был подробно проанализирован в работах [15, 16] на основании имеющихся многочисленных экспериментальных работ [17–24] с использованием модели широкозонных вакансионных возбуждений [25]. Поскольку вакансионный вклад экспоненциально уменьшается с понижением температуры, то, как показали оценки, при температурах ниже 0.7 К его вклад становится пренебрежимо малым,

$$P_{ph} = \frac{3\pi^4}{5} \frac{\gamma_\theta}{V} R \frac{T^4}{\Theta_D^3} = a_{ph} T^4, \qquad (2)$$

где Θ_D — дебаевская температура, V — молярный объем, γ_{θ} — параметр Грюнайзена, R — газовая постоянная.

Из анализа измеренных температурных зависимостей давления исследуемых кристаллов для различных условий следует, что уравнение (2) хорошо описывает экспериментальные данные лишь для кристаллов, подвергнутых тщательному отжигу. На рис. 3 для сравнения приведены температурные зависимости давления одного и того же кристалла сразу после отжига перед деформацией и после деформации. Линия 1 соответствует фононному вкладу, рассчитанному по формуле (2). Как видно на графиках, для деформированного кристалла наблюдается заметное избыточное давление по сравнению с фононным.

Естественно предположить, что это избыточное давление связано с образованием в кристалле высокой концентрации дефектов вследствие деформации или с образованием неупорядоченной стекольной фазы. Обычно такая фаза вносит линейный вклад в теплоемкость, что соответствует квадратичному вкладу в давление:

$$P_g = a_g T^2, (3$$

где коэффициент a_g характеризует количественно вклад стекольной фазы в давление. С учетом стекольного вклада полное давление деформированного кристалла

$$P(T) - P_0 = a_{ph}T^4 + a_gT^2 \tag{4}$$

хорошо описывает экспериментальные данные (линия 2 на рис. 3).

Отметим, что в данной работе, в отличие от условий эксперимента [11], свежевыращенные кристаллы были довольно хорошего качества и стекольный вклад в давление у них практически отсутствовал. Возможно, это связано с тем, что в связи с большим диаметром капилляра заполнения кристалл начинал расти не из капилляра, как это обычно бывает при использовании метода блокировки капилляра, а из зародышей, возникающих в объеме самой ячейки. Это означает, что на начальной стадии рост кристалла происходит при практически постоянном давлении, в результате чего вырастал кристалл с малым количеством дефектов.

В данной работе исследуемые кристаллы подвергались деформации после тщательного отжига. Дефекты, которые возникали в кристалле в результате деформации, скорее всего, были дислокациями. Эта ситуация существенно отличается от условий эксперимента [11, 12], где исследуемый кристалл содержал дефекты роста, возникающие в процессе очень быстрого охлаждения. Как показали недавние ЯМР-эксперименты [26], такими дефектами роста могут быть даже жидкие капли, которые остаются в карманах на стенках ячейки или даже в объеме ячейки.

Для определения фононного и стекольного вкладов в давление использовалось выражение (4). Поскольку, как показали измерения, при температуре ниже примерно 100 мК давление уже не менялось при понижении температуры (в пределах погрешности измерений), значение давления, измеренное при

Рис.4. Отношение стекольного вклада в давление P_g к фононному вкладу P_{ph} для деформированного образца в зависимости от температуры. Давление деформации составляет около 7 бар

самой низкой температуре, принималось равным P_0 . Определение параметров a_{ph} и a_g было основано на том, что фононный и стекольный вклады имеют разные температурные зависимости. Поскольку давление кристалла измерялось емкостным датчиком, для обеспечения прецизионных измерений необходимо было учитывать изменение емкости пустого датчика с температурой, для чего проводились специальные калибровки. Методика определения значений a_{ph} и a_g подробно описана в работе [12]. Полученные значения этих параметров для отожженных и деформированных образцов приведены в таблице после усреднения экспериментальных данных, полученных при исследовании шести отожженных образцов и четырех деформированных образцов.

