МАГНИТОСОПРОТИВЛЕНИЕ И АКУСТОЭЛЕКТРОННЫЕ ЭФФЕКТЫ В НАКЛОННОМ МАГНИТНОМ ПОЛЕ В СТРУКТУРАХ *p*-Si/SiGe/Si C АНИЗОТРОПНЫМ *g*-ФАКТОРОМ

И. Л. Дричко^а^{*}, И. Ю. Смирнов^а, А. В. Суслов^b, О. А. Миронов^c, Д. Р. Лидли^{d**}

^а Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

^b National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA

^c Warwick SEMINANO R & D Centre, University of Warwick Science Park, Coventry CV4 7EZ, UK

^d Department of Physics, University of Warwick, Coventry CV4 7AL, UK

Поступила в редакцию 17 ноября 2009 г.

Магнитосопротивление ρ_{xx} и ρ_{xy} и акустоэлектронные эффекты измерены в p-Si/SiGe/Si с концентрацией примесей $p = 1.99 \cdot 10^{11}$ см⁻² в температурной области 0.3–2 К и в наклонном магнитном поле до 18 Тл. Определена зависимость эффективного g-фактора от угла наклона θ магнитного поля отно-сительно нормали к плоскости двумерного канала p-Si/SiGe/Si. В магнитных полях, соответствующих числу заполнения $\nu = 2$, при $\theta \approx 59$ –60° наблюдается фазовый переход первого рода ферромагнетик-парамагнетик.

1. ВВЕДЕНИЕ

Весьма интересные кинетические свойства структур p-Si/SiGe/Si привлекают внимание исследователей в течение последних двух десятилетий [1–6]. В p-Si/Si_{1-x}Ge_x/Si квантовая яма находится в напряженном слое Si_{1-x}Ge_x, поэтому трижды вырожденная (без учета спина) валентная зона SiGe расщепляется на три благодаря спин-орбитальному взаимодействию и напряжению. Носителями заряда являются тяжелые дырки, зона которых сформирована атомными состояниями с квантовыми числами L = 1, S = 1/2, J = 3/2. Следствием этого должна быть сильная анизотропия эффективного g-фактора: $g^* \approx 4.5$, если магнитное поле перпендикулярно плоскости квантовой ямы, и $g^* \approx 0$, если магнитное поле параллельно плоскости ямы [7].

В этих структурах в магнитном поле, перпендикулярном плоскости квантовой ямы, значения параметра m^* и g^* -фактора таковы, что выполняется соотношение $g^*\mu_B B \approx \hbar\omega_c$, где μ_B — магнетон Бора, $\omega_c = eB/m^*c$ — циклотронная частота, e заряд электрона, B — напряженность магнитного поля, m^* — эффективная масса дырок, c — скорость света. В результате этого в эксперименте наблюдаются осцилляции сопротивления ρ_{xx} в магнитном поле B только с нечетными числами заполнения $\nu = 1, 3, 5, \ldots$ Осцилляции $\rho_{xx}(B)$ при $\nu = 2$ наблюдаются лишь в некоторых образцах. Особенности проводимости в магнитном поле, соответствующем $\nu = 2$, подробно исследуются в этой работе.

В *p*-Si/SiGe/Si с малой концентрацией примесей $p = 8.2 \cdot 10^{10}$ см⁻² в квантовом пределе в перпендикулярном магнитном поле было обнаружено образование запиннингованного вигнеровского стекла [8], а в продольном магнитном поле — гигантское положительное магнитосопротивление, обусловленное взаимодействием орбитального движения носителей в широкой квантовой яме с параллельным магнитным полем [9].

В этой структуре также было обнаружено необычное явление: так называемый «возвратный» переход металл-диэлектрик в магнитном поле при числе заполнения $\nu = 3/2$ [1–6]. Появление такой аномалии автор работы [2] связывал с наличием

^{*}E-mail: Irina.L.Drichko@mail.ioffe.ru

^{**}D. R. Leadley

плавных крупномасштабных флуктуаций потенциала с амплитудой, сравнимой с энергией Ферми. Однако в работах [3–5] это явление объяснялось пересечением уровней Ландау с разным направлением спинов, 0⁺ и 1↓, при изменении напряженности магнитного поля.

