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TWO-DIMENSIONAL ANDERSON�HUBBARD MODELIN THE DMFT+� APPROXIMATIONE. Z. Kuhinskii *, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii **Institute for Eletrophysis, Russian Aademy of Sienes620016, Ekaterinburg, RussiaReeived August 26, 2009The density of states, the dynami (optial) ondutivity, and the phase diagram of the paramagneti two-dimensional Anderson�Hubbard model with strong orrelations and disorder are analyzed within the generalizeddynamial mean �eld theory (DMFT+� approximation). Strong orrelations are aounted by the DMFT, whiledisorder is taken into aount via the appropriate generalization of the self-onsistent theory of loalization. Weonsider the two-dimensional system with the retangular �bare� density of states (DOS). The DMFT e�e-tive single-impurity problem is solved by numerial renormalization group (NRG). The �orrelated metal�, Mottinsulator, and orrelated Anderson insulator phases are identi�ed from the evolution of the density of states,optial ondutivity, and loalization length, demonstrating both Mott�Hubbard and Anderson metal�insulatortransitions in two-dimensional systems of �nite size, allowing us to onstrut the omplete zero-temperaturephase diagram of the paramagneti Anderson�Hubbard model. The loalization length in our approximation ispratially independent of the strength of Hubbard orrelations. But the divergene of the loalization length ina �nite-size two-dimensional system at small disorder signi�es the existene of an e�etive Anderson transition.1. INTRODUCTIONThe study of disordered eletroni systems with theaount of interation e�ets is one of the entral prob-lems of the modern ondensed matter theory [1℄. A-ording to the saling theory of loalization [2℄, thereis no metalli state in two-dimensional (2D) systems,with all the eletroni states loalized at the smallestpossible disorder. This predition was �rst made fornoninterating 2D systems, and soon after it was shownthat the weak eletron-eletron interation enhanes lo-alization in most ases [3℄. Experiments performed inthe early 1980s on di�erent 2D systems [4℄ essentiallyon�rmed these preditions. However, some theoretialworks produed an evidene of a rather di�erent pos-sibility [5℄ for 2D systems to evolve to the state withan in�nite metalli-like ondutivity at zero temper-ature in ase of weak disorder and su�iently strongorrelations. Experimental observation of a metal�insulator transition (MIT) in 2D systems with weakenough disorder but strong orrelations (low eletronidensities) [6℄, whih apparently ontradited the pre-ditions of the saling theory of loalization, stimu-*E-mail: kuhinsk�iep.uran.ru**E-mail: sadovski�iep.uran.ru

lated extensive theoretial studies, with no ommonlyaepted solution up to now (see the review in Ref. [7℄).One of the basi models allowing a simultaneousaount of both strong enough eletroni orrelations,leading to the Mott MIT [8℄, and e�ets of strong disor-der, leading to the Anderson MIT [9℄, is the Anderson�Hubbard model, intensively studied in reent years[10�16℄.In Refs. [10�12℄, the three-dimensional (3D) An-derson�Hubbard model was analyzed using dynamialmean �eld theory (DMFT), whih is extensively usedin the theory of strongly orrelated eletrons [17�20℄.However, disorder e�ets were mostly taken into a-ount via the average density of states and the o-herent potential approximation (CPA) [21, 22℄, whihmisses the e�ets of Anderson loalization. To over-ome this problem, Dobrosavljevi¢ and Kotliar [10℄have proposed the DMFT approah, where the so-lution of self-onsistent stohasti DMFT equationswere used to alulate the geometrially averaged lo-al density of states. This approah was further de-veloped in Refs. [11, 12℄ with the DMFT aount forHubbard orrelations, whih led to a highly nontriv-ial phase diagram of the 3D paramagneti Anderson�Hubbard model [12℄, ontaining the orrelated metal,368



