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The geometry of the kX Gepner model, where k +2 = 2K, is investigated by a free-field representation known
as the "bef3y" system. Using this representation, we directly show that the internal sector of the model is
given by Landau-Ginzburg C¥ /Zs orbifold. Then we consider the deformation of the orbifold by a marginal
antichiral—chiral operator. Analyzing the chiral de Rham complex structure in the holomorphic sector, we show
that it coincides with chiral de Rham complex of some toric manifold, where toric data are given by certain
fermionic screening currents. This allows relating the Gepner model deformed by the marginal operator to a
o-model on the CY manifold realized as a double cover of P~ with ramification along a certain submanifold.

1. INTRODUCTION

Geometric aspects underlying purely algebraic, con-
formal field theory (CFT) construction of the super-
string vacua by Gepner [1] are an important and inter-
esting area of study. It has two decades history of re-
search with a number of remarkable results. For exam-
ple, the relationship between o-models on Calabi—Yau
(CY) manifolds and Gepner models has been clarified
essentially (see [2] for the review and references to the
original papers).

However, the question of how to directly relate the
o-model geometry to the algebraic data of Gepner’s
construction (and when this is possible) is still open.

In the important work of Borisov [3], the vertex
operator algebra endowed with an N = 2 Virasoro su-
peralgebra action has been constructed for each pair
of dual reflexive polytopes defining a toric CY mani-
fold. Borisov thus directly constructed the holomorphic
CFT sector from toric data of the CY manifold. His
approach is based essentially on the important work by
Malikov, Schechtman and Vaintrob [4], where a certain
sheaf of vertex algebras called the chiral de Rham com-
plex was introduced. Roughly speaking, the construc-
tion in [4] is a kind of free-field representation known
as the “befv” system, which is in the case of Gepner
models is closely related to the Feigin and Semikhatov
free-field representation [7] of N = 2 supersymmetric
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minimal models. This circumstance is probably the
key for understanding the string geometry of Gepner
models and their relationship to o-models on toric CY
manifolds.

A significant step in this direction has been made in
paper [5], where the vertex algebra of a certain Landau—
Ginzburg (LG) orbifold was related to the chiral de
Rham complex of a toric CY manifold by a spectral se-
quence. The CY manifold was realized as an algebraic
surface of degree K in the projective space PX~': one of
the key points in [5] is that the free-field representation
of the corresponding LG orbifold is given by K copies
of the N = 2 minimal model free-field representation
in [7].

The Gepner model can be characterized by a K-di-
mensional vector

o=, K, (1)
where
wi=23,..., i=1,... K, (2)
define central charges of the individual N = 2 minimal
models
2
ci=3<1——>. (3)
14

In what follows, the u is specified as
o= (s - 5 1) (4)

and hence the total central charge of the model is
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2
1-Z2

. (5)

K
c= Z c;i = 3K ( ) .
i=1
There are two cases where the central charge is integer
and a multiple of 3:

n=K, 2K. (6)

The geometry underlying the first case was investigated
in [5].

In the second case the geometry is more interesting.
The total central charge is

c=3(K —1), (7)

and hence the complex dimension of the compact ma-
nifold is K —1. We show in this paper that the internal
geometry of the Gepner model corresponds in this case
to the o-model on the CY manifold that is a double
cover of PE—1 with ramification along a certain sub-
manifold. This means, in particular, that the center of
mass of the string is allowed to move only along the
base PX—1, but some twisted sectors are added along
the fiber of the double cover.

We can generalize the second case and consider the
models where

p=3K,4K, ... (8)

Although the total central charge is no longer integer
and these models cannot be used as models of super-
string compactification, the orbifold projection consis-
tent with modular invariance still exits [6], which makes
these N = 2 supersymmetic CFT models interesting
from the geometric standpoint. The geometry of these
models has been partly investigated in [8].