В настоящей работе проведены исследования магнитосопротивления, эффекта Холла и акустоэлектронных эффектов в наклонном магнитном поле с целью определения зависимости g^* -фактора от угла наклона магнитного поля относительно нормали к плоскости двумерного канала. Такая зависимость дает возможность проанализировать возможную причину аномалий в проводимости, возникающих при числе заполнения $\nu = 2$ в образце p-Si/SiGe/Si с $p = 2 \cdot 10^{11}$ см⁻². В исследуемом образце несимметричная квантовая яма была шириной 30 нм, а строение образца приведено в работе [9].

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Магнитосопротивление ρ_{xx} и ρ_{xy} , а также акустоэлектронные эффекты были измерены в наклонном магнитном поле до 18 Тл в температурном интервале 0.3–2 К в линейном по току режиме, I = 10 нА. Исследовался образец с концентрацией примесей $p = 2 \cdot 10^{11}$ см⁻² и подвижностью $7 \cdot 10^3$ см²/В · с. В этом образце в магнитном поле, перпендикулярном плоскости с двумерной проводимостью, наблюдается целочисленный квантовый эффект Холла (рис. 1).

На рис. 2a представлены зависимости ρ_{xx} от на-

Рис.1. Зависимости ρ_{xx} и ρ_{xy} (в единицах h/e^2) от напряженности магнитного поля, $T=0.35~{\rm K},$ $p=1.99\cdot 10^{11}~{\rm cm}^{-2}$

пряженности полного магнитного поля *B* при разных углах наклона θ относительно нормали к поверхности двумерного слоя при T = 0.3 К. При $\theta = 0$ в поле $B \approx 5.2$ Тл, соответствующем $\nu = 3/2$, наблюдается максимум ρ_{xx} . Из рисунка видно, что максимумы и минимумы осцилляций при увеличении θ сдвигаются в сторону больших магнитных полей, а величина ρ_{xx} в максимумах при $\nu = 3/2$ при этом возрастает. Зависимость $\rho_{xx}(B_{\perp})$ вблизи $\nu = 3/2$ для различных θ представлены на рис. 26. Действительно, вблизи B = 5.2 Тл ($\nu = 3/2$) наблюдается аномалия, о которой упоминалось во Введении: ρ_{xx} возрастает более чем в пять раз при увеличении угла θ от 0 до 70°.

Зависимости ρ_{xy} от напряженности полного магнитного поля, а также от его перпендикулярной составляющей при T = 0.3 К и разных углах наклона θ представлены на рис. 3.

Была вычислена проводимость

$$\sigma_{xx} = \frac{\rho_{xx}}{\rho_{xx}^2 + \rho_{xy}^2}$$

при разных углах θ . Зависимость $\sigma_{xx}(B_{\perp})$ представлена на рис. 4. Обращает на себя внимание тот факт, что при $\nu = 3/2$ на зависимостях $\sigma_{xx}(B_{\perp})$ аномалии не наблюдаются (σ_{xx} изменяется на 30% при изменении угла наклона θ от 0 до 75°). Кроме того, если положение минимумов величины σ_{xx} по магнитному полю для $\nu = 1$, 3, 5 не зависит от угла наклона, то для $\nu = 2$ при $\theta > 50°$ минимумы начинают сдвигаться в сторону более низких магнитных полей. Объяснение этого факта требует отдельного рассмотрения.

Кроме измерений на постоянном токе были изучены акустоэлектронные эффекты в наклонном магнитном поле при T = 0.3 К. Акустические методы, основанные на использовании поверхностных акустических волн, дают возможность работать с образцами квадратной или прямоугольной формы без создания электрических контактов. Для этого используется «гибридный» метод, когда поверхностная акустическая волна распространяется по поверхности пьезодиэлектрика LiNbO₃, а исследуемая структура слегка прижимается к поверхности ниобата лития пружиной. Волна деформации, распространяющаяся по поверхности ниобата лития, сопровождается волной электрического поля такой же частоты. Электрическое поле проникает в канал с двумерной проводимостью, вызывая высокочастотные токи и, соответственно, поглощение энергии волны. В такой конфигурации эксперимента деформация в образец не передается.

