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FREE-FIELD REPRESENTATIONS AND GEOMETRYOF SOME GEPNER MODELSS. E. Parkhomenko *Landau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es142432, Chernogolovka, Mos
ow Region, RussiaRe
eived February 6, 2010The geometry of the kK Gepner model, where k+2 = 2K, is investigated by a free-�eld representation knownas the �b
�
� system. Using this representation, we dire
tly show that the internal se
tor of the model isgiven by Landau�Ginzburg CK =Z2K orbifold. Then we 
onsider the deformation of the orbifold by a marginalanti
hiral�
hiral operator. Analyzing the 
hiral de Rham 
omplex stru
ture in the holomorphi
 se
tor, we showthat it 
oin
ides with 
hiral de Rham 
omplex of some tori
 manifold, where tori
 data are given by 
ertainfermioni
 s
reening 
urrents. This allows relating the Gepner model deformed by the marginal operator to a�-model on the CY manifold realized as a double 
over of PK�1 with rami�
ation along a 
ertain submanifold.1. INTRODUCTIONGeometri
 aspe
ts underlying purely algebrai
, 
on-formal �eld theory (CFT) 
onstru
tion of the super-string va
ua by Gepner [1℄ are an important and inter-esting area of study. It has two de
ades history of re-sear
h with a number of remarkable results. For exam-ple, the relationship between �-models on Calabi�Yau(CY) manifolds and Gepner models has been 
lari�edessentially (see [2℄ for the review and referen
es to theoriginal papers).However, the question of how to dire
tly relate the�-model geometry to the algebrai
 data of Gepner's
onstru
tion (and when this is possible) is still open.In the important work of Borisov [3℄, the vertexoperator algebra endowed with an N = 2 Virasoro su-peralgebra a
tion has been 
onstru
ted for ea
h pairof dual re�exive polytopes de�ning a tori
 CY mani-fold. Borisov thus dire
tly 
onstru
ted the holomorphi
CFT se
tor from tori
 data of the CY manifold. Hisapproa
h is based essentially on the important work byMalikov, S
he
htman and Vaintrob [4℄, where a 
ertainsheaf of vertex algebras 
alled the 
hiral de Rham 
om-plex was introdu
ed. Roughly speaking, the 
onstru
-tion in [4℄ is a kind of free-�eld representation knownas the �b
�
� system, whi
h is in the 
ase of Gepnermodels is 
losely related to the Feigin and Semikhatovfree-�eld representation [7℄ of N = 2 supersymmetri
*E-mail: spark�itp.a
.ru

minimal models. This 
ir
umstan
e is probably thekey for understanding the string geometry of Gepnermodels and their relationship to �-models on tori
 CYmanifolds.A signi�
ant step in this dire
tion has been made inpaper [5℄, where the vertex algebra of a 
ertain Landau�Ginzburg (LG) orbifold was related to the 
hiral deRham 
omplex of a tori
 CY manifold by a spe
tral se-quen
e. The CY manifold was realized as an algebrai
surfa
e of degreeK in the proje
tive spa
e PK�1; one ofthe key points in [5℄ is that the free-�eld representationof the 
orresponding LG orbifold is given by K 
opiesof the N = 2 minimal model free-�eld representationin [7℄.The Gepner model 
an be 
hara
terized by a K-di-mensional ve
tor � = (�1; : : : ; �K); (1)where �i = 2; 3; : : : ; i = 1; : : : ;K; (2)de�ne 
entral 
harges of the individual N = 2 minimalmodels 
i = 3�1� 2�i� : (3)In what follows, the � is spe
i�ed as� = (�; �; : : : ; �) (4)and hen
e the total 
entral 
harge of the model is425
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 = KXi=1 
i = 3K �1� 2�� : (5)There are two 
ases where the 
entral 
harge is integerand a multiple of 3: � = K; 2K: (6)The geometry underlying the �rst 
ase was investigatedin [5℄.In the se
ond 
ase the geometry is more interesting.The total 
entral 
harge is
 = 3(K � 1); (7)and hen
e the 
omplex dimension of the 
ompa
t ma-nifold is K�1. We show in this paper that the internalgeometry of the Gepner model 
orresponds in this 
aseto the �-model on the CY manifold that is a double
over of PK�1 with rami�
ation along a 
ertain sub-manifold. This means, in parti
ular, that the 
enter ofmass of the string is allowed to move only along thebase PK�1, but some twisted se
tors are added alongthe �ber of the double 
over.We 
an generalize the se
ond 
ase and 
onsider themodels where � = 3K; 4K; : : : (8)Although the total 
entral 
harge is no longer integerand these models 
annot be used as models of super-string 
ompa
ti�
ation, the orbifold proje
tion 
onsis-tent with modular invarian
e still exits [6℄, whi
h makesthese N = 2 supersymmeti
 CFT models interestingfrom the geometri
 standpoint. The geometry of thesemodels has been partly investigated in [8℄.In Se
. 2, we 
olle
t the known fa
ts on the N = 2minimal models, �x the notation, and brie�y re
allGepner's 
onstru
tion of the partition fun
tion in theinternal se
tor of the Gepner model. In Se
. 3, thefree-�eld representation in [7℄ is used to relate themodel to the LG CK =Z2K-orbifold. In Se
. 4, a re-solution of the orbifold singularity in the 
hiral se
toris 
onsidered. It is given by adding some new fermioni
s
reening 
harge 
oming from the twisted se
tor of theGepner model. We show that this additional s
reening
harge together with the old 
harges de�ne the tori
data of the total spa
e of an O(K) bundle over PK�1,as well as the potential on this spa
e. The 
hiral se
-tor spa
e of states of the model has the stru
ture ofthe 
hiral de Rham 
omplex on the O(K) bundle totalspa
e restri
ted to zeroes of the gradient of the poten-tial. Then we 
onsider the rest of the orbifold groupa
tion on the spa
e of states and relate the model to a�-model on the CY manifold that is a double 
over ofthe proje
tive spa
e PK�1.