ÆÝÒÔ, òîì 137, âûï. 2, 2010 Two-dimensional Anderson�Hubbard model : : :Mott insulator, and orrelated Anderson insulatorphases. However, the major problem of the approahin Refs. [10�12℄ is its pratial inability of diret alu-lations of ondutivity, whih atually determines theMIT itself.In our previous work [13℄, we have studied the3D paramagneti Anderson�Hubbard model using ourreently developed DMFT+� approximation [23�26℄,whih preserves the standard single-impurity DMFTapproah, taking the loal Hubbard orrelations intoaount, allowing the use of the standard �impuritysolvers� like NRG [27�29℄, at the same time allowing theinlusion of additional (loal or nonloal) interations.Strong disorder was aounted for via some generaliza-tion of the self-onsistent theory of loalization [30�35℄.In the framework of this approah, we have been ablenot only to reprodue the phase diagram qualitativelysimilar to that obtained in Ref. [12℄ but also to al-ulate the dynami (optial) ondutivity for a widefrequeny range.In Ref. [15℄, the Hubbard�Anderson model wasstudied for both 3D and 2D systems. As the mainmehanism leading to deloalization, a kind of �sreen-ing� of the random (disorder) potential by a loalHubbard interation was introdued [14℄. Then theAnderson�Hubbard model was redued to an e�etivesingle-partile Anderson model with a renormalizeddistribution of loal site energies, whih was alulatedin the atomi limit. All the other e�ets of eletron or-relations were negleted. Strong disorder e�ets wereaounted for within the self-onsistent theory of lo-alization. In this approah, the authors obtained asigni�ant inrease in the loalization length with aninrease in the Hubbard interation in 2D. However,the loalization length itself remained �nite, the sys-tem being loalized at smallest possible disorder, andhene the Anderson transition in 2D was still absent.Similar results were also obtained in numerial simula-tions of the 2D Anderson�Hubbard model in Ref. [16℄.In this paper, we diretly generalize the methodin Ref. [13℄ to the ase of 2D systems. We use theDMFT+� approah to alulate the DOS, optial on-dutivity, and loalization length and to onstrutthe phase diagram of the 2D paramagneti Anderson�Hubbard model with strong eletroni orrelations andstrong disorder. Strong orrelations are taken into a-ount via DMFT, while disorder e�ets are treatedby the appropriate generalization of the self-onsistenttheory of loalization.The paper is organized as follows. In Se. 2, webrie�y desribe our DMFT+� approximation in appli-ation to the disordered Hubbard model. In Se. 3, we

formulate the basi DMFT+� expressions for the op-tial ondutivity and the self-onsisteny equation forthe generalized di�usion oe�ient. Our results for theDOS, optial ondutivity, and loalization length aregiven in Se. 4, where we also analyze the phase dia-gram of the 2D disordered Hubbard model and brie�ydisuss the optial sum rule within our approah. Fi-nally, we present a short onlusion, whih inludes thedisussion of problems yet to be solved.2. BASICS OF THE DMFT+� APPROACHIn what follows, we onsider the paramagneti dis-ordered Anderson�Hubbard model at half-�lling for ar-bitrary orrelations and disorder. This model treatsboth the Mott�Hubbard and Anderson MIT on thesame footing. The Hamiltonian of the model an bewritten asH = �tXhiji� ayi�aj� +Xi� �ini� + UXi ni"ni#; (1)where t > 0 is the nearest-neighbor transfer integral,U is the loal Hubbard repulsion, ni� = ayi�ai� is theeletron number operator at a given site i, ai� (ayi�)is the annihilation (reation) operator for an eletronwith spin �, and the loal energies �i are assumed to berandomly and independently distributed over di�erentlattie sites. To simplify the diagram tehnique in whatfollows, we assume the �i distribution to be Gaussian,P(�i) = 1p2�� exp�� �2i2�2� ; (2)where � is a disorder parameter and the Gaussian ran-dom �eld (�white� noise) of energy levels �i at di�erentlattie sites indues �impurity�-like sattering, leadingto the standard diagram tehnique for alulations ofthe averaged Green's funtions [35℄.The DMFT+� approah, initially proposed inRefs. [23�26℄ as a simple method to inlude nonlo-al interations (�utuations) into the standard (loal)DMFT sheme, is also very onvenient for taking anyadditional interation (loal or nonloal) of arbitrarynature into aount in the DMFT.In the DMFT+� approximation, we hoose thesingle-partile Green's funtion in the formGp(") = 1"+ �� "(p)� �(")� �p(") ; (3)where "(p) is the �bare� eletron spetrum, �(") is theloal (DMFT) self-energy due to Hubbard interations,11 ÆÝÒÔ, âûï. 2 369