Рис.2. *a*) Зависимости ρ_{xx} от полного магнитного поля при разных углах θ наклона относительно нормали к поверхности образца; $p = 1.99 \cdot 10^{11}$ см⁻², T = 0.3 К (B_{\perp} и B_{\parallel} — компоненты магнитного поля, соответственно перпендикулярные и параллельные плоскости структуры). δ) Зависимости $\rho_{xx}(B_{\perp})$ при разных углах θ ; T = 0.3 К

Рис. 3. Зависимости ρ_{xy} от полного магнитного поля (*a*) и его нормальной компоненты (*б*) при T = 0.3 К и разных углах наклона магнитного поля относительно нормали к поверхности образца

В работе были измерены акустоэлектронные эффекты: коэффициент поглощения Γ и изменение скорости поверхностной акустической волны на частоте 30 МГц в наклонном магнитном поле до 18 Тл для различных углов наклона при T = 0.3 К. Акустоэлектронные эффекты определяются высокочастотной проводимостью двумерной системы [10]. Если в системе наблюдаются квантовый эффект Холла и осцилляции Шубникова – де Гааза на постоянном токе в магнитном поле, то подобные осцилляции наблюдаются и в акустоэлектронных эффектах.

На рис. 5 представлены зависимости коэффициента поглощения Γ и изменения скорости $\Delta V/V$ поверхностной акустической волны от полного магнитного поля при разных углах наклона магнитного поля. Из рисунка видно, что при увеличении угла наклона положения осцилляций смещаются в сторону больших магнитных полей, а при $\theta = 53^{\circ}$ осцилля-

Рис. 4. Зависимости $\sigma_{xx}(B)$ при разных температурах, $\theta = 0$ (a) и $\sigma_{xx}(B_{\perp})$ при разных углах θ , T = 0.3 K (b)

Рис.5. Зависимости коэффициента поглощения Γ и изменения скорости $\Delta V/V$ поверхностной акустической волны от напряженности полного магнитного поля для разных углов наклона θ магнитного поля относительно нормали к поверхности структуры; $T=0.3~{\rm K},~f=30~{\rm M}\Gamma{\rm q}$

ция, соответствующая $\nu = 2$, исчезает. Этот факт означает, что при $\theta \ge 53^{\circ}$ сильно возрастает проводимость в двумерном канале.

3. ОБСУЖДЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

Если эффективный *g*-фактор анизотропен, то в наклонном магнитном поле его величина обычно определяется по формуле

$$g^* = \sqrt{g_\perp^2 \cos^2 \theta + g_\parallel^2 \sin^2 \theta}, \qquad (1)$$

где $g_{\perp} - g$ -фактор в магнитном поле, перпендикулярном плоскости канала с двумерной проводимостью, а g_{\parallel} — в магнитном поле, параллельном этой плоскости. При сильной анизотропии, когда $g_{\parallel} = 0$ (как и должно быть в исследуемой структуре), $g^* = g_{\perp} \cos \theta$. В этом случае при наклоне магнитного поля положение минимумов осцилляций сдвигается в сторону более высоких магнитных полей, но амплитуда осцилляций не зависит от угла наклона магнитного поля. Такая ситуация осуществлялась в работе [11]. В наших образцах амплитуда осцилляций при всех числах заполнения зависит от угла θ , так что аксиальная симметрия, которой соответствует формула (1), по-видимому, в нашем образце нарушена. Используем зависимости проводимости σ_{xx} при $\nu = 3$ от температуры и угла наклона θ магнитного поля для того, чтобы определить угловую зависимость g^* -фактора. Минимум величины σ_{xx} в зависимости от магнитного поля при $\nu = 3$ наблюдается, когда уровень Ферми находится между двумя расщепленными по спину уровнями Ландау, Ц и 1↑. Как видно из рис. 6, величина σ_{xx} при $\nu = 3$ растет при увеличении как температуры ($\theta = 0$), так и угла наклона θ магнитного поля (T = 0.3 K). Темпе-

Рис. 6. Зависимости $\sigma_{xx}(B_{\perp})$ для разных углов наклона θ , $\nu = 3$, T = 0.3 K (a) и $\sigma_{xx}(B_{\perp})$ для разных температур, $\nu = 3$, $\theta = 0$ (b)

ратурную и угловую зависимости минимума проводимости в этом случае можно выразить как

$$\sigma_{xx} \propto \exp[-g^*(\theta)\mu_B B/2kT],$$

где B — полное магнитное поле, k — постоянная Больцмана. Поэтому, если построить зависимости $\sigma_{xx}(T)$ и $\sigma_{xx}(\theta)$ и сопоставить каждому углу θ некую температуру T' при равных σ_{xx} , то можно получить выражение $a^*(\theta = 0) = a^*(\theta)$

т. е.

$$\frac{g^*(\theta)}{0.3} = \frac{g^*(\theta)}{T'};$$
$$\frac{g^*(\theta)}{g^*(\theta=0)} = \frac{T'}{0.3}.$$

Таким образом, можно определить зависимость приведенного g^* -фактора от угла наклона θ . Аналогичное построение можно провести и для $\nu = 5$, но с гораздо меньшей точностью.