2. THE INTERNAL SECTOR PARTITIONFUNCTION OF GEPNER MODELSIn this se
tion, we re
all the 
onstru
tion of the par-tition fun
tion of the Gepner model in the internal se
-tor. To be more spe
i�
, the Ramond�Ramond (RR)partition fun
tion of the internal se
tor is important forinvestigating the geometry. But as a preliminary step,we 
olle
t some known fa
ts about the N = 2 minimalmodels and �x the notation.2.1. Produ
ts of N = 2 minimal modelsThe tensor produ
t of K N = 2 unitary minimalmodels 
an be 
hara
terized by aK-dimensional ve
tor� = (�1; : : : ; �K), where �i � 2 are integers de�ningthe 
entral 
harge of the model as
i = 3�1� 2�i� :For ea
h individual minimal model, we let Mh;t denotethe irredu
ible unitary N = 2 Virasoro superalgebrarepresentation in the Neveu�S
hwartz (NS) se
tor and�h;t(q; u) denote the 
hara
ter of the representation,�h;t(q; u) = Trh;t(qL[0℄� 
24 uJ[0℄); (9)where h = 0; : : : ; ��2 and t = 0; : : : ; h. There are thefollowing important automorphisms of the irredu
iblemodules and 
hara
ters [7; 9℄:Mh;t �M��h�2;t�h�1;�h;t(q; u) = ���h�2;t�h�1(q; u); (10)Mh;t �Mh;t+�; �h;t+�(q; u) = �h;t(q; u); (11)where � is odd, andMh;t �Mh;t+�; �h;t+�(q; u) = �h;t(q; u);h 6= �2 � 1;Mh;t �Mh;t+�2 ; �h;t+�2 (q; u) = �h;t(q; u);h = �2 � 1; (12)where � is even. In what follows, we extend the set ofadmissible t: t = 0; : : : ; �� 1 (13)using the automorphisms above.426
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tral �ow auto-morphisms [10℄ of the N = 2 Virasoro superalgebra inthe NS se
tor,G�[r℄! G�t [r℄ � U tG�[r℄U�t � G�[r � t℄;L[n℄! Lt[n℄ � U tL[n℄U�t �� L[n℄ + tJ [n℄ + t2 
6Æn;0;J [n℄! Jt[n℄ � U tJ [n℄U�t � J [n℄ + t 
3Æn;0; (14)where U t denotes the spe
tral �ow operator generatingtwisted se
tors. Here, r is half-integer for the modes ofthe spin-3=2 fermioni
 