Как следует из таблицы, в деформированных кристаллах вклад стекольной фазы в несколько раз больше, чем в отожженных образцах. В деформированном кристалле вклад стекольной фазы становится доминирующим, что иллюстрируется рис. 4, где приведена температурная зависимость отношения стекольного вклада к фононному вкладу в давление для одного из деформированных образцов. При низких температурах стекольный вклад превышает фононный вклад в давление более чем на порядок.

Отметим, что величина a_g , характеризующая количественный вклад стекольной фазы в давление, как и оказалось, зависит от степени деформации кристалла. В эксперименте степень деформации изменялась путем изменения давления P_c в управля-

Тип образца	$a_{ph} \cdot 10^3, \text{foap-} \mathrm{K}^{-4}$	$a_g \cdot 10^3$, $\operatorname{fap} \cdot \mathrm{K}^{-2}$
Отожженный кристалл	7.85 ± 0.31	0.38 ± 0.09
Деформированный кристалл	5.43 ± 0.37	1.9 ± 0.21

Таблица

Рис. 5. Зависимость параметра стекольного вклада в давление от избыточного давления в измерительной камере ΔP_m

ющей камере, которое вызывало прогиб мембраны. Каждому значению P_c соответствовала величина избыточного давления ΔP_m в измерительной камере. Зависимость параметра a_g от величины ΔP_m приведена на рис. 5.

Что же касается фононного вклада в давление, то, как следует из таблицы, для деформированного кристалла этот вклад на 30 % меньше, чем для отожженного образца. Другими словами, это означает, что в результате деформации возрастает дебаевская температура в соответствии с формулой (2). Такое поведение фононной подсистемы в твердом гелии наблюдалось и раньше в работах [13, 24], где в деформированных кристаллах было обнаружено уменьшение фононного вклада в давление. Отметим, что для исследованных отожженных кристаллов значение дебаевской температуры оказалось завышенным по сравнению с известными литературными данными [15]. Это связано с тем, что отжиг не устраняет все дефекты кристалла. Аналогичная ситуация наблюдалась также в работе [27], где было отмечено, что некоторые типы дефектов слабо чувствительны к отжигу.

4. РЕЛАКСАЦИЯ ДАВЛЕНИЯ ПРИ ОТЖИГЕ ДЕФОРМИРОВАННЫХ ОБРАЗЦОВ И ОБРАЗЦОВ С ДЕФЕКТАМИ РОСТА

Интересные особенности были обнаружены при исследовании релаксации давления в процессе отжига деформированных кристаллов вблизи температуры плавления. При этом оказалось, что характер релаксации давления деформированных образцов существенно отличается от релаксационных процессов при отжиге кристаллов, выращенных в условиях быстрого охлаждения, т. е. содержащих дефекты роста [11, 12]. Для сравнения на рис. 6 приведены изменения давления в процессе отжига для кристалла с дефектами роста (рис. 6a) и для деформированного кристалла (рис. 6b) на фоне изменения температуры.

В обоих случаях перед отжигом образцы имели температуру около 500 мК, и затем в течение примерно 1 ч образец нагревался до температуры отжига (около 2 К). При этом повышение температуры вначале приводило к небольшому росту давления, обусловленному возрастанием фононного и вакансионного вкладов в давление. Далее температура образца стабилизировалась в течение примерно 20 ч.

Как видно на рис. 6, релаксация давления в образце с дефектами роста начиналась еще в процессе повышения температуры и состояла в резком падении давления примерно на 1.5 бар в течение нескольких минут. Затем уже при постоянной температуре отжига падение давления продолжалось, но происходило более медленно и примерно за 20 ч составило около 1 бар. В отличие от этого, в деформированных образцах релаксация давления происходила крайне медленно и за все время отжига составила всего около 10^{-2} бар.