In Sec. 2, we collect the known facts on the N = 2
minimal models, fix the notation, and briefly recall
Gepner’s construction of the partition function in the
internal sector of the Gepner model. In Sec. 3, the
free-field representation in [7] is used to relate the
model to the LG (CK/ZZK—orbifold. In Sec. 4, a re-
solution of the orbifold singularity in the chiral sector
is considered. It is given by adding some new fermionic
screening charge coming from the twisted sector of the
Gepner model. We show that this additional screening
charge together with the old charges define the toric
data of the total space of an O(K) bundle over PX—1
as well as the potential on this space. The chiral sec-
tor space of states of the model has the structure of
the chiral de Rham complex on the O(K’) bundle total
space restricted to zeroes of the gradient of the poten-
tial. Then we consider the rest of the orbifold group
action on the space of states and relate the model to a
o-model on the CY manifold that is a double cover of
the projective space PE—1,
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2. THE INTERNAL SECTOR PARTITION
FUNCTION OF GEPNER MODELS

In this section, we recall the construction of the par-
tition function of the Gepner model in the internal sec-
tor. To be more specific, the Ramond-Ramond (RR)
partition function of the internal sector is important for
investigating the geometry. But as a preliminary step,
we collect some known facts about the N = 2 minimal
models and fix the notation.

2.1. Products of N = 2 minimal models

The tensor product of X N = 2 unitary minimal
models can be characterized by a K-dimensional vector
w = (p1,...,pK), where p; > 2 are integers defining
the central charge of the model as

a=3(1-2).

For each individual minimal model, we let M}, ; denote
the irreducible unitary N = 2 Virasoro superalgebra
representation in the Neveu-Schwartz (NS) sector and
Xh,t(q,u) denote the character of the representation,

(9)

where h =0,... ,u—2and t =0,...,h. There are the
following important automorphisms of the irreducible
modules and characters [7,9]:

2
) -

i

Xh,t (q7 U) = ’I‘I'hﬂ: (qL[O]_ﬁuJ[O])7

Mps=My_n—2t—n—1,

(10)
Xht (0, 0) = Xpu—h—2,t—h—1(q,u),
My = My 14, Xh7t+,u(q7u) = Xh,t(qau)v (11)
where p is odd, and
Mui = Mpirps  Xht+n(@w) = Xnt(g,u),
h 7& % - ]-7
(12)
Mh,t = Mh,tJr%a Xh,tJr%(qau) = Xh,t(Q7u)a
b
h==-1
2 b

where g is even. In what follows, we extend the set of
admissible ¢:

t=0,...,p—1 (13)

using the automorphisms above.
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The parameter ¢t € Z labels the spectral flow auto-
morphisms [10] of the N = 2 Virasoro superalgebra in
the NS sector,

G*Hr] = GElr] = U'GT[rU™ = G [r + 1],
Ln] = Lin]) = U'LNU ™ =

6

Jn] = Jin] = ULT]U— = J[n] + t%én,o,

(14)

= L[n] + tJ[n] + t*=0n.0,

where U? denotes the spectral flow operator generating
twisted sectors. Here, r is half-integer for the modes of
the spin-3/2 fermionic currents G*(z), and n is inte-
ger for the modes of the stress-energy tensor 7'(z) and
the U(1) current J(z) of the N = 2 Virasoro superal-
gebra. Thus, allowing ¢ to be half-integer, we recover
the irreducible representations and characters in the R
sector.

The N = 2 Virasoro superalgebra generators in the
product of minimal models are given by the sums of
generators of each minimal model,

GHrl = 3 GEl,
Tl =Y . Tl = 3 Tl
2
c= ;3 (1 — E) .

This algebra obviously acts in the tensor product

(15)

K
Mh,t = ®i:1Mhi,ti

of the irreducible N = 2 Virasoro superalgebra repre-
sentations of each individual model. We use a similar
notation for the corresponding product of characters:

K
Xnt(2,1) = [ xnin: (g, 0). (16)
i=1

2.2. Partition function of the internal sector
In what follows, the characters with a fermionic
number operator insertion play an important role:

~ 101 — i g, 7i 0]
Xhit; (qvu) = Trhi,ti((_l)Fqu[O] zat ) (17)

The internal sector partition function of the Gepner
model in the RR sector is given by

2K—-1 K

Z(q,q,u,u) = ﬁ Z Hx

n,m i=1

X Z X titntt (Th0 + m))Z;i7+ti+n+%(T7U) (18)
hiti
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where

q =exp[i2r7], u = exp[i2mv],

and * denotes complex conjugation. The summation
over n is due to the spectral-flow-twisted sectors gener-
ated by the product of spectral flow operators Hf\zl ur.
The summation over m corresponds to the projection
on Zsi-invariant states with respect to the operator
exp [i2m.J[0]]. Therefore, (18) is the Z,x-orbifold par-
tition function in the RR sector with a periodic spin
structure along both cycles of the torus.