urrents G�(z), and n is inte-ger for the modes of the stress-energy tensor T (z) andthe U(1) 
urrent J(z) of the N = 2 Virasoro superal-gebra. Thus, allowing t to be half-integer, we re
overthe irredu
ible representations and 
hara
ters in the Rse
tor.The N = 2 Virasoro superalgebra generators in theprodu
t of minimal models are given by the sums ofgenerators of ea
h minimal model,G�[r℄ =Xi G�i [r℄;J [n℄ =Xi Ji[n℄; T [n℄ =Xi Ti[n℄;
 =Xi 3�1� 2�i� : (15)This algebra obviously a
ts in the tensor produ
tMh;t = 
Ki=1Mhi;tiof the irredu
ible N = 2 Virasoro superalgebra repre-sentations of ea
h individual model. We use a similarnotation for the 
orresponding produ
t of 
hara
ters:�h;t(q; u) = KYi=1�hi;ti(q; u): (16)2.2. Partition fun
tion of the internal se
torIn what follows, the 
hara
ters with a fermioni
number operator insertion play an important role:~�hi;ti(q; u) = Trhi;ti((�1)F qLi[0℄� 
i24uJi[0℄): (17)The internal se
tor partition fun
tion of the Gepnermodel in the RR se
tor is given byZ(q; �q; u; �u) = 12K2K 2K�1Xn;m KYi=1��Xhi;ti ~�hi;ti+n+ 12 (�; � +m)~��hi;+ti+n+ 12 (�; �) (18)

where q = exp [i2�� ℄; u = exp [i2��℄;and � denotes 
omplex 
onjugation. The summationover n is due to the spe
tral-�ow-twisted se
tors gener-ated by the produ
t of spe
tral �ow operatorsQKi=1 Uni .The summation over m 
orresponds to the proje
tionon Z2K-invariant states with respe
t to the operatorexp [i2�J [0℄℄. Therefore, (18) is the Z2K-orbifold par-tition fun
tion in the RR se
tor with a periodi
 spinstru
ture along both 
y
les of the torus.3. FREE-FIELD REPRESENTATIONS ANDTHE LG ORBIFOLD GEOMETRY OFGEPNER MODELSIn this se
tion, we relate the Gepner models to theLG orbifolds CK =Z2K essentially using the free-�eld
onstru
tion of irredu
ible representations of theN = 2minimal models found in [7℄.3.1. Free-�eld realization of N = 2 minimalmodelsLet X(z) and X�(z) be free bosoni
 �elds, and  (z)and  �(z) be free fermioni
 �elds (in the left-movingse
tor) with the OPEs given byX�(z1)X(z2) = ln(z12) + reg.; �(z1) (z2) = z�112 + reg.; (19)where z12 = z1 � z2. For an arbitrary number �, the
urrents of the N = 2 super-Virasoro algebra are givenby G+(z) =  �(z)�X(z)� 1�� �(z);G�(z) =  (z)�X�(z)� � (z);J(z) =  �(z) (z) + 1��X�(z)� �X(z);T (z) = �X(z)�X�(z) + 12(� �(z) (z)��  �(z)� (z))� 12(�2X(z) + 1��2X�(z)); (20)
and the 
entral 
harge is
 = 3�1� 2�� : (21)As usual, the fermions are expanded into half-integer modes in the NS se
tor and into integer modesin the R se
tor,427
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The bosons are expanded into the integer modes inboth se
tors: �X(z) = Xn2ZX [n℄z�1�n;�X�(z) = Xn2ZX�[n℄z�1�n;J(z) = Xn2Z J [n℄z�1�n;T (z) = Xn2Z L[n℄z�2�n: (23)

In the NS se
tor, the N = 2 Virasoro superalgebraa
ts naturally in the Fo
k module Fp;p� generated bythe fermioni
 operators  �[r℄,  [r℄, r < 1=2, and by thebosoni
 operators X�[n℄, X [n℄, n < 0 from the va
uumstate jp; p�i, su
h that