E. Z. Kuhinskii, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 137, âûï. 2, 2010and �p(") is an �external� (in general ase, momen-tum dependent) self-energy due to some other intera-tion. The main assumption of our approah (both itsadvantage and de�ieny) is preisely in this additiveform (negleting the interferene e�ets) of the totalself-energy in (3) [23�26℄, whih allows retaining thestandard form of self-onsistent DMFT equations [20℄with two major generalizations. First, at eah iter-ation of the DMFT loop, we realulate the �exter-nal� self-energy �p(�; "; [Gp(")℄) within some (approx-imate) sheme, taking the �external� interation intoaount (in the present ase, the interation due to dis-order sattering). Seond, the loal Green's funtionfor an e�etive DMFT impurity problem is de�ned asGii(") = 1N Xp 1"+ �� "(p)� �(")� �p(") (4)at eah step of the standard DMFT proedure. Finally,we obtain the desired Green's funtion in form (3),where �(") and �p(") are self-energies obtained at theend of our iteration proedure.For �p(") appearing due to disorder sattering, weuse the simple one-loop ontribution, negleting dia-grams with �rossing� interation lines, i. e., the self-onsistent Born approximation [35℄, whih in the aseof Gaussian disorder (2) leads to the usual expression�p(") = �2Xp G(";p) � �imp("); (5)with the �external� self-energy being p-independent (lo-al) in this ase.3. OPTICAL CONDUCTIVITY IN THEDMFT+� APPROACHIt is obvious that alulations of optial (dynami)ondutivity provide the diret way to study the MITbeause the frequeny dependene of ondutivity, aswell as its stati value at zero frequeny of an exter-nal �eld, allows making a lear distintion between themetalli and insulating phases (at T = 0).A loal nature of the irreduible self-energy inDMFT allows reduing the alulation of optial on-dutivity to the alulation of the usual partile�holeloop without DMFT vertex orretions due to the lo-al Hubbard interation [13; 26℄. The �nal expressionfor the real part of the optial ondutivity obtained inthis way in Refs. [13; 26℄ takes the form

"+p+"�p�"+p+"�p�
ARR�0RA" (q; !) =

�0RR" (q; !) =
�RA
�RRRFig. 1. Diagram representation of �0RA" (q; !) and�0RR" (q; !)Re�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re(�0RA" (!) �1� �R("+)� �A("�)! �2 �� �0RR" (!) �1� �R("+)� �R("�)! �2) ; (6)where f(") is Fermi distribution, "� = "� !=2, and�0RR(RA)" (!) == limq!0 �0RR(RA)" (!;q)� �0RR(RA)" (!; 0)q2 ; (7)where we introdue two-partile loops�0RR(RA)" (!;q) =Xp GR("+;p+)GR(A)("�;p�)�� �RR(RA)("�;p�; "+;p+); (8)represented diagrammatially in Fig. 1 with p� == p � q=2 and with the R and A supersripts orre-sponding to retarded and advaned Green's funtions.The verties �RR(RA)("�;p�; "+;p+) ontain all ver-tex orretions due to disorder sattering, but do notinlude vertex orretions due to the Hubbard intera-tion.The problem is thus muh simpli�ed. To alu-late the optial ondutivity in the DMFT+� approx-imation, we only have to solve a single-partile prob-lem to determine the loal self-energy �("�) with thehelp of DMFT+� proedure desribed above, whilethe nontrivial ontribution of disorder sattering en-ters via �0RR(RA) in Eq. (7), whih may be alulatedin an appropriate approximation. In fat, �0RR(RA)ontains only disorder sattering, although using the370