3. FREE-FIELD REPRESENTATIONS AND
THE LG ORBIFOLD GEOMETRY OF
GEPNER MODELS

In this section, we relate the Gepner models to the
LG orbifolds CX /Zsx essentially using the free-field
construction of irreducible representations of the N = 2
minimal models found in [7].

3.1. Free-field realization of N = 2 minimal
models

Let X (z) and X*(z) be free bosonic fields, and 1(z)
and ¥*(z) be free fermionic fields (in the left-moving
sector) with the OPEs given by

X*(21)X (22) = 111(22) +reg., (19)
P*(21)Y(22) = 275 +reg,,

where z12 = z1 — 2. For an arbitrary number pu, the
currents of the NV = 2 super-Virasoro algebra are given
by

GH(z) = ¥ (2)0X () - %awz»

G (2) = P(2)0X7(2) — 9 (2),

* Lox z) — z
T =W ) + 10X () ~0XG). ()
T(:) = OX (2)0X°(2) + 5(00° () (2) -
— U OUE) — GO () + 0K (),
and the central charge is
2
0—3(1—;). (21)

As usual, the fermions are expanded into half-
integer modes in the NS sector and into integer modes
in the R sector,



S. E. Parkhomenko

MIT®, Tom 138, Be. 3(9), 2010

() = S el

VH(z) =Y e rle e (22)

GE(x) =Y GF[rla

The bosons are expanded into the integer modes in
both sectors:

0X(z) =Y X[n]z~'"",

nezZ

0X*(2) =Y X*[n]z""'",

nezZ

J(z) = Z Jn]z=t ",

nezZ

Z Ln]z=27".

nez

(23)

T(z)

In the NS sector, the N = 2 Virasoro superalgebra
acts naturally in the Fock module Fj, ;- generated by
the fermionic operators ¢*[r], ¥[r], r < 1/2, and by the
bosonic operators X *[n], X[n], n < 0 from the vacuum
state |p, p*), such that

T T

—~ Fingp < Fontp
T T
— F17h — FOJL
N

The horizontal arrows in this diagram are given by the
action of

Q= $dz570), S*E) =¥ exp(X)(a) (1)

The vertical arrows are given by the action of

¢=fwgvxswa=memm.@&

. . . 1
Y[rllp, p*) = Y*[r]llp, p* >=0,r > 3
X[n]lp,p*) = X*[n]|p,p") =0,n > 1,
X[0]lp,p*) =plp,p*), X*[0]lp,p*) = p"|p,p").

(24)

The |p, p*) state is a primary state with respect to the
N = 2 Virasoro algebra,

G’i[r]|p,p*) =0, r>0,
J[n]|p,p*) = L[n]|p,p*) =0, n >0,

Jmmmw=§mmw=o, (25)
o h(h+2)—j52
L[0]|p, p*) = (T)]lp,p ) =0,

where j = p* — up and h = p* + up.

If 4 — 2 is integer and nonnegative, the Fock mo-
dule is a highly reducible representation of the N = 2
Virasoro algebra.

The irreducible module M} ; is given by the coho-
mology of some complex built up from Fock modules.
This complex was constructed in [7]. We first consider
the free-field construction for the chiral module M, .
In this case, the complex (which is known due to Fei-
gin and Semikhatov as the butterfly resolution) can be
represented by the diagram

(26)
Fany < Fon, <
T T
F_ipoy < F_op o, <

T T

The diagonal arrow at the middle of the butterfly reso-
lution is given by the action of Q*Q~. It is a complex
because

@) =@ )={Q".Q}=0. (29)
The main statement in [7] is that complex (26) is

exact except at the Fp ;, module, where the cohomology
is given by the chiral module Mj, .