 [r℄jp; p�i =  �[r℄jp; p� >= 0; r � 12 ;X [n℄jp; p�i = X�[n℄jp; p�i = 0; n � 1;X [0℄jp; p�i = pjp; p�i; X�[0℄jp; p�i = p�jp; p�i: (24)The jp; p�i state is a primary state with respe
t to theN = 2 Virasoro algebra,G�[r℄jp; p�i = 0; r > 0;J [n℄jp; p�i = L[n℄jp; p�i = 0; n > 0;J [0℄jp; p�i = j� jp; p�i = 0;L[0℄jp; p�i = h(h+ 2)� j24� jp; p�i = 0; (25)where j = p� � �p and h = p� + �p.If � � 2 is integer and nonnegative, the Fo
k mo-dule is a highly redu
ible representation of the N = 2Virasoro algebra.The irredu
ible module Mh;j is given by the 
oho-mology of some 
omplex built up from Fo
k modules.This 
omplex was 
onstru
ted in [7℄. We �rst 
onsiderthe free-�eld 
onstru
tion for the 
hiral module Mh;0.In this 
ase, the 
omplex (whi
h is known due to Fei-gin and Semikhatov as the butter�y resolution) 
an berepresented by the diagram... ..." ": : :  F1;h+�  F0;h+�" ": : :  F1;h  F0;h - F�1;h��  F�2;h��  : : :" "F�1;h�2�  F�2;h�2�  : : :" "... ...
(26)

The horizontal arrows in this diagram are given by thea
tion ofQ+ = I dz S+(z); S+(z) =  � exp(X�)(z): (27)The verti
al arrows are given by the a
tion ofQ� = I dz S�(z); S�(z) =  exp(�X)(z): (28)
The diagonal arrow at the middle of the butter�y reso-lution is given by the a
tion of Q+Q�. It is a 
omplexbe
ause (Q+)2 = (Q�)2 = fQ+; Q�g = 0: (29)The main statement in [7℄ is that 
omplex (26) isexa
t ex
ept at the F0;h module, where the 
ohomologyis given by the 
hiral module Mh;0.428
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ible moduleMh;t, we 
an use the observation in [7℄ that all irre-du
ible modules 
an be obtained from the 
hiral mo-duleMh;0, h = 0; : : : ; ��2, by the spe
tral �ow a
tionU�t; t = 1; : : : ; � � 1. The spe
tral �ow a
tion on thefree �elds 
an be easily des
ribed if we bosonize thefermions as (z) = exp(��(z));  �(z) = exp(�(z)) (30)and introdu
e the spe
tral �ow vertex operatorU t(z) = exp��t��+ 1�X� �X� (z)� : (31)Using resolution (26) and the spe
tral �ow, we ob-tain the following expression for the 
hara
ter [9℄:�h;�t(u; q) = q h2�+ 
6 t2+ th� � 
24 �� q 1��8 uh�+ 
t3 ��(q�)�(q) �3 ��Yn=0 1 + uq 12+t+n1 + u�1q� 12�t+n� �� 1 + u�1q 12�t+n1 + uq 12+t+(n+1)� 1� qn+11� q(n+1)� ��Yn=0 1� q�1�h+n�1 + uq� 12�h+t+n� �� 1� q1+h+(n+1)�1 + u�1q 12+h�t+(n+1)� ; (32)where �(q) = q 124 Yn=1(1� qn): (33)The resolutions and irredu
ible modules in the Rse
tor are generated from those in the NS se
tor by thespe
tral �ow operator U1=2.3.2. Free-�eld realization of the produ
t ofminimal modelsIt is 
lear how to generalize the free-�eld represen-tation to the tensor produ
t of K N = 2 minimalmodels. In the left-moving se
tor, we introdu
e freebosoni
 �elds Xi(z); X�i (z) and free fermioni
 �elds i(z);  �i (z), i = 1; : : : ;K, su
h that their singularOPEs are given by (19). The N = 2 Virasoro 
ur-rents for ea
h of the models are given by (20). To de-s
ribe the produ
ts of irredu
ible representationsMh;t,we introdu
e the fermioni
 s
reening 
urrents and their
harges