Причина такого сильного отличия в поведении давления в обоих случаях состоит, по-видимому, в том, что в процессе быстрого роста кристалла и в результате его деформации образуются дефекты различного типа. Большое падение давления при отжиге образцов с дефектами роста трудно объяснить наличием неравновесных вакансий или дислокаций.

Рис. 6. Релаксация давления в процессе отжига исследуемых образцов твердого гелия: *a* — образец с дефектами роста [10, 11], *б* — деформированный образец (данная работа). Нижние графики соответствуют изменению температуры в процессе отжига

Это потребовало бы неправдоподобно высокой концентрации таких дефектов. Скорее всего, это указывает на возможность образования жидких капель в процессе быстрого роста кристалла, которые потом кристаллизуются при последующем отжиге, что и приводит к сильному падению давления. Как уже указывалось выше, образование жидких капель в процессе быстрого роста кристаллов было недавно зарегистрировано также в ЯМР-экспериментах [26]. Отметим, что гигантское падение давления наблюдалось и в экспериментах [28], где одновременно проводились торсионные измерения и измерения давления. При отжиге образцов, выращенных при быстром охлаждении, авторы наблюдали падение давления примерно на 7 бар.

Что же касается очень медленной релаксации давления, то, как было отмечено в работе [29], такая медленная релаксация параметров является характерным признаком стекольного состояния. Авторы [29] наблюдали ультрамедленную релаксацию параметров, определяющих поведение твердого ⁴Не в торсионных экспериментах в суперсолид-области. Проведенный термодинамический анализ [8] показал, что аномалии, проявляющиеся в твердом ⁴Не в суперсолид-области, могут быть связаны с образованием стекла, индуцированным дислокациями.

5. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ В РАМКАХ ИМЕЮЩИХСЯ МОДЕЛЕЙ

Поскольку деформация кристаллов гелия приводит к появлению в них дислокаций, естественно сравнить полученные результаты с дислокационной моделью. Как было показано в работах [30, 31], дислокационный вклад в теплоемкость имеет линейную зависимость от температуры, а вклад в давление квадратичную. Если в кристалле при деформации образовалась сетка дислокационных линий со средней плотностью N, то основной вклад в термодинамику вносят поперечные колебания дислокационных линий струнного типа, так называемые дислокационные фононы. В этом случае дислокационный вклад в теплоемкость (в расчете на единицу объема) выражается [31]

$$C_d = \gamma_d T - \frac{Nk}{2L},\tag{5}$$

где $\gamma_d = \pi N k^2 / 3\hbar S$, L - длина дислокационной линии, <math>k и $\hbar -$ соответственно постоянные Больцмана и Планка, S -скорость поперечного звука в твердом гелии. При этом в области температур

Рис.7. Сравнение измеренных значений стекольного вклада в давление деформированного кристалла гелия (экспериментальные точки) с расчетом по теории [37] (сплошная линия)

$$\frac{a}{2L}\Theta_D \le T \le \frac{\Theta_D}{8} \tag{6}$$

вторым слагаемым в (5) можно пренебречь, оно существенно лишь вблизи нижней границы интервала (6). Здесь Θ_D — дебаевская температура, a — среднее межатомное расстояние.

Тогда дислокационный вклад в давление имеет вид

$$P_g = \frac{\gamma \gamma_d}{2} T^2, \tag{7}$$

где
 γ — параметр Грюнайзена. Из сравнения выражений (3)
и (7) имеем

$$a_g = \frac{1}{2} \gamma \gamma_d = \frac{\gamma \pi N k^2}{6\hbar S} \,. \tag{8}$$

Выражение (8) может быть использовано для оценки плотности дислокационных линий, возникающих в исследуемых кристаллах в результате деформации. Полагая $\gamma = 2.18$ [16], S = 250 м/с [32], имеем для $a_g = 1.9 \cdot 10^{-3}$ бар/K² плотность дислокаций $N \sim 2.3 \cdot 10^{12}$ см⁻². Это значение на несколько порядков превышает известные в литературе данные о плотности дислокаций [33–35]. Такая плотность соответствует среднему расстоянию между дислокациями порядка $1/\sqrt{N} \sim 100$ Å.