ÆÝÒÔ, òîì 137, âûï. 2, 2010 Two-dimensional Anderson�Hubbard model : : :Green's funtions inluding the DMFT self-energies, al-ready determined with the help of the DMFT+� pro-edure, as the �bare� Green's funtions. Equation (6)guarantees the e�etive interpolation between the aseof strong orrelations in the absene of disorder andthe ase of pure disorder in the absene of Hubbardorrelations.The most important �0RA" (!;q) loop may be al-ulated using the basi approah of the self-onsistenttheory of loalization [30�35℄ with some generaliza-tions aounting for the Hubbard interation within theDMFT+� approah [13℄.The rest is a diret generalization of the sheme pro-posed in Ref. [13℄ for the two-dimensional ase. Here,we present only some basi points of the approah inRef. [13℄, stressing important di�erenes due to the two-dimensionality of the model.In the RA hannel, the two-partile loop �0RA" (q; ~!)involves a di�usion-like ontribution,�0RA" (q; ~!) = �Pp�Gp~! + iD(!)q2 ; (9)where �Gp = GR("+;p)�GA("�;p). The importantdi�erene from the noninterating ase is ontained in~! = "+ � "� � �R("+) + �A("�) == ! � �R("+) + �A("�) � ! ���RA(!) (10)whih replaes the usual !-term in the denominator ofthe standard expression for �0RA" (!;q) [35℄. Then (6)an be rewritten asRe�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re( iPp�GpD(!)!2 �� �0RR" (!) �1� ��RR(!)! �2) : (11)The seond term in (11), whih is atually irrelevantat small !, an be obtained from (7) by alulating�0RR" (!;q) in the usual �ladder� approximation.Repeating the derivation sheme of the self-onsis-tent theory of loalization in Ref. [13℄, we obtain thefollowing equation for the generalized di�usion oe�-ient:

D(!) = i hvi2d (~! ���RAimp(!) ++ �4Xp (�Gp)2Xq 1~! + iD(!)q2)�1 ; (12)where d = 2 is the spatial dimension and ��RAimp(!) == �Rimp("+)��Aimp("�) is determined by disorder sat-tering. The average veloity hvi, well approximated bythe Fermi veloity, is de�ned ashvi = Pp jvpj�GpPp�Gp ; vp = ��(p)�p : (13)Due to the limits of di�usion approximation, the sum-mation over q in (12) must be limited by [33, 35℄q < k0 = minfl�1; pF g (14)where l = hvi=2 is the mean free path due to elastisattering ( is the sattering rate due to disorder) andpF is Fermi momentum. In our two-dimensional model,Anderson loalization ours at in�netisimal disorder.But for small disorder, the loalization length is ex-ponentially large, and hene the size of the sample be-omes important. The sample size Lmay be introduedinto the self-onsistent theory of loalization as a ut-o� of the di�usion pole ontribution at small q [30, 31℄,i. e., for q � kL = 1=L: (15)Equation (12) for the generalized di�usion oe�-ient redues to a transendental equation, whih iseasily solved by iterations for eah value of ~!, takinginto aount that for d = 2 and for the uto�s de�nedby Eqs. (14) and (15), the sum over q in (12) reduestoXq 1~! + iD(!)q2 = 1i2�D(!) �� 1ZkL=k0 y dyy2 + ~!=iD(!)k20 == 1i4�D(!) ln� 1� i~!=D(!)k20(kL=k0)2 � i~!=D(!)k20� : (16)Solving Eq. (12) for di�erent values of our model pa-rameters and using Eq. (11), we an diretly alulatethe optial (dynami) ondutivity in di�erent phasesof the Anderson�Hubbard model.For ! ! 0 (and at the Fermi level (" = 0), obvi-ously, also ~! ! 0), in the Anderson insulator phase,371 11*



E. Z. Kuhinskii, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 137, âûï. 2, 2010we obtain the loalization behavior of the generalizeddi�usion oe�ient [30, 31, 35℄:D(!) = �i~!Rlo2: (17)Substituting (17) in (12), we obtain an equation deter-mining the loalization length Rlo asRlo2 = �hvi2d�4 ��(Xp (�Gp)2Xq 11 +Rlo2q2)�1 ; (18)where the sum over q is de�ned by (16). As we seein what follows, for an in�nite two-dimensional sys-tem (L ! 