S+i (z) =  �i exp(X�i )(z);S�i (z) =  i exp(�iXi)(z);Q�i = I dz S�i (z): (34)Then the module Mh;0 is given by the 
ohomology ofthe produ
t of butter�y resolutions (26). The resolu-tion of Mh;t is generated by the spe
tral �ow operatorU t =Yi U tii ; ti = 1; : : : ; �i � 1;where U tii is the spe
tral �ow operator from the ithminimal model (31). Allowing ti to be half-integer,we generate the 
orresponding obje
ts in the R se
-tor. In what follows, we 
onsider the 
ase �1 = : : : == �K = 2K.3.3. The LG orbifold geometry of GepnermodelsThe holomorphi
 fa
tor of the spa
e of states ofmodel (18) in the R se
tor is also given by 
ohomologyof a 
omplex. It is an orbifold of the 
omplex that isthe sum of butter�y resolutions for the modules Mh;t.The 
ohomology of this 
omplex 
an be 
al
ulated intwo steps.At the �rst step, we take the 
ohomology with re-spe
t to the operatorQ+ = KXi=1 Q+i : (35)The 
ohomology is generated by the �b
�
� system of�eldsai(z) = exp [Xi℄(z); �i(z) =  i exp [Xi℄(z);a�i (z) = (�X�i �  i �i ) exp [�Xi℄(z);��i (z) =  �i exp [�Xi℄(z): (36)The singular operator produ
t expansions of these�elds are a�i (z1)aj(z2) = z�112 Æij + : : : ;��i (z1)�j(z2) = z�112 Æij + : : : (37)In terms of the �elds in (36), the N = 2 Virasoro 
ur-rents (15) are given by429
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We note that the zero mode G�[0℄ a
ts in the spa
e ofstates generated by the �b
�
� system of �elds similarlyto how the de Rham di�erential a
ts in the de Rham
omplex of CK . Due to this observation and taking (37)into a

ount, we 
an make the following geometri
 in-terpretation of the �elds in (36). The �elds ai(z) 
orre-spond to the 
oordinates ai on the 
omplex spa
e CK ,and the �elds a�i (z) 
orrespond to the operators ��ai .The �elds �i(z) 
orrespond to the di�erentials dai, and��i (z) 
orrespond to the variables 
onjugate to dai.The next important property is the behavior of the�b
�
� system under a lo
al 
hange of 
oordinates onCK [4℄. For ea
h new set of 
oordinatesbi = gi(a1; : : : ; aK); ai = fi(b1; : : : ; bK); (39)an isomorphi
 �b
�
� system of �elds is given bybi(z) = gi(a1(z); : : : ; aK(z));�i(z) = �gi�aj (a1(z); : : : ; aK(z))�j(z);��i (z) = �fj�bi (a1(z); : : : ; aK(z))��j (z);b�i (z) = �fj�bi (a1(z); : : : ; aK(z))a�j (z) ++ �2fk�bi�bj �gj�an (a1(z); : : : ; aK(z))��k(z)�n(z); (40)
where normal ordering is implied. This endows the�b
�
� system (36) with the stru
ture of a sheaf, knownas the 
hiral de Rham 
omplex [4℄.All these properties give a geometri
 interpretationto the algebrai
 
onstru
tion of Gepner models. In-deed, it was shown in the general tori
 setup in [3℄ thatthe s
reening 
harges Q+i determine the tori
 data ofsome tori
 manifold and the 
ohomology of di�erential(35) gives se
tions of 
hiral de Rham 
omplex on thismanifold. In our 
ase, this manifold is CK and the


hiral de Rham 
omplex on this spa
e is generated by�b
�
� system (36).The 
harges of �elds (36) are given byJ(z1)ai(z2) = z�112 12Kai(z2) + reg.;J(z1)a�i (z2) = �z�112 12Ka�i (z2) + reg.;J(z1)�i(z2) = �z�112 �1� 12K��i(z2) + reg.;J(z1)��i (z2) = z�112 �1� 12K���i (z2) + reg. (41)
Hen
e, proje
ting on Z2K-invariant states andadding twisted se
tors generated byQKi=1(Ui)n, we ob-tain a tori
 
onstru
tion of the 
hiral de Rham 
omplexof the CK =Z2K orbifold. The 
hiral de Rham 
omplexon the orbifold was re
ently introdu
ed in [11℄.The se
ond step in the 
ohomology 
al
ulation isto take the 
ohomology with respe
t to the di�erentialQ� = PKi=1Q�i . This operator survives the orbifoldproje
tion and is expressed in terms of �elds (36) asQ� = I dz KXi=1 �i(ai)2K�1: (42)Therefore, the se
ond step of the 
ohomology 
al
ula-tion gives the restri
tion of the 
hiral de Rham 
omplexto the points dW = 0 of the potentialW = KXi=1(ai)2K : (43)The total spa
e of states in the holomorphi
 se
tor
an be re
overed by spe
tral �ow operatorsQKi=1(Ui)ti ,where the ve
tor (t1; : : : ; tK) is orthogonal to the ve
-tor (1; : : : ; 1) generating the twisted se
tors of the or-bifold. Hen
e, the total spa
e of states is the spa
eof states of the LG orbifold CK =Z2K, whose partitionfun
tion in the RR se
tor is given by (18).4. THE LG �-MODEL CORRESPONDENCECONJECTUREIn this se
tion, we relate the LG orbifold CK =Z2Kto a �-model on the CY manifold that is a double 
overof PK�1. The relation appears when we deform theLG orbifold by a marginal operator making the orbi-fold singularity resolution. A