Дислокационная модель [30,31] была предложена для описания вклада дислокаций в термодинамические свойства кристаллов задолго до обнаружения аномального поведения твердого ⁴Не, приписываемого явлению суперсолид. Поэтому в работах [30, 31] этот круг вопросов не рассматривался. В последнее время для объяснения свойств твердого ⁴Не в суперсолид-области была использована модель двухуровневых туннельных систем [8–10, 36, 37]. Эта модель, как и дислокационная модель, предсказывает квадратичную температурную зависимость давления.

Количественный анализ измеренной в эксперименте [11] температурной зависимости давления кристаллов гелия, выращенных при быстром охлаждении, на основе двухуровневой стекольной модели был сделан в работе [37], где вклад стекольной составляющей в давление записывался в виде

$$P_g(T) = \frac{\gamma}{V_m} R \int_0^\infty E D_g(E) f(E) \, dE, \qquad (9)$$

где V_m — молярный объем, R — газовая постоянная, $D_g(E)$ — зависящая от энергии E плотность состояний двухуровневых систем, приходящаяся на единицу энергии, f(E) — функция Ферми. В модели [37] для объяснения теплоемкости при низких температурах функция плотности $D_g(E)$ обрезалась при значениях энергии, превышающих некоторую величину E_c , ограничивая область проявления двухуровневых состояний. При этом ширина обрезания W обычно достаточно мала и составляет около 10 мК [37]. Тогда распределение плотности двухуровневых состояний по энергиям имеет вид

$$D_g(E) = \frac{1}{2} D_0 \left[1 - \operatorname{th} \frac{E - E_c}{W} \right],$$
 (10)

где D_0 — отношение концентрации двухуровневых систем к энергии E_c . При таком подходе величины D_0 и E_c были подгоночными параметрами, а рассчитанные значения хорошо описывали эксперимент [11] по измерению давления и эксперимент [38] по измерению теплоемкости.

Мы использовали модель [37] для анализа новых экспериментальных данных, полученных в деформированных кристаллах гелия. Давление $P_g(T)$ вычислялось путем численного интегрирования выражения (9) для всей исследуемой области температур. Подгоночные параметры D_0 и E_c выбирались из условия минимума среднеквадратичного отклонения между измеренными и рассчитанными значениями давления.

На рис. 7 приведено сравнение между измеренными значениями $P_g(T)/T^2$ и рассчитанными в соответствии с двухуровневой моделью [37]. При этом

Рис. 8. Среднеквадратичное различие между экспериментом и расчетом по [37] в зависимости от плотности двухуровневых систем $D_0(a)$ и от энергии обрезания $E_c(b)$

соответствующие среднеквадратичные отклонения эксперимента от расчета для обоих подгоночных параметров показаны на рис. 8. Как видно на рис. 8а, для плотности двухуровневых состояний D₀ наблюдается четкий минимум среднеквадратичного отклонения Δ при $D_0 = 2.6 \cdot 10^{-4}$ K⁻¹, в то время как для энергии обрезания E_c такого минимума нет (рис. 8б). Величина Δ монотонно уменьшается с ростом E_c и, начиная с $E_c \approx 5$ К, уже практически не изменяется. Такое поведение связано с тем, что в исследуемой области температур зависимость $P_q(T)/T^2$ — прямая линия (в пределах погрешности измерений), параллельная оси абсцисс, и не имеет особенностей в этом температурном интервале, в отличие от теплоемкости [38]. В данной работе для оценок мы использовали минимальное значение энергии обрезания 5 К, что соответствует нижнему пределу концентрации двухуровневых систем.