1), the loalization length determined byEq. (18) remains �nite (although exponentially large)for the smallest possible disorder, signifying the ab-sene of Anderson transition. But for �nite-size sys-tems, the loalization length diverges at some ritialdisorder, determined for eah value of the system sizeL. Qualitatively, this ritial disorder is determinedfrom the ondition of the loalization length (in the in-�nite system) beoming a quantity of the order of theharateristi sample size RL!1lo � L. Thus, in �nitetwo-dimensional systems, the Anderson transition andthe metalli phase do exist for the disorder strengthlower than this ritial disorder. In what follows, thiskind of metalli phase is referred to as the �orrelatedmetal� phase in �nite 2D systems.4. MAIN RESULTSBelow, we present the results of extensive numeri-al alulations for the 2D Anderson�Hubbard modelon a square lattie with a retangular �bare� DOS or-responding to the bandwidth W = 2D:N0(") =8><>: 12D; j"j � D0; j"j > D : (19)The hoie of this model DOS is ditated by its 2Dnature.Everywhere in what follows, we give the DOS valuesin units of the number of states per energy interval, perlattie ell of the volume a2 (a is the lattie parameter),and per one spin projetion.Beause we fous on half-�lled ase, the Fermi levelis always assumed to be at zero energy. As the �impu-rity solver� for the DMFT e�etive impurity problem,we use the reliable numerial renormalization group
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Fig. 2. Density of states of the half-�lled Anderson�Hubbard model for di�erent values of U and � = 0(no disorder)(NRG) approah [27�29℄. Calulations were made forthe low enough temperature T � 0:001D, and there-fore temperature e�ets in the DOS and ondutivityare negligible.We present only the most typial results.A. Evolution of the density of statesIn Fig. 2, we show the evolution of the DOS withan inrease in Hubbard interation U in the absene ofdisorder. At small U (urve 1 in Fig. 2), we observea pratially retangular DOS almost oiniding withthe �bare� one. As U inreases, a typial three-peakstruture of the DOS appears [19, 20, 29℄ (urves 3, 4,and 5 in Fig. 2): a narrow quasipartile peak at theFermi level with the upper and lower Hubbard bandsat " � �U=2. The quasipartile peak narrows as U in-reases in the metalli phase, disappearing at the MottMIT at U = U2 � 1:83 W. With a further inrease inU (urves 6 and 7 in Fig. 2), a dieletri gap opens atthe Fermi level.In Fig. 3, we show the results for the DOS obtainedat the relatively weak orrelation strength U = 1:25W(W = 2D), ensuring that the system is rather far fromthe Mott transition, but for a wide range of the dis-order strength �. We observe typial widening of theband with the appropriate suppression of the DOS asdisorder inreases.In Fig. 4, the DOS evolution is shown as the disor-der � inreases at U = 2W , a typial value for a Mottinsulator in the absene of disorder. It an be seenthat the inrease in disorder leads to the restoration of372
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Fig. 4. Density of states of the half-�lled Anderson�Hubbard model for di�erent values of disorder � andU=2D = 2, typial for Mott insulator (in the abseneof disorder). At the inset � restoration of quasipartileband by disorder in oexistene (hysteresis) region forU = 1:5D, obtained from Mott insulator with derea-sing Uthe quasipartile peak in the DOS. A similar unusualbehavior of the DOS (losure of the dieletri gap bydisorder) was �rst noted in 3D systems [13℄. But inthe present 2D ase, it does not, in general, signify thetransition to the orrelated metal phase, at least forthe in�nite systems we are in fat dealing with intemsof the orrelated Anderson insulator (see below).The physial reason for this unusual restoration ofthe quasipartile peak in the DOS is lear. The on-

trol parameter for the appearane or disappearane of aquasipartile peak in DMFT in the absene of disorderis the ratio of the Hubbard interation U to the �bare�bandwidth W = 2D. Disordering leads to an inreasein the e�etive bandwidth Weff (in the absene of theHubbard interation) and the appropriate suppressionof the U=Weff ratio, whih obviously leads to a restora-tion of the quasipartile band in our model. In moredetail, this qualitative piture is disussed in Se. 4C,where our results for the DOS are used in onstrut-ing the phase diagram of the 2D Anderson�Hubbardmodel.It is well known, that hysteresis behavior of DOSis obtained for Mott�Hubbard transition if we performDMFT alulations with U dereasing from insulatingphase [20, 29℄. Mott insulator phase survives for thevalues of