Другой способ определения $g^*(\theta)$ связан (рис. 7) с построением зависимостей σ_{xx} в минимумах осцилляций от полного магнитного поля B при $\nu = 3, 5, 7,$ 9, при разных углах θ и T = 0.3 К. Величины этих проводимостей определялись из графиков, приведенных на рис. 2. Поскольку, как указывалось выше, $\sigma_{xx} \propto \exp(-g^*(\theta)\mu_B B/2kT)$, зависимости $\ln \sigma_{xx}(B)$ при разных θ описываются линейными функциями. При этом $\Delta(\ln \sigma_{xx})/\Delta B \sim g^*(\theta)$, следовательно, можно определить отношение $g^*(\theta)/g^*(\theta = 0)$.

Рис.7. Зависимости $\ln\sigma_{xx}$ от магнитного поля при $\nu=3,5,7,9$ и разных углах наклона θ

Из рис. 7 видно, что наклон прямых тем больше, чем меньше угол θ . Оказалось, что величины $g^*(\theta)/g^*(\theta=0)$ при одинаковом значении θ , определенные разными способами, близки по величине и представлены для $g^*(\theta=0) = 6$ (определение величины $g^*(\theta=0)$ дано ниже) на рис. 8 точками. На

 $40^{\circ} 50^{\circ} 60^{\circ}$

 70°

 $80^{\circ} 90^{\circ}$

θ

Рис. 8. Зависимость g^* -фактора от угла наклона магнитного поля относительно нормали к поверхности; кривая — $g^*(\theta) = 6 \cos \theta$; кружки — из эксперимента для $\nu = 3$, квадраты — определены из эксперимента для $\nu = 2$

 10°

0

 20°

 30°

рис. 8 также приведена зависимость $g^*(\theta) = 6 \cos \theta$ (кривая). Из рис. 8 видно, что в исследуемом образце зависимость $g^*(\theta)$ отличается от «теоретической», описываемой формулой (1).

Теперь рассмотрим зависимости проводимости $\sigma_{xx}(B_{\perp})$ вблизи $\nu = 2$ для разных температур и углов θ (рис. 9, 10).

Как указывалось выше, в образцах Si/SiGe/Si в магнитном поле, перпендикулярном плоскости двумерного канала, в эксперименте наблюдаются обычно лишь нечетные минимумы осцилляций Шубникова-де Гааза. Исключение составляет четный минимум при $\nu = 2$, который наблюдается лишь в некоторых образцах, в частности, в исследуемом нами. Обычно считают, что причиной отсутствия осцилляций с четным числом заполнения ν является соотношение $\hbar\omega_c \approx g^*\mu_B B$. При выполнении этого равенства в магнитных полях, которым соответствуют четные ν , энергии уровней с разными направлениями спинов в разных зонах Ландау равны, поэтому осцилляции с четными ν не наблюдаются. Величина g^* , вычисленная из этого равенства при $m^* = 0.21 m_0$, равна 4.7. Однако, как было показано в нашем эксперименте, мы не только наблюдали отчетливый минимум σ_{xx} при $\nu = 2$ (рис. 9a), но и смогли измерить его температурную зависимость. Зависимость $\sigma_{xx}(T)$ при $\theta = 0$ соответствует энергии активации $E_a \approx 3.2$ К (0.28 мэВ), что означает, что при $\theta = 0$ уровни 0^{\uparrow} и $1 \downarrow$ близки, но не совпадают.

