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RESONANCE REFLECTION BY THE ONE-DIMENSIONALROSEN�MORSE POTENTIAL WELLIN THE GROSS�PITAEVSKII PROBLEMH. A. Ishkhanyan, V. P. Krainov *Mos
ow Institute of Physi
s and Te
hnology141700, Dolgoprudny, Mos
ow Region, RussiaRe
eived May 13, 2009We 
onsider the quantum above-barrier re�e
tion of a parti
le by the one-dimensional Rosen�Morse potentialwell, for the nonlinear S
hrödinger equation (the Gross�Pitaevskii equation) with a small nonlinearity. The mostinteresting 
ase is realized in resonan
es when the re�e
tion 
oe�
ient is exa
tly equal to zero for the linearS
hrödinger equation. Then the re�e
tion is determined by only a small nonlinear term in the Gross�Pitaevskiiequation. The simple analyti
 expression is obtained for the re�e
tion 
oe�
ient produ
ed only by the non-linearity. The analyti
 
ondition is found for the 
ommon a
tion of the potential well and the nonlinearity toprodu
e the zero re�e
tion 
oe�
ient. The re�e
tion 
oe�
ient is also derived analyti
ally in the vi
inity of aresonan
e shifted by the nonlinearity.PACS: 05.30.Jp, 03.75.Lm, 03.75.Hh, 03.65.Ge1. INTRODUCTIONQuantum tunneling in physi
al systems is a hottopi
. The most dire
t way to study these physi-
al properties is to �nd the exa
t solutions of theS
hrödinger equation that dominates the system dy-nami
s. However, only in a few 
ases with the simplestpotentials, like a square well, the S
hrödinger equation
an be solved exa
tly. In most 
ir
umstan
es, exa
tsolutions are di�
ult to obtain due to not only the ef-fe
t of the external �eld exerted on parti
les but alsothe intera
tion of parti
les. The most dire
t generaliza-tion of the single-parti
le 
ase is the tunnelling of themean �eld through a barrier in the Gross�Pitaevskii, orthe nonlinear S
hrödinger equation [1℄. We emphasizethat this is a nonlinear tunneling problem in the mean-�eld approximation. There have been various theo-reti
al studies. From the theoreti
al standpoint, themain 
ompli
ation in the des
ription of a quasistationa-ry s
attering pro
ess of parti
les obviously 
omes fromthe presen
e of the atom�atom intera
tion. In leadingorder, the e�e
t of this intera
tion is in
luded in thenonlinear term in the S
hrödinger-like Gross�Pitaevskiiequation for the wave fun
tion. The dynami
s of solu-*E-mail: vpkrainov�mail.ru

tions of this equation is very 
omplex and ri
h. Thephenomena of 
oheren
e, ma
ros
opi
 tunneling, vor-tex formation, instabilities, fo
using, and blowup areall 
on
epts related to the nonlinear nature of the sys-tems.A 
onvenient theoreti
al approa
h is based on theone-dimensional Gross�Pitaevskii equationi~� (x; t)�t = �� ~22m �2�x2+V (x)+gj (x; t)j2� (x; t);whi
h des
ribes the dynami
s in the mean-�eld approx-imation at low temperatures. Another important ap-pli
ation is the propagation of ele
tromagneti
 wavesin nonlinear media. The ansatz (x; t) = exp(�i�t=~) (x)redu
es the Gross�Pitaevskii equation to the 
or-responding time-independent (stationary) nonlinearS
hrödinger equation�� ~22m d2dx2 + V (x) + gj (x)j2� (x) = � (x) (1)with the 
hemi
al potential �.684



ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009 Resonan
e re�e
tion by the one-dimensional Rosen�Morse potential : : :To 
onsider solutions in a �nite trap, the Ro-sen�Morse potentialV (x) = U0
h2 (�x) (2)is studied in this paper. This potential yields ana-lyti
 solutions, unlike harmoni
 traps. It also pro-vides a model for a �nite-depth trap. The treatmentof transport within this mean-�eld theory reveals newinteresting phenomena arising from the nonlinearity ofthe equation. As was already shown in Refs. [2; 3℄, a
omplex solution of Eq. (1) with the one-dimensionalsquare-well potential is given in terms of the Ja
obi el-lipti
 fun
tions dn(x). The Gross�Pitaevskii equationfor a one-dimensional �nite square-well potential wasstudied in Ref. [4℄ in terms of in
oming and outgoingwaves. The transmission 
oe�
ient T be
omes equalto one periodi
ally as a fun
tion of the 
hemi
al po-tential �. Thus, there is the total transparen
y of thepotential barrier at resonan
es.The resonan
e line shape was investigated in re-
ent paper [5℄. The stationary nonlinear S
hrödingerequation or the Gross�Pitaevskii equation for one-di-mensional potential s
attering was studied in that pa-per. The nonlinear transmission fun
tion exhibits adistorted pro�le, whi
h di�ers from the Lorentzian onefound in the linear 
ase. This nonlinear pro�le fun
tionis analyzed and related to Siegert-type 
omplex reso-nan
es. It is shown that the 
hara
teristi
 nonlinearpro�le fun
tion 
an be 
onveniently des
ribed in termsof skeleton fun
tions depending on a few parameters.These skeleton fun
tions also determine the de
ay be-havior of the underlying resonan
e state.Ma
ros
opi
 quantum tunneling of Bose�Einstein
ondensates in a �nite potential well has been 
onsid-ered in Ref. [6℄. The nonlinearity, whi
h is propor-tional to both the number of atoms and the intera
tionstrength, 
an transform bound states into quasiboundones. The latter have a �nite lifetime due to tunnelingthrough the barriers at the borders of the well. Theypredi
t the lifetime and stability properties for repul-sive and attra
tive 
ondensates in one, two, and threedimensions, for both the ground state and the ex
itedsoliton and vortex states.Resonan
e solutions of the nonlinear S
hrödingerequation, the tunneling lifetime, and fragmentation oftrapped 
ondensates were investigated in Ref. [7℄. Itis shown there how the lifetimes and energies of reso-nan
e states 
an be 
al
ulated by applying the 
omplexs
aling transformation to the nonlinear S
hrödingerequation. It is essential to �rst apply the 
omplexs
aling transformation to the full Hamiltonian and to

subsequently derive the 
orre
t 
omplex s
aled nonlin-ear S
hrödinger equation from the result. The non-linear S
hrödinger equation is physi
ally relevant andamenable to numeri
al 
al
ulations. To analyze the re-sults obtained by solving this equation, it is ne
essaryto realize the 
lose asso
iation of resonan
e phenomenawith fragmentation of the system.In Ref. [8℄, the hydrodynami
 representation of theGross�Pitaevskii and the nonlinear S
hrödinger equa-tions was used to analyze the dynami
s of ma
ros
opi
tunneling pro
esses. A tenden
y toward wave break-ing and sho
k formation during the early stages of thetunneling pro
ess was observed. A blip in the densitydistribution appears on the outskirts of the barrier andmay transform into a bright soliton under proper 
on-ditions.A parti
le moving through a 
lassi
ally allowed re-gion 
an be re�e
ted by a potential without rea
hinga 
lassi
al turning point. Above-barrier re�e
tion alsoo

urs when U0 < 0 and the 
hemi
al potential � > 0.In the linear problem (g = 0 in Eq. (1)) with poten-tial (2), the re�e
tion 
oe�
ient R is determined by theexpression (see [9; 10℄)R = 
os2 �2r1� 8mU0~2�2 !sh2��k� �+ 
os2 �2r1� 8mU0~2�2 ! ; (3)where k = p2m�=~. The inequality 8mU0 < ~2�2is suggested for the above-barrier transmission andre�e
tion. We everywhere use the system of units~ = m = � = 1. It follows that in linear problem,R = 0 when 1 � 8U0 = (2n+ 1)2 with n = 1; 2; 3; : : :Hen
e, the re�e
tion 
oe�
ient in this resonant 
ase isdetermined only by the nonlinearity.To avoid se
ular terms, we use the multiple-s
aleanalysis for the derivation of the resonant re�e
-tion 
oe�
ient. This approa
h was used in studyingBose�Einstein solitons in highly asymmetri
 traps [11℄.Quantum re�e
tion of an in
ident soliton by an attra
-tive se
h-squared-shape potentialV (x) = � V
h2(x=x0)(the Rosen�Morse potential) was analyzed numeri
allyin [12℄. The predi
tion was that quantum re�e
tion 
ano