ording to the 
onstru
-tion in [3; 5℄, the orbifold singularity resolution in theholomorphi
 se
tor is given by supplementary s
reening
harges.430
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onsider the simplest example whereK = 2. In this 
ase, we add the s
reening 
hargeDorb = I dz 12( �1 +  �2) exp�12(X�1 +X�2 )� (z) (44)to the 
harges Q+1;2. It is easy to verify that thisoperator 
ommutes with the total N = 2 Virasoro
urrents (15) and also 
ommutes with the operatorsQ�i . The 
orresponding fermioni
 s
reening 
urrent isthe holomorphi
 (
hiral) fa
tor of an anti
hiral�
hiralmarginal �eld [2; 13℄, 
oming from the twisted se
tor.The fermioni
 operatorsD+n = I dz�2� n4  �1 + 2 + n4  �2��� exp�2� n4 X�1 + 2 + n4 X�2� (z); n = �1; 1; (45)also 
ommute with the N = 2 Virasoro algebra andwith Q�i , but do not appear as marginal operators ofthe model be
ause they should 
ome from twisted se
-tors that are nonexistent in the model (see (18)).To the set of s
reening 
harges Q+1 , Q+2 , Dorb, fol-lowing the 
onstru
tion of Borisov, we asso
iate thefan [12℄ 
onsisting of two 2-dimensional 
ones �1 and�2 respe
tively generated in the latti
e ( 12Z)2 by theve
tors �e1; 12 (e1 + e2)� and �e2; 12 (e1 + e2)�. To ea
hof the 
ones �i, a �b
�
� system of �elds is related bythe 
ohomology of the di�erential Q+i +Dorb, i = 1; 2.This is the �rst step of the 
ohomology 
al
ulation.It 
an be shown that these two systems generatethe spa
e of se
tions of the 
hiral de Rham 
omplex onopen sets of the standard 
overing of the total spa
e ofan O(2) bundle over P1.The �rst step of the 
ohomology 
al
ulation 
an besplit into two substeps. At the �rst substep, we takethe Q+1 +Dorb 
ohomology. It is given by the following�b
�
� �elds: b0(z) = exp [2X2℄(z);�0(z) = 2 2 exp [2X2℄(z);b�0(z) = �12(�X�1 + �X�2 )�  2( �1 +  �2)��� exp [�2X2℄(z);��0(z) = 12( �1 +  �2) exp [�2X2℄(z);b1(z) = exp [X1 �X2℄(z);�1(z) = ( 1 �  2) exp [X1 �X2℄(z);b�1(z) = (�X�1 � ( 1 �  2) �1) exp [X2 �X1℄(z);��1 (z) =  �1 exp [X2 �X1℄(z):
(46)

At the se
ond substep, we 
al
ulate the Q+2 
ohomolo-gy. Equivalently, we 
an take the Q+2 + Dorb 
ohomo-logy at the �rst substep and apply Q+1 at the se
ondsubstep. This way, we obtain di�erent �b
�
� �elds:~b0(z) = exp [2X1℄(z);~�0(z) = 2 1 exp [2X1℄(z);~b�0(z) = �12(�X�1 + �X�2 )�  1( �1 +  �2)��� exp [�2X1℄(z);~��0(z) = 12( �1 +  �2) exp [�2X1℄(z);~b1(z) = exp [X2 �X1℄(z);~�1(z) = ( 2 �  1) exp [X2 �X1℄(z);~b�1(z) = (�X�2 � ( 2 �  1) �2) exp [X1 �X2℄(z);~��1 (z) =  �2 exp [X1 �X2℄(z):
(47)