U well inside the orrelated metal phase, ob-tained with the inrease of U . Metalli phase is restoredat U1 � 1:42W . The values of U from the intervalU1 < U < U2 are usually onsidered as belongingto oexistene region of metalli and (Mott) insulatingphases, with metalli phase being thermodynamiallymore stable [20, 29℄. In the oexistene region disorderinrease also leads to the restoration of quasipartilepeak in the DOS (see inset of Fig. 4).B. Optial ondutivity: Mott�Hubbard andAnderson transitionsThe real part of the optial ondutivity was al-ulated for di�erent ombinations of parameters of themodel, diretly from Eqs. (11) and (12) using the re-sults of the DMFT+� proedure for single-partileharateristis. The values of ondutivity below aregiven in natural units of e2=~.In the absene of disorder, we just reprodue the re-sults of the standard DMFT with the optial ondu-tivity haraterized by the usual Drude peak at zerofrequeny and a wide maximum at ! � U orrespond-ing to transitions to the upper Hubbard band. As Uinreases, the Drude peak is suppressed and disappearsat the Mott MIT, when the only remaining ontribu-tion is due to transitions through the Mott�Hubbardgap.Introdution of disorder leads to a qualitativehange in the frequeny behavior of ondutivity. Be-low, we mainly present the results obtained for thesame values of U and � that were used above to il-lustrate the evolution of the DOS.In Fig. 5, we show the real part of the opti-al ondutivity in the 2D half-�lled Anderson�Hub-bard model for di�erent disorder strengths � and373
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Fig. 5. Real part of the dynami ondutivity of thehalf-�lled Anderson�Hubbard model for di�erent val-ues of disorder � and U=2D = 1:25, typial for a or-related metal (in the absene of disorder). Inset: thesame, but in a wider frequeny range. Thin dashedlines represent the ladder approximation resultsU = 1:25W , when the system is far from the MottMIT. Thin dashed lines in Fig. 5 (and in the following�gures) show the results of the �ladder� approximation.In the 2D model under onsideration, the ondutivityat zero frequeny is always zero, and in ontrast tothe 3D ase [13℄, even for the weakest possible disor-der, the peak in the optial ondutivity is at a �nitefrequeny. In the �ladder� approximation, whih doesnot ontain loalization orretions, the ondutivity is�nite at ! = 0. Optial transitions to the upper Hub-bard band at ! � U are pratially unobservable inthese data; only in the inset to Fig. 5, where we showthe data for the wide frequeny range, a weak maxi-mum on urves 1 and 2 an be observed, orrespondingto transitions to the upper Hubbard band.In Fig. 6, we present the real part of the opti-al ondutivity for di�erent disorder strengths � andU = 2W , typial for a Mott insulator. It an be seenfrom Fig. 6 that for small disorder, we are in the Mottinsulator phase (urves 1 and 2 ), and with an inreasein disorder in the absene of Anderson loalization (f.the thin lines orresponding to the �ladder� approxima-tion), we would be entering the metalli phase. But inour model, loalization ours at in�nitesimal disorderand we are atually entering Anderson insulator phase,with the ondutivity ending to zero at zero frequeny.Data in the frequeny range orresponding to the loa-lization behavior �(!) / !2 of ondutivity are shown
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loalization length) ours in 2D systems of reasonable�nite sizes.On the right axis in Fig. 9, we show our data forthe logarithm of the loalization length alulated fromEq. (18) as a funtion of disorder for an in�nite sample(urve 1 ) and for �nite samples with L = 108a andL = 105a (urves 2 and 3 ). It is learly seen that theloalization length inreases exponentially as the disor-der dereases, but remains �nite in the in�nite 2D sam-ple, signifying the absene of the Anderson transition.In �nite samples, the loalization length diverges atsome ritial disorder (depending on the system size),demonstrating the existene of an e�etive