428
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To obtain the resolution for the irreducible module
Mp, ., we can use the observation in [7] that all irre-
ducible modules can be obtained from the chiral mo-
dule My 0, h=0,...,u—2, by the spectral flow action
Ut t=1,...,u—1. The spectral flow action on the
free fields can be easily described if we bosonize the
fermions as

¥(z) = exp(—0(2)), ¥*(z) =exp(d(z))  (30)
and introduce the spectral flow vertex operator
Ul(z) = exp (—t <¢ + %X* - X) (z)) . (31)

Using resolution (26) and the spectral flow, we ob-
tain the following expression for the character [9]:

Xi—t(u,q) = B P EOT T
3
X ql_T”u%"'% <_77(q“))
n(q)

1
1+ ugztttn
X H _1q717t+n
oo L+ ulqg™2 "
l+u"lgz=ttn 14
14+ uq§+t+(n+1)u 1 - q(n+1)u
1— q717h+nu

n+1

x H 1+uq—§—h+t+nu x
_ gl Hht(nt )
1 +1u1qq%+h—t+(n+1)u’ (32)
where
=g H (1-q") (33)

The resolutions and irreducible modules in the R
sector are generated from those in the NS sector by the
spectral flow operator U'/2,

2. Free-field realization of the product of
minimal models

It is clear how to generalize the free-field represen-
tation to the tensor product of X' N = 2 minimal
models. In the left-moving sector, we introduce free
bosonic fields X;(z), Xf(z) and free fermionic fields
Yi(2),¥5(z), i = 1,..., K, such that their singular
OPEs are given by (19). The N = 2 Virasoro cur-
rents for each of the models are given by (20). To de-
scribe the products of irreducible representations My ¢,
we introduce the fermionic screening currents and their
charges

429

SH(2) = ¥} exp(X})(2)
Si (2) = iexp(ui Xi) (2

QF = %dzsii(z).

Then the module My o is given by the cohomology of
the product of butterfly resolutions (26). The resolu-
tion of My ¢ is generated by the spectral flow operator

HUt, ti=1

/J/i_lv

where Uf is the spectral flow operator from the ith
minimal model (31). Allowing #; to be half-integer,
we generate the corresponding objects in the R sec-
tor. In what follows, we consider the case ;3 = ...
= UK = 2K.

3.3. The LG orbifold geometry of Gepner
models

The holomorphic factor of the space of states of
model (18) in the R sector is also given by cohomology
of a complex. It is an orbifold of the complex that is
the sum of butterfly resolutions for the modules My, ¢.
The cohomology of this complex can be calculated in
two steps.

At the first step, we take the cohomology with re-
spect to the operator

(35)

K
+ _ +
=Y @t
i=1

The cohomology is generated by the “befy” system of
fields

ai(z) = exp [X;i](2), «i(2) = iexp[Xi](2),
aj (2) = (0X] — athy) exp [=X;](2), (36)
ai(z) = 97 exp [- Xi](2).

The singular operator product expansions of these
fields are

a(z1)a;i(z2) = 2565 + ...,
zf 1) ]( 2) 12713 (37)
aj(z1)a(22) = 215 0ij + ...

In terms of the fields in (36), the N = 2 Virasoro cur-
rents (15) are given by
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We note that the zero mode G~ [0] acts in the space of
states generated by the “bcfv” system of fields similarly
to how the de Rham differential acts in the de Rham
complex of CK . Due to this observation and taking (37)
into account, we can make the following geometric in-
terpretation of the fields in (36). The fields a;(z) corre-
spond to the coordinates a; on the complex space CX |
and the fields af(z) correspond to the operators 8‘22_.
The fields «;(z) correspond to the differentials da;, and
af(z) correspond to the variables conjugate to da;.

The next important property is the behavior of the
“befy” system under a local change of coordinates on
CK [4]. For each new set of coordinates

bi:gi(alv"' 7a1\’)7 ai:fi(blv"' 7bI\’)7 (39)

an isomorphic “bcfv” system of fields is given by

bz(z) = gi(al (Z)v s 7a’K(Z))7

B(2) = G (=) () ),

50) = SR (0N )
b (z) = g{j (a1(2), ... ar(2))aj(z) +

0> fr 9g;

_|_

Tooah e (@1(2): s ax(2)oi (2)an(),
where normal ordering is implied. This endows the
“befy” system (36) with the structure of a sheaf, known
as the chiral de Rham complex [4].

