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ANALYSIS OF THE LOGARITHMIC SLOPE OF F2FROM THE REGGE GLUON DENSITY BEHAVIOR AT SMALL xG. R. Boroun *Physi
s Department, Razi University67149, Kermanshah, IranRe
eived November 8, 2009We study the a

ura
y of the Regge behavior of the gluon distribution fun
tion for an approximate relationthat is frequently used to extra
t the logarithmi
 slopes of the stru
ture fun
tion from the gluon distributionat small x. We show that the Regge behavior analysis results are 
omparable with HERA data and are alsobetter than other methods that expand the gluon density at distin
t points of expansion. We also show that forQ2 = 22:4 GeV2, the x dependen
e of the data is well des
ribed by gluon shadowing 
orre
tions to the GLRMQequation. The resulting analyti
 expression allows us to predi
t the logarithmi
 derivative �F2(x;Q2)=� lnQ2and to 
ompare the results with the H1 data and a QCD analysis �t with the MRST parameterization input.Several methods of relating the F2 s
aling violationsto the gluon density at low x have been suggested pre-viously [1�3℄. All the methods rely on an approximaterelation based on the assumption that quark densities
an be negle
ted and the nonsinglet 
ontribution FNs2
an safely be ignored. To investigate this, we have usedthe DGLAP evolution equations [4℄ for four �avors,dF2d lnQ2 = 5�s9� 1Zx dz G�xz ;Q2�Pqg(z); (1)where Pqg(z) = (1� z)2 + z2:In the LO (leading order), an approximate relation be-tween the gluon density at the point 2x and the loga-rithmi
 slopes F2 at the point x was given in [1℄ in theform dF2d lnQ2 = 5�s9� 23G(2x;Q2): (2)A similar relation based on the expansion of the gluondistribution around z = 0 was found in [2℄,dF2d lnQ2 = 5�s9� 34G�43x;Q2� : (3)*E-mail: grboroun�gmail.
om

In [3℄, this expansion was derived at an arbitrary pointof expansion. In the limit x!0, the equation be
omesdF2d lnQ2 = 5�s9� 23G� x1� a �32 � a� ; Q2� : (4)The better 
hoi
e a = 0:75 was suggested in [3℄, withthe result dF2d lnQ2 = 5�s9� 23G(3x;Q2): (5)All relations (2), (3), and (5) estimate the logarith-mi
 slopes F2 with respe
t to the gluon distributionfun
tion at the points 2x, 4x=3 and 3x. In this paper,we extend the method using the Regge te
hnique. We�rst introdu
e the Regge behavior of the gluon distri-bution, whi
h 
an be expressed asG(x; t) = Agx��g(t); (6)where Ag is a 
onstant and �g is the inter
ept(t = ln(Q2=�2)). Using this behavior, after integratingand somewhat rearranging, we �nd an approximate re-lation between dF2(x;Q2)=d lnQ2 and G(x;Q2) at thesame point x:dF2d lnQ2 = 5�s9� T (�g)G(x;Q2); (7)where T (�g) = 1Zx dz z�g (1� 2z + 2z2):642
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 slope of F2 : : :Relation (7) [5℄ helps estimate the logarithmi
slopes F2 in the leading logarithmi
 approximation.We also note that if we wish to evolve shadowing
orre
tions to the gluon density, we 
an simply showthese re
ombinations using the Gribov�Levin�Ryskin�Mueller�Qiu (GLRMQ) equations [6; 7℄. These nonlin-ear terms redu
e the growth of the gluon distribution inthe kinemati
 region where �s is still small but the den-sity of partons be
omes large. A

ording to the fusionof two-gluon 
orre
tions, the evolution of the shadowingstru
ture fun
tion with respe
t to lnQ2 
orresponds tothe modi�ed DGLAP evolution equation. We thereforehave [8℄�F s2 (x;Q2)� lnQ2 = 5�s9� T (�g)Gs � 518 27�2s160R2Q2 [Gs℄2; (8)where R is the size of the target populated by the glu-ons. The value of R depends on how the gluon ladders
ouple to the proton, or on how the gluons are dis-tributed within the proton. The value of R is of theorder of the proton radius (R � 5 GeV�1) if the glu-ons are spread throughout the entire nu
leon, or mu
hsmaller (R � 2 GeV�1) if gluons are 
on
entrated inhot spots [9℄ within the proton. We show a plot of�F2(x;Q2)=� lnQ2 in the Figure for a set of values ofx at Q2 
onstant at a hot spot point R = 2 GeV�1,
ompared to the values measured by the H1 
ollabo-ration [10℄ and a �t to the ZEUS data inspired by theFroissart bound [11℄ based on the MRST input param-eterization [12℄.In Figure, our results for dF2=d lnQ2 obtained fromthe Regge behavior of the gluon density are 
omparedwith other models based on the expansion of the gluondensity. For these results, the input gluon was takenfrom MRST parameterizations. It is 
lear that ourresults based on this behavior are the lowest amongall the models. It also follows from Figure that theGLRMQ equation results in a tame behavior with re-spe
t to gluon saturation as x de
reases. This shadow-ing 
orre
tion suppresses the rate of growth in 
ompar-ison with the DGLAP approa
h.To 
on
lude, the re
ombination of gluons be
omesdominant at high density, and must be in
luded in the
al
ulations. When the shadowing term is 
ombinedwith the DGLAP evolution in the double leading log-arithmi
 approximation, we obtain the GLRMQ equa-tion for the integrated gluon. We have therefore solvedthe DGLAP equation with the nonlinear shadowingterm in
luded in order to determine the behavior ofthe gluon distribution G(x;Q2) of the proton at verysmall x. In this way, we were able to study the inter-play of the singular behavior generated by the linear
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A plot of the derivative of the stru
ture fun
tion withrespe
t to lnQ2 vs. x for Q2 = 22:4 GeV2 with theMRST parameterization [12℄, 
ompared to the datafrom H1 Collaboration [10℄ (
ir
les) with total error,and also a QCD �t [11℄ and other models [1�3℄ (dot-ted 
urves). Solid 
urves are our results with and with-out the shadowing 
orre
tion with respe
t to the Reggebehavior of the gluon densityterm in the equation with the taming of this behaviorby the nonlinear shadowing term. With de
reasing x,we �nd that an � x��g behavior of the gluon fun
-tion emerges from the GLRMQ equation. Based onour present 
al
ulations, we 
on
lude that the behaviorof �F2(x;Q2)=� lnQ2 as measured by HERA is tamedbased on the gluon saturation at low x. Our resultsshow that the data 
an be des
ribed in PQCD takingshadowing 
orre
tions into a
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