In view of the important property (40), these two�b
�
� systems are related to ea
h other like the 
oor-dinates of the standard 
overing of the total spa
e ofan O(2) bundle over P1,b0 = ~b0(~b1)2; b1 = ~b�11 ; : : : (48)Therefore,b0(z)$ 
oordinate b0 along the �ber;b1(z)$ 
oordinate b1 along the base (49)in the �rst open set of the standard 
overing. Thetildaed �elds are asso
iated with the se
ond open set.Thus, �elds (46) and (47) generate se
tions of the 
hiralde Rham 
omplex over open sets of the 
overing givenby the fan �1 [ �2. In the se
ond substep, we 
al
ulatethe 
ohomology of the Cze
h 
omplex of the standard
overing. It glues the se
tions of 
hiral de Rham 
om-plex over open sets into the 
hiral de Rham 
omplexover the total spa
e of the bundle. This �nishes the�rst step of the 
ohomology 
al
ulation.The di�erential Q� at the se
ond step of the 
oho-mology 
al
ulation 
ommutes with Dorb and survivesthe Z4 proje
tion. It de�nes a fun
tion (potential) Won the total spa
e of the O(2) bundle, and the Q�-
o-homology 
al
ulation restri
ts the 
hiral de Rham 
om-plex to the dW = 0 lo
us of the fun
tion. In terms of�elds (46), the potential takes the formW = b20(1 + b41): (50)431
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us (Q�-
ohomology) is given by theequations b0 = 0; when b41 6= �1;(b0)2 = 0; when b41 = �1: (51)The set of solutions is P1 with four marked pointsb41 = �1, where the additional states are possible a
-
ording to the last row in (51). Thus, we 
an think ofP1 as a target spa
e of the model, where the 
enter ofmass of the string is allowed to move.This interpretation is not quite 
orre
t, however,be
ause we did not resolve the orbifold singularity 
om-pletely. It is easy to see from (15), (20), (46) or (47)that the subgroup Z2 � Z4 (52)a
ts on se
tions of the 
hiral de Rham 
omplex overea
h open set. But the a
tion is nontrivial only alongthe �bers of the O(2) bundle, and hen
e the base P1 isthe �xed-point set of the a
tion. Therefore, we should
onsider the target spa
e of the model as two 
opies ofP1 (ex
ept probably at the points b41 = �1), where these
ond 
opy 
omes from the twisted se
tor. This pi
-ture is in agreement with the result in [11℄, where the
hiral de Rham 
omplex on orbifolds was introdu
ed.It was shown there that twisted se
tors of the 
hiralde Rham 
omplex are the sheaves supported on �xedpoints of the orbifold group a
tion.Thus, the natural suggestion is that we reprodu
ethe geometry of a 2-torus that is a double 
over of P1with rami�
ation along the marked points b41 = �1.This is 
on�rmed by the Hodge number 
al
ulationbased on (18):h0;0 = h1;0 = h0;1 = h1;1 = 1:Hen
e, adding fermioni
 s
reening 
harge (44), we blowup the orbifold singularity of the Gepner model andobtain a �-model on the 2-torus that is a double 
overof P1. 4.2. K > 2 generalizationIn the general 
ase, we deform the di�erential Q+in (35) by adding the s
reening 
hargeQ+ ! Q+ +Dorb;Dorb = I dz 1K ( �1 + : : :+  �K)�� exp� 1K (X�1 + : : :+X�K)� (z); (53)