Andersontransition. It follows from Fig. 9 that this ritial dis-order is ahieved when the loalization length of anin�nite system beomes omparable to the harateris-ti size of the sample: RL!1lo � L. We note that in ourapproah, in ontrast to the results in Ref. [15℄, the lo-alization length is pratially independent of U , whihleads to the independene of the ritial disorder in 2Dfrom the orrelation strength U . A similar result2) wasobtained in our approah for 3D systems [13℄.On the left axis in Fig. 9, the disorder dependeneof the stati ondutivity for �nite samples of the sizesL = 108a and L = 105a (urves 4 and 5 ) is shown.For �nite systems with small disorder, the stati on-dutivity is not zero (metal). It gradualy dereases asthe disorder inreases and beomes zero at the sameritial value where the loalization radius diverges onapproah from the insulating phase in a �nite sample.The stati ondutivity of �nite samples in our al-ulations is pratially independent of the orrelationstrength U . A rather signi�ant di�erene between thevalues of stati ondutivity and that of ondutivityat small but nonzero frequenies seen in Fig. 9 omesfrom the exponential smallness of the frequeny rangeof loalization behavior mentioned above.We now disuss our results for the phase diagram ofthe 2D half-�lled Anderson�Hubbard model, obtainedfrom extensive DMFT+� alulations of the DOS andthe analysis of the loalization length behavior in �nite2D systems. The general form of this phase diagramin the disorder�orrelation (�; U) plane is shown inFig. 10.The dashed stripe in Fig. 10 orresponds to the re-gion of an e�etive transition from the Anderson in-sulator to the �metalli� phase. Its boundaries weredetermined by divergene of the loalization length in2) Our alulations of the loalization length for a 3D systemperformed after the publiation of Ref. [13℄ have demonstratedthat it is pratially independent of the value of U .376
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U1;2(�), obtained diretly from the evolution of theDOS, has shown a quite satisfatory agreement withthe qualitative dependene obtained from Eq. (23)3).In the 2D model under onsideration here, a solu-tion of Eq. (23) givesU�1;2(�) = U1;2(0)Weff (�)W == U1;2(0)�2�2W 2 ln�+ 1� 1�+ � ; (24)where  =q4 (�=W )2 + 1. However, unlike in the 3Dase [13℄, the U2(�) dependene obtained from theDOS evolution is learly di�erent from the qualitativedependene U�2(�) (the dotted line in Fig. 10), deter-mined by Eq. (24). Probably, this is due to a signi�-ant hange in the retangular form of the �bare� DOSwith an inrease in the disorder �, whih is absent forthe semi-ellipti �bare� DOS used in the 3D ase inRef. [13℄.As we already noted, with derease of U from insu-lating phase Mott transition ours at U = U1(�) << U2(�) and the oexistene (hysteresis) region is ob-served between U1(�) and U2(�) urves on phasediagram Fig. 10. 5. CONCLUSIONWe have used the generalized DMFT+� approahto study basi properties of the disordered and or-related Anderson�Hubbard model. Our method pro-dues a relatively simple interpolation sheme betweentwo well-studied limits, the strongly orrelated Hub-bard model in the absene of disorder (DMFT andMott�Hubbard MIT) and the 2D Anderson insulatorin the in�nite system without eletron�eletron intera-tions. It seems that the proposed interpolation shemere�ets all the qualitative features of the Anderson�Hubbard model, suh as the behavior of the density ofstates and dynami ondutivity. The general strutureof the phase diagram obtained in the DMFT+� ap-proximation is also in reasonable agreement with the re-sults of diret numerial simulations [16℄. At the sametime, the DMFT+� approah is rather ompetitive inthe sense of the amount of numerial work and allowsdiret alulations of all the basi observable harater-istis of the Anderson�Hubbard model.3) Further extensive alulations performed after the omple-tion of Ref. [13℄ have on�rmed a pratially ideal agreementbetween these dependenes.377
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