All these properties give a geometric interpretation
to the algebraic construction of Gepner models. In-
deed, it was shown in the general toric setup in [3] that
the screening charges Q;" determine the toric data of
some toric manifold and the cohomology of differential
(35) gives sections of chiral de Rham complex on this
manifold. In our case, this manifold is CX and the

chiral de Rham complex on this space is generated by
“befy” system (36).
The charges of fields (36) are given by

1
J(z1)a;(z2) = zl;ﬁai(@) + reg.,

1,
J(z1)ai(z2) = _2121ﬁai (22) + reg.,
(41)

_ 1
J(z1)ai(z2) = —z121 (1 — ﬁ) a;(z2) + reg.,

J(z1)al (z) = 255 <1 - L) aj(z2) + reg.

2K

Hence, projecting on Zsg-invariant states and
adding twisted sectors generated by Hf;l (U;)™, we ob-
tain a toric construction of the chiral de Rham complex
of the CX /Zyy orbifold. The chiral de Rham complex
on the orbifold was recently introduced in [11].

The second step in the cohomology calculation is
to take the cohomology with respect to the differential
Q = Zf; @; . This operator survives the orbifold
projection and is expressed in terms of fields (36) as

K
Q = %dzZai(ai)ﬂ"_l. (42)

Therefore, the second step of the cohomology calcula-
tion gives the restriction of the chiral de Rham complex
to the points dW = 0 of the potential

K

W= (a;)**. (43)

i=1

The total space of states in the holomorphic sector
can be recovered by spectral flow operators Hf;l (U;)t,
where the vector (¢1,... ,tx) is orthogonal to the vec-
tor (1,...,1) generating the twisted sectors of the or-
bifold. Hence, the total space of states is the space
of states of the LG orbifold CX /Zsx, whose partition
function in the RR sector is given by (18).

4. THE LG o-MODEL CORRESPONDENCE
CONJECTURE

In this section, we relate the LG orbifold CX /Zyx
to a o-model on the CY manifold that is a double cover
of PX=1_ The relation appears when we deform the
LG orbifold by a marginal operator making the orbi-
fold singularity resolution. According to the construc-
tion in [3,5], the orbifold singularity resolution in the
holomorphic sector is given by supplementary screening
charges.

430
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4.1. The K = 2 example

We first consider the simplest example where
K = 2. In this case, we add the screening charge

Do = e (wt + w5)exo (5067 4. X9)) ) (a0

to the charges Qf2. It is easy to verify that this
operator commutes with the total N = 2 Virasoro
currents (15) and also commutes with the operators
Q; . The corresponding fermionic screening current is
the holomorphic (chiral) factor of an antichiral—chiral
marginal field [2,13], coming from the twisted sector.
The fermionic operators
IE

2—-n ,, 24+n ,
Xp) (0 n=-11, ()

xexp<

also commute with the N = 2 Virasoro algebra and
with @;, but do not appear as marginal operators of
the model because they should come from twisted sec-
tors that are nonexistent in the model (see (18)).

To the set of screening charges Q7 , QF, Doy, fol-
lowing the construction of Borisov, we associate the
fan [12] consisting of two 2-dimensional cones oy and
o2 respectively generated in the lattice (3Z)? by the
vectors (el, %(el + 62)) and (62, %(el + 62)). To each
of the cones o;, a “bcfy” system of fields is related by
the cohomology of the differential er + Dorp, 0 =1,2.
This is the first step of the cohomology calculation.

It can be shown that these two systems generate
the space of sections of the chiral de Rham complex on
open sets of the standard covering of the total space of
an O(2) bundle over P!.

The first step of the cohomology calculation can be
split into two substeps. At the first substep, we take
the QF + D, cohomology. Tt is given by the following
“befy” fields:

2

n_, 2+n
TX1+—

4

bo(z) = exp [2X>](2),
Bo(z) = 22 exp [2X2](2),
1
15(:) = (307 +033) — valui +49))
x exp [-2X5](z),
53(2) = S5 + 03 exp [230](2),
bi(2) = exp [X1 — X5](2),
B1(2) = (1 — o) exp X - Xa(2),

b (z) = (OX] — (1 — ¥)¥]) exp [Xa — X1](2),
Bi(2) = T exp [Xo — X1](2).