whi
h 
omes from the spe
tral �ow operator QKi=1 Ui.Similarly to the K = 2 
ase, there are also otherfermioni
 s
reening 
harges 
ommuting with the N = 2Virasoro 
urrents as well as with the 
harges Q�i , butthey do not appear as marginal operators of model (18).The set of s
reening 
harges fQ+1 ; : : : ; Q+K ; Dorbgde�nes the standard fan of the total spa
e of an O(K)bundle over PK�1. The top-dimension 
ones �i of thefan are labeled by the di�erentialsDi = Q+1 + : : :+Q+i�1 +Dorb +Q+i+1; : : : ; Q+K ;i = 1; : : : ;K; (54)whereQ+i is missing. In the standard basis (e1; : : : ; eK)of RK , the 
ones are generated by the set of ve
tors�i = �s1 = e1; : : : ; si�1 = ei�1; si = 1K �� (e1 + : : :+ eK); si+1 = ei+1; : : : ; sK = eK� : (55)From the �rst substep of the 
ohomology 
al
ulation,we obtain a �b
�
� system of �elds asso
iated with ea
hdi�erentialDi, and the spa
e of states generated by thissystem is the set of se
tions of the 
hiral de Rham 
om-plex over the open set asso
iated with the 
one �i of thestandard 
overing of the O(K) bundle total spa
e overPK�1. The analogue of formulas (46) 
an be writteneasily in terms of the dual basis ��i to the �i,��i = (w(i)1; : : : w(i)K); hw(i)j ; smi = Æjm: (56)Then the 
ohomology of Di is generated byb(i)j(z) = exp [w(i)j �X ℄(z);�(i)j(z) = w(i)j �  exp [w(i)j �X ℄(z);b�(i)j(z) = (sj � �X� � w(i)j �  sj �  �)�� exp [�w(i)j �X ℄(z);��(i)j(z) = sj �  � exp [�w(i)j �X ℄(z); (57)whereb(i)i(z)$ 
oordinate b(i)i along the �ber;b(i)j(z); j 6= i$ 
oordinate b(i)jalong the base: (58)Global se
tions of the 
hiral de Rham 
omplex onthe O(K) bundle total spa
e are given by the Cze
h
omplex asso
iated with the standard 
overing [3℄.This �nishes the �rst step of the 
ohomology 
al
u-lation.In terms of �elds (57), the LG potential determinedby the di�erential Q� be
omes432



ÆÝÒÔ, òîì 138, âûï. 3 (9), 2010 Free-�eld representations and geometry : : :W = (b(i)i)20�1 +Xj 6=i(b(i)j)2K1A : (59)The dW = 0 lo
us (Q�-
ohomology) is given by theequations b(i)i = 0; Xj 6=i(b(i)j)2K 6= �1;(b(i)i)2 = 0; Xj 6=i(b(i)j)2K = �1: (60)Hen
e, the set of solutions is PK�1 with a marked sub-manifold Xj 6=i(b(i)j)2K = �1; (61)where the additional states are possible a

ording tothe last row in (60).Similarly to the 
aseK = 2, we 
an see that only the�elds of the �ber are 
harged with respe
t to the ope-rator J [0℄, and the subgroup Z2 � Z2K a
ts nontrivialyalong the �bers. Therefore, the base PK�1 (
onsideredas a zero se
tion of the O(K) bundle) is the �xed-pointset of the Z2 a
tion, and we 
on
lude that the tar-get spa
e of the model is given by two 
opies of PK�1(ex
ept the submanifold (61)), where the se
ond 
opy
omes from the twisted se
tor (see [11℄).Hen
e, it is natural to suggest that the geometryof the model is the (K � 1)-dimensional CY manifoldgeometry that doubly 
overs PK�1 with rami�
ationalong submanifold (61). This is 
on�rmed by the Hodgenumber 
al
ulation based on (18). For example, whenK = 3,h0;0 = h2;0 = h0;2 = h2;2 = 1; h1;1 = 20; (62)whi
h are the Hodge numbers of K3. When K = 4, we�ndh0;0 = h3;0 = h0;3 = h3;3 = h1;1 = h2;2 = 1;h1;2 = h2;1 = 149; (63)whi
h are the Hodge numbers of the known CY ma-nifold that doubly 
overs P3. Hen
e, adding fermioni
s
reening 
harge (53), we blow up the orbifold singu-larity of the Gepner model and obtain a �-model onthe CY manifold that is a double 
over of PK�1.It is important to note that in our free-�eld reali-zation, the 
enter of mass of the string is allowed tomove on the PK�1, whi
h 
an be 
onsidered as a tar-get spa
e, and hen
e we 
an interprate the model as a�-model on PK�1. Although the target spa
e PK�1 isnot a CY manifold, we do have the N = 2 super
on-formal invarian
e. The possible solution of this puzzleis to 
onsider these models as examples of �ux 
om-pa
ti�
ation [14; 15℄. It is interesting to note also thatthe models 
onsidered here are very 
lose to the known

examples of the weak-
oupling limit of F-theory 
om-pa
ti�
ations [16; 17℄. The only differen
e is that theydo not have the orientifolds planes. It would be in-teresting to know whether these models 
an be relatedwith F-theory 
ompa
ti�
ations.To 
on
lude, we mention the question of the ge-ometry of mirror models. It 
an be investigated byfree-�eld �b
�
� representations, but we leave it for thefuture.I thank L. Borisov and F. Malikov for dis
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