Тогда из формул (9), (10) имеем

$$\frac{P_g(T)}{T^2} = \frac{\pi^2}{12} \frac{\gamma R D_0}{V_m} = a_g,$$
 (11)

откуда $D_0 = 2.59 \cdot 10^{-4} \text{ K}^{-1}$. Полученное значение D_0 примерно в 5 раз больше, чем для наиболее дефектных образцов, использованных при измерениях теплоемкости [38] и проанализированных в работе [37]. Причина связана с тем, что кристалл гелия в данной работе после деформации содержал больше дефектов, чем при быстром росте кристалла в работе [38]. Что же касается отожженных образцов, то поскольку D_0 пропорционально величине a_q , отжиг кристалла, как и следовало ожидать, приводит к исчезновению двухуровневых состояний.

Из анализа экспериментальных результатов в рамках стекольной модели [37] можно оценить также плотность (концентрацию) двухуровневых состояний:

$$n_{TLS} = \int_{0}^{\infty} D_g(E) dE \approx D_0 E_c.$$
(11a)

Оценки значений подгоночных параметров D_0 и E_c для образцов, полученных при деформации кристаллов, приводят к значениям концентрации двухуровневых систем $n_{TLS} = 1.3 \cdot 10^{-3}$.

6. ЗАКЛЮЧЕНИЕ

Проведенная серия экспериментов показала, что качественные кристаллы гелия после деформации в области суперсолид проявляют поведение, характерное для неупорядоченных (стекольных) систем. В пользу этого свидетельствует также наблюдаемая очень медленная релаксация давления при отжиге деформированных кристаллов. Обнаружено также, что стекольная фаза, образующаяся в результате деформации, исчезает после тщательного отжига.

Наблюдаемая в эксперименте квадратичная температурная зависимость избыточного, по сравнению с фононным, давления может быть объяснена в рамках дислокационной модели [19]. При этом оцененная плотность дислокаций дает значение, намного превышающее известные значения плотности дислокаций, полученные в других экспериментах с твердым гелием. Полученные экспериментальные результаты качественно согласуются и с моделью туннельных двухуровневых состояний [37], что позволило оценить концентрацию таких состояний. Отметим, что в работе [37], как и в других теоретических работах по двухуровневым стекольным системам, наличие двухуровневых состояний постулируется, и не рассматриваются механизмы образования таких состояний. Отмечается лишь, что важную роль в этом могут играть дислокации, возникающие в кристалле в процессе роста или, как в данной работе, в процессе деформации.

Работа выполнена при частичной финансовой поддержке УНТЦ (грант № 3718).

Авторы выражают благодарность В. Д. Нацику, С. Н. Смирнову, С. И. Шевченко, А. V. Balatsky, М. J. Graf, Jung-Jung Su за полезные дискуссии.

ЛИТЕРАТУРА

- 1. N. Prokof'ev, Adv. Phys. 56, 381 (2007).
- D. E. Galli and L. Reatto, Cond. Mat. 0811.3598 (2008).
- S. Balibar and F. Coupin, J. Phys. Cond Mat. 20, 173201 (2008).
- 4. E. Kim and M. Chan, Nature 427, 225 (2004).
- 5. J. Day and J. Beamish, Nature 450, 853 (2007).
- M. W. Ray and R. B. Hallock, Phys. Rev. Lett. 100, 235301 (2008).
- M. Boninsegni, N. V. Prokof'ev, and B. V. Svistunov, Phys. Rev. Lett. 96, 105301 (2006).
- A. V. Balatsky, M. J. Graf, Z. Nussinov, and S. A. Trugman, Phys. Rev. B 75, 094201 (2007).
- M. J. Graf, Z. Nussinov, and A. V. Balatsky, JLTP 158, 550 (2010).
- 10. А. Ф. Андреев, Письма ЖЭТФ 85, 714 (2007).
- V. N. Grigor'ev, V. A. Maidanov, V. Yu. Rubanskii, S. P. Rubets, E. Ya. Rudavskii, A. S. Rybalko, Ye. V. Syrnikov, and V. A. Tikhii, Phys. Rev. B 76, 224524 (2007).