(46)
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At the second substep, we calculate the Q3 cohomolo-
gy-

Equivalently, we can take the Q; + D,y cohomo-
logy at the first substep and apply Q; at the second
substep. This way, we obtain different “bc3~” fields:

bo(z) = exp [2X1](2),
Bo(2) = 2ty exp[2X1](2),
- 1
33(:) = (307 +0X7) — n(w + 45 ) x
x exp [—2X1](2),
(2) = 055 + ) exp [-2X](2),
b (2) = exp[Xs — X1](2),
Bi(z) = (W2 — 1) exp [Xo — X1](2),
b} (2) = (0X5 — (b2 — vh1)3) exp [ X1 — X2](2),
Bt (2) = 3 exp[X1 — X>](2).

(47)

2%

0

In view of the important property (40), these two
“bef” systems are related to each other like the coor-
dinates of the standard covering of the total space of
an O(2) bundle over P!,

bo =bo(b1)*, b1

bt (48)

Therefore,

bo(z) «» coordinate by along the fiber,

(49)

b1(z) +» coordinate b; along the base

in the first open set of the standard covering. The
tildaed fields are associated with the second open set.
Thus, fields (46) and (47) generate sections of the chiral
de Rham complex over open sets of the covering given
by the fan oy U os. In the second substep, we calculate
the cohomology of the Czech complex of the standard
covering. It glues the sections of chiral de Rham com-
plex over open sets into the chiral de Rham complex
over the total space of the bundle. This finishes the
first step of the cohomology calculation.

The differential (Q~ at the second step of the coho-
mology calculation commutes with D,,;, and survives
the Z4 projection. It defines a function (potential) W
on the total space of the O(2) bundle, and the @~ -co-
homology calculation restricts the chiral de Rham com-
plex to the dIW = 0 locus of the function. In terms of
fields (46), the potential takes the form

W =021+ b}). (50)
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The dW = 0 locus (@~ -cohomology) is given by the
equations

bo = 0, when b} # —1,

51
(bo)?> =0, when b} (51

The set of solutions is P' with four marked points
b} = —1, where the additional states are possible ac-
cording to the last row in (51). Thus, we can think of
P' as a target space of the model, where the center of
mass of the string is allowed to move.

This interpretation is not quite correct, however,
because we did not resolve the orbifold singularity com-
pletely. It is easy to see from (15), (20), (46) or (47)
that the subgroup

Zio C iy (52)
acts on sections of the chiral de Rham complex over
each open set. But the action is nontrivial only along
the fibers of the O(2) bundle, and hence the base P! is
the fixed-point set of the action. Therefore, we should
consider the target space of the model as two copies of
P! (except probably at the points bf = —1), where the
second copy comes from the twisted sector. This pic-
ture is in agreement with the result in [11], where the
chiral de Rham complex on orbifolds was introduced.
It was shown there that twisted sectors of the chiral
de Rham complex are the sheaves supported on fixed
points of the orbifold group action.

Thus, the natural suggestion is that we reproduce
the geometry of a 2-torus that is a double cover of P!
with ramification along the marked points b} = —1.
This is confirmed by the Hodge number calculation
based on (18):

hO’O — h170 — h071 — hl,l - 1.
Hence, adding fermionic screening charge (44), we blow
up the orbifold singularity of the Gepner model and
obtain a g-model on the 2-torus that is a double cover
of P

2. K > 2 generalization

In the general case, we deform the differential QF
in (35) by adding the screening charge

Q+ — Q+ + Dorbv

1
Dorb = %dzg(l/’f +.. +¢;\’) X

1
X exp <I,(X*

(53)
L+ X&)) (=),
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which comes from the spectral flow operator Hf;l U;.
Similarly to the K 2 case, there are also other
fermionic screening charges commuting with the NV =2
Virasoro currents as well as with the charges @, , but
they do not appear as marginal operators of model (18).