Из рис. 9 также видно, что проводимость σ_{xx} в

минимуме по магнитному полю при $\nu = 2$ растет как при повышении температуры, так и при увеличении угла. Однако если при изменении температуры (рис. 9а) положение минимума этой осцилляции по магнитному полю не меняется, то с увеличением угла наклона θ положение минимума проводимости смещается по магнитному полю в сторону малых магнитных полей (рис. 96). Когда угол наклона достигает величины примерно 59.5° (рис. 10), на кривой возникают две осцилляции: прежняя, минимум которой смещается налево при увеличении угла и при $\theta\,\approx\,59.5^\circ$ наблюдается уже при $B_{\perp}\,=\,3.6$ Тл, и «новая», возникающая при $B_{\perp} \approx 4$ Тл. При дальнейшем увеличении θ амплитуды новых осцилляций растут, а их минимумы смещаются в сторону низких магнитных полей. При этом прежние осцилляции исчезают. Имеется область углов $59.5^\circ \le \theta \le 61^\circ$, в которой оба типа осцилляций сосуществуют.

На рис. 11 представлены зависимости $\sigma_{xx}(B_{\perp})$ в интервале полей 2.5–5.2 Тл для разных углов θ , сдвинутые с шагом $5 \cdot 10^{-6}$ Ом⁻¹ относительно кривой с $\theta = 55.7^{\circ}$ (для наглядности).

При анализе наблюдаемых нами аномалий воспользуемся идеей, использованной в работах [3–5] для объяснения особенностей сопротивления в Si/SiGe/Si при $\nu = 3/2$. Они связывались с изменением относительного положения уровней Ландау, расщепленных по спину (0↑ и 1↓), из-за зависимости g*-фактора от магнитного поля. Эта идея разрабатывалась ранее в теоретических работах [12, 13] и была подтверждена экспериментально в GaAs/AlGaAs для $\nu = 4$ [14] и для $\nu = 2/3$ [15]. При этом считалось, что пересечение уровней Ландау сопровождается фазовым переходом первого рода парамагнетик—ферромагнетик [14, 15].

Исследуем относительное положение уровней Ландау 0↑ и 1↓ при $\nu = 2$ ($B_{\perp} = 4.15$ Тл) в зависимости от угла наклона магнитного поля. Для этого необходимо знать величину $g^*(\theta = 0)$. Подбирая величины $g^*(\theta = 0)$ и m^*/m_0 так, чтобы их произведение $g^*(\theta = 0)m^*/m_0 \approx 2$ (что следует из равенства $\hbar\omega_c \approx g^*\mu_B B$), получаем $g^*(\theta = 0) = 6$, $m^* = 0.32m_0$ (m_0 — масса свободного электрона). Теперь, используя зависимость $g^*(\theta)/g^*(\theta = 0)$, полученную в эксперименте и представленную кривой на рис. 8, и экспериментальное значение энергии активации 0.28 мэВ, можно построить зависимости энергий уровней 0↑ и 1↓ от угла θ по формулам

$$E(0\uparrow) = \frac{1}{2} \hbar \omega_c + \frac{1}{2} g^* \mu_B B,$$

$$E(1\downarrow) = \frac{3}{2} \hbar \omega_c - \frac{1}{2} g^* \mu_B B.$$
(2)

Рис.9. Зависимости $\sigma_{xx}(B)$ вблизи $\nu = 2$ от температуры, $\theta = 0$ (*a*) и $\sigma_{xx}(B_{\perp})$ вблизи $\nu = 2$ для углов θ от 0 до 59.5° при T = 0.3 К (δ)

Рис.10. Зависимости $\sigma_{xx}(B_{\perp})$ для различных углов θ

В подборе величин g^* и m^* надо было иметь в виду, что пересечение уровней должно происходить при $\theta = 60^{\circ}$, так как именно при этом угле в эксперименте наблюдаются аномалии (см. рис. 11). Результаты расчета приведены на рис. 12. Надо заметить, что этот расчет является лишь очень грубой иллюстрацией возможности пересечения уровней. Здесь

Рис.11. Зависимости $\sigma_{xx}(B_{\perp})$ для разных углов наклона магнитного поля; для наглядности кривые отодвинуты друг от друга на $5\cdot 10^{-6}$ Ом⁻¹ относительно кривой для $\theta = 57.1^{\circ}$ (стрелки показывают положения минимумов)

Рис. 12. Зависимости расположения уровней Ландау относительно уровня Ферми E_F от угла θ (Ф и П — ферро- и парамагнетик)

Рис. 13. Зависимость числа заполнения ν от угла θ ; на вставке зависимость проводимости σ_{xx} в минимумах осцилляций от угла θ

не учитывались ни взаимодействие между уровнями, ни уширение уровней из-за беспорядка, ни неоднородности распределения носителей тока в квантовой яме [16].