- В. Н. Григорьев, В. А. Майданов, В. Ю. Рубанский, С. П. Рубец, Э. Я. Рудавский, А. С. Рыбалко, В. А. Тихий, ФНТ 34, 431 (2008).
- A. S. Rittner and J. D. Reppy, J. Phys. Conf. Ser. 150, 032089 (2009).
- E. Rudavskii, V. Grigor'ev, A. Lisunov, V. Maidanov, V. Rubanskii, S. Rubets, A. Rybalko, and V. Tikhii, JLTP 158, 578 (2010).
- Е. О. Вехов, В. Н. Григорьев, В. А. Майданов, Н. П. Михин, В. Ю. Рубанский, С. П. Рубец,
 Э. Я. Рудавский, А. С. Рыбалко, Е. В. Сырников, В. А. Тихий, ФНТ 33, 825 (2007).
- 16. V. N. Grigor'ev and Ye. O. Vekhov, JLTP 149, 41 (2007).
- 17. D. O. Edwards and R. C. Pandorf, Phys. Rev. 140, A816 (1965).
- J. F. Jarvis, D. Ramm, and H. Meyer, Phys. Rev. 170, 320 (1968).
- 19. G. Ahlers, Phys. Rev. A 2, 1505 (1970).
- 20. W. R. Gardner, J. K. Hoffer, and N. E. Phillips, Phys. Rev. A 7, 1029 (1973).
- 21. S. H. Castles and E. D. Adams, JLTP 19, 397 (1975).
- 22. J. K. Hoffer, W. R. Gardner, C. G. Waterfield, and N. F. Phillips, JLTP 23, 63 (1976).
- 23. C. A. Burns and J. M. Goodkind, JLTP 95, 695 (1994).
- 24. P. Remeijer, S. C. Steel, R. Jochemsen, G. Frossati, and J. M. Goodkind, AYN 23, 586 (1997) [Low Temp. Phys. 23, 438 (1997)].
- 25. J. H. Hetherington, Phys. Rev. 176, 231 (1968).
- 26. Ye. Vekhov, A. Birchenko, N. Mikhin, and E. Rudavskii, JLTP 158, 496 (2010).
- 27. J. D. Reppy, arXiv:cond-mat.1004.1129.
- 28. A. S. Rittner and J. D Reppy, Phys. Rev. Lett. 98, 175302 (2007).
- 29. B. Hunt, E. Pratt, V. Gadagar, M. Yamashita, A. V. Balatsky, and J. C. Davis, Science 324, 632 (2009).
- 30. A. Granato, Phys. Rev. 11, 740 (1958).

8*

- **31**. В. Д. Нацик, С. Н. Смирнов, ФНТ **18**, 185 (1992).
- 32. Б. Н. Есельсон, В. Н. Григорьев, В. Г. Иванцов,
 Э. Я. Рудавский, Свойства жидкого и твердого гелия, Изд-во Стандартов, Москва (1978).
- 33. А. А. Левченко, Л. П. Межов-Деглин, ЖЭТФ 82, 278 (1982).
- 34. Y. Hiki and F. Tsuruoka, Phys. Rev. B 27, 696 (1983).
- 35. I. Iwasa, K. Araki, and H. Suzuki, J. Phys. Soc. Jpn. 46, 1119 (1979).
- 36. Z. Nussinov, M. J. Graf, A. V. Balatsky, and S. A. Trugman, Phys. Rev. B 76, 14530 (2007).
- 37. J. J. Su, M. J. Graf, and A. V. Balatsky, arXiv: cond-mat.0912.4647.
- 38. X. Lin, A. C. Clark, Z. G. Cheng, and M. H. W. Chan, Phys. Rev. Lett. 102, 125302 (2009).