The set of screening charges {Q7,...,Q%, Dorb}
defines the standard fan of the total space of an O(K)
bundle over PX~!, The top-dimension cones o; of the
fan are labeled by the differentials

Di :Q1++ ~~+Qi+71 +D0Tb+Qi++17"' 7QZ’7
: . (54)
1=1,... K,
where Q7 is missing. In the standard basis (eq,. .. ,ex)

of R, the cones are generated by the set of vectors

1

K x

Ei = (81 = €1y,.-.,8i—1 = €;—1,8; =
X (€14 ...+ €K),8it1 = €itly--- ,SK:eK>. (55)

From the first substep of the cohomology calculation,
we obtain a “bcfv” system of fields associated with each
differential D;, and the space of states generated by this
system is the set of sections of the chiral de Rham com-
plex over the open set associated with the cone o; of the
standard covering of the O(K’) bundle total space over
PEX~1. The analogue of formulas (46) can be written
easily in terms of the dual basis $; to the ¥;,

(56)

w(i)K)a <w(i)jasm> = 5jm-

Then the cohomology of D; is generated by

(i (2) = 'X]( )
Bliyj(2) = way; - Yexp [wey; - X1(2),
bz‘i)j(z):(sj~6X*—wi sj ")
x exp [—w(); - X](2),
By (2) = sj " exp [_w(i)j - X1(2),

exp [wy;);

x (57)

where

b(iyi(2) <+ coordinate b;); along the fiber,
bei)j(2), j #i ¢ coordinate b, ; (58)

along the base.

Global sections of the chiral de Rham complex on
the O(K) bundle total space are given by the Czech
complex associated with the standard covering [3].
This finishes the first step of the cohomology calcu-
lation.

In terms of fields (57), the LG potential determined
by the differential ()~ becomes
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Free-field representations and geometry ...

W = (buy)” [ 1+ Z(b(i)j)ﬂ\’ : (59)
J7#i
The dW = 0 locus (Q~-cohomology) is given by the
equations

b(z)l = 07 Z(b(l)])2l\’ 75 _17

2 g 2K (60)
(biyi)” =0, Z(b(i)j) =-1L
JF#i
Hence, the set of solutions is PX ! with a marked sub-
manifold
Z(b(i)j)% = -1, (61)
JF#i

where the additional states are possible according to
the last row in (60).

Similarly to the case K = 2, we can see that only the
fields of the fiber are charged with respect to the ope-
rator J[0], and the subgroup Z» C Zs acts nontrivialy
along the fibers. Therefore, the base PX~! (considered
as a zero section of the O(K) bundle) is the fixed-point
set of the Zs, action, and we conclude that the tar-
get space of the model is given by two copies of PF—!
(except the submanifold (61)), where the second copy
comes from the twisted sector (see [11]).

Hence, it is natural to suggest that the geometry
of the model is the (K — 1)-dimensional CY manifold
geometry that doubly covers PX—1 with ramification
along submanifold (61). This is confirmed by the Hodge
number calculation based on (18). For example, when
K =3,

ROO — 20 — 02 — 22 — 1 pLl =90, (62)

which are the Hodge numbers of K'3. When K = 4, we
find
h0,0 _ h3,0 _ h0,3 — h3,3 — hl,l _ h2,2 _ 17

h'? = n>' =149 (63)

which are the Hodge numbers of the known CY ma-
nifold that doubly covers P3. Hence, adding fermionic
screening charge (53), we blow up the orbifold singu-
larity of the Gepner model and obtain a o-model on
the CY manifold that is a double cover of PX—1,

It is important to note that in our free-field reali-
zation, the center of mass of the string is allowed to
move on the PX—1, which can be considered as a tar-
get space, and hence we can interprate the model as a
o-model on PX~'. Although the target space PX~! is
not a CY manifold, we do have the N = 2 supercon-
formal invariance. The possible solution of this puzzle
is to consider these models as examples of flux com-
pactification [14, 15]. It is interesting to note also that
the models considered here are very close to the known
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examples of the weak-coupling limit of F-theory com-
pactifications [16,17]. The only difference is that they
do not have the orientifolds planes. It would be in-
teresting to know whether these models can be related
with F-theory compactifications.

To conclude, we mention the question of the ge-
ometry of mirror models. It can be investigated by
free-field “befy” representations, but we leave it for the
future.
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