Необходимо обратить внимание на тот факт, что зависимость $g^*(\theta)/g^*(\theta = 0)$ определялась из зависимостей энергии спиновой щели от температуры и угла θ при $\nu = 3$. Однако при большом спиновом расщеплении при $\nu = 3$ правильный порядок в относительном расположении уровней Ландау может быть также нарушен. В этом случае величина энергии, определяемая в диапазоне углов $0 \le \theta \le 60^\circ$, отличается от величины спиновой щели. Для проверЖЭТФ, том **138**, вып. 3 (9), 2010

ки величина $g^*(\theta)$ была определена из зависимости $\sigma_{xx}(\theta)$ при $\nu = 2$ в интервале углов $0 \le \theta \le 60^\circ$, представленной на вставке к рис. 13. Поскольку в этой области углов хорошо выполняется зависимость

$$\sigma_{xx} \propto \exp\left(\frac{\hbar\omega_c - g^*\mu_B B}{2kT}\right),$$

отношение $\sigma_{xx}(\theta = 0)/\sigma_{xx}(\theta)$ может быть представлено уравнением

$$\frac{\sigma_{xx}(\theta=0)}{\sigma_{xx}(\theta)} = \\ = \exp\left(\frac{-g^*(\theta=0)\mu_B B + g^*(\theta)\mu_B B}{2kT}\right), \quad (3)$$

из которого можно определить $g^*(\theta)$. Определенные из этого уравнения значения g^* представлены выше на рис. 8 квадратами. Видно, что величины $g^*(\theta)$, определенные разными способами из эксперимента, близки. Это означает, что пересечение уровней Ландау не сильно искажает спиновую щель при $\nu = 3$.

Чтобы происходило пересечение уровней Ландау, необходимо предположить, как уже указывалось выше, что в магнитном поле, перпендикулярном двумерному слою, т.е. при $\theta = 0$, уровень $0\uparrow$ находится по энергии выше уровня $1\downarrow$. Это означает, что в системе должно наблюдаться ферромагнитное упорядочение, так как под уровнем Ферми находятся два заполненных уровня Ландау с одним направлением спина. При $\theta \approx 60^{\circ}$ уровни пересекаются и при $\theta > 60^{\circ}$ изменяют свое относительное положение, разрушая ферромагнитный порядок. Имеется некоторый интервал углов от 59.5° до 61°, где оба состояния сосуществуют.

Пересечение уровней Ландау 0↑ и 1↓ происходит из-за сильной зависимости (уменьшения) g^* -фактора от угла наклона магнитного поля. В точке пересечения уровней $g^* \approx 2.37$. При этом происходит резкий скачок числа заполнения ν , вычисленного из положения по магнитному полю минимумов осцилляций. На рис. 13 представлена зависимость $\nu(\theta)$. Видно, что в области углов $59.5^\circ \le \theta \le 61^\circ$ обе фазы сосуществуют. Однако величина проводимости в минимумах осцилляций не испытывает скачка, а в точке перехода достигает максимума. Эту зависимость легко объяснить, так как в точке перехода энергия активации минимальна, а по обе стороны от перехода она растет. Этот факт подтверждается и измерениями акустоэлектронных эффектов, величина которых определяется проводимостью. Зависимости акустоэлектронных эффектов от магнитного поля и угла наклона подтверждают вывод об отсутствии аномалии в проводимости при $\nu = 3/2$.

В заключение хотелось бы сделать несколько замечаний.

1. На основании анализа работ, в которых изучалась аномалия сопротивления в магнитном поле при $\nu = 3/2$, можно сделать вывод о том, что наблюдается неоднозначность в свойствах образцов *p*-Si/SiGe/Si: в одних существует аномалия в сопротивлении, величина которого зависит от угла наклона θ магнитного поля, в других ее нет, в третьих она не зависит от угла наклона [3]. С нашей точки зрения, необходимо изучать аномалию в проводимости при $\nu = 2$, так как при большом спиновом расщеплении точка $\nu = 3/2$ не имеет физического смысла.

2. Неоднозначность результатов, полученных на разных образцах p-Si/GeSi/Si, по нашему мнению, связана с разной зависимостью g^* -фактора от угла наклона магнитного поля и, возможно, с разной абсолютной его величиной, которая определяется качеством образца и концентрацией дырок.

4. ЗАКЛЮЧЕНИЕ

В работе исследовались магнитосопротивление и эффект Холла в наклонном магнитном поле в структуре с квантовой ямой *p*-Si/SiGe/Si и анизотропным *g**-фактором.

При $\nu = 2$ и $\nu = 3$ были определены зависимость *g*-фактора от угла наклона магнитного поля относительно нормали к плоскости двумерного канала и абсолютное значение *g*^{*}-фактора для $\theta = 0$.

Показано, что большая величина g^* -фактора при $\theta = 0$ приводит к тому, что в магнитном поле, соответствующем $\nu = 2$, уровень Ландау 0↑ оказывается по энергии выше уровня 1 ↓, а под уровнем Ферми находятся полностью поляризованные по спину уровни 0↓ и 1↓, что создает ситуацию ферромагнитного упорядочения. При изменении угла наклона магнитного поля g^* -фактор уменьшается, при $\theta \approx 59.5^{\circ}$ нормальный порядок уровней Ландау восстанавливается и ферромагнитное упорядочение разрушается. Происходит переход первого рода ферромагнетик–парамагнетик, о чем свидетельствуют резкий скачок числа заполнения ν и сосуществование двух фаз в точке перехода.

Авторы (И. Л. Д. и И. Ю. С.) благодарны Ю. М. Гальперину, С. А. Тарасенко, Л. Е. Голубу, В. Т. Долгополову, Э. В. Девятову, Р. В. Парфеньеву и В. А. Саниной за полезные обсуждения. Авторы благодарны Т. Мерфи (Т. Murphy) и Э. Палму (Е. Palm) за помощь в экспериментах.

Работа выполнена при поддержке РФФИ (грант № 08-02-00852), Президиума РАН, программы Отделения физических наук РАН «Спинтроника», проекта ведущих научных школ (НШ-2184.2008.2). Часть работы выполнена в Национальной лаборатории высоких магнитных полей, США (NHMFL, Tallahassee, FL), финансируемой Национальным научным фондом (NSF Cooperative Agreement No. DMR-0084173) и штатом Флорида.

ЛИТЕРАТУРА

- 1. S. I. Dorozhkin, Письма в ЖЭТФ 60, 578 (1994).
- S. I. Dorozhkin, C. J. Emeleus, T. E. Whall et al., Письма в ЖЭТФ 62, 511 (1995).
- P. T. Coleridge, A. S. Sachrajda, P. Zawadzki et al., Sol. St. Comm. 102, 755 (1997).
- M. R. Sakr, Maryam Rahimi, S. V. Kravchenko et al., Phys. Rev. B 64, 161308 (2001).
- 5. P. T. Coleridge, Sol. St. Comm. 127, 777 (2003).
- R. B. Dunford, E. E. Mitchel, R. G. Clark et al., J. Phys.: Condens. Matter 9, 1565 (1997).
- E. Glaser, J. M. Trombetta, T. A. Kennedy et al., Phys. Rev. Lett. 65, 1247 (1990).
- I. L. Drichko, A. M. Dyakonov, I. Yu. Smirnov et al., Phys. Rev. B 77, 085327 (2008).
- I. L. Drichko, I. Yu. Smirnov, A. V. Suslov et al., Phys. Rev. B 79, 205310 (2009).
- I. L. Drichko, A. M. Dyakonov, I. Yu. Smirnov et al., Phys. Rev. B 62, 7470 (2000).
- R. W. Martin, R. J. Nicholas, G. J. Rees et al., Phys. Rev. B 42, 9237 (1990).
- 12. G. F. Giuliani and J. J. Quinn, Phys. Rev. B 31, 6228 (1985).
- 13. S. Yarlagadda, Phys. Rev. B 44, 13101 (1991).
- 14. A. J. Daneshvar, C. J. B. Ford, M. J. Simmons et al., Phys. Rev. Lett. **79**, 4449 (1997).
- V. T. Dolgopolov, E. V. Deviatov, V. S. Khrapai et al., Phys. Stat. Sol. (b) 243, 3648 (2006).
- 16. L. Yu. Shchurova, Ann. der Phys. 18, 928 (2009).