ur to a kind of ma
ros
opi
 quantum obje
ts, atomi
matter-wave bright solitons. The pronoun
ed swit
hingbetween re�e
tion and transmission is a 
hara
teristi
behavior that should be observable for su�
iently well685
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alized and deep potential wells, su
h as those 
re-ated by a strongly fo
used red-detuned laser beam ora se
ond, in
oherent soliton.It was shown in [13℄ that the well-known absolutetransmission of the nonlinear system 
an o

ur in theRosen�Morse potential. The authors investigated theatomi
 trap and transport of a Bose�Einstein 
onden-sate in one-dimensional waveguide with an obsta
le po-tential of the se
h-squared form. By applying a non-balan
e 
ondition, they obtained exa
t solutions of thesystem, whi
h 
ontain the bound states and transmis-sion states.The nonlinearity is assumed to be small, i.e., g � �.It is then possible to �nd a simple analyti
 expressionby the multi-s
ale approa
h for the re�e
tion 
oe�
ientfor the Rosen�Morse potential in the vi
inity of reso-nan
es. Just this is the goal of our work.2. THE MODEL AND SOLUTIONSWe assume that a parti
le moves in the positive di-re
tion of the x axis. At x ! �1, there are bothin
ident and re�e
ting waves, and at x! +1, there isonly the transmitted wave. For simpli
ity, we 
onsideronly the �rst resonan
e, i.e., n = 1. Then U0 = �1.
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Fig. 1. The potential �1= 
h2 x for the �rst resonan
e(n = 1) provides total transmission

The potential 
orresponding to this resonan
e 
ase isshown in Fig. 1. When g = 0, Eq. (1) takes the form�12 d2 dx2 � 1
h2 x = k22  : (4)The linearly independent solutions of Eq. (4) are 1(x) = ik � th xp2ik (k2 + 1) exp (ikx) ; 2(x) = ik + th xp2ik (k2 + 1) exp (�ikx) : (5)The Wronskian of these solutions is 02(x) 1(x) �  01(x) 2(x) = 1: (6)We 
hoose the unperturbed solution of Eq. (4) in theform  1(x). Then the transmission 
oe�
ient isT = ���� 1 (+1) 1 (�1) ����2 = 1; (7)i.e., there is no re�e
tion at any value of k.We now 
onsider the 
ase g 6= 0. The di�erentialGross�Pitaevskii equation is of the formd2 dx2 + k2 + 2
h2 x = 2gj j2 : (8)In the iteration s
heme, we introdu
e (x) =  1(x) + Æ (x);where Æ (x)�  1(x):Then Eq. (8) implies the inhomogeneous linear di�er-ential equationd2Æ dx2 + k2Æ + 2
h2 xÆ = 2gj 1j2 1 = f(x); (9)where we set f(x) = g k2 + th2 xk (k2 + 1) 1(x):The parti
ular solution of Eq. (9) is 
hosen asÆ (x) =  2(x) xZ1 f(x0) 1(x0) dx0 ��  1(x) xZ0 f(x0) 2(x0) dx0: (10)686
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e re�e
tion by the one-dimensional Rosen�Morse potential : : :We now derive the �rst term in the right-hand sideJ (x) =  2(x) �1Z1 f(x0) 1(x0) dx0 == g (thx+ ik) exp(�ikx)k (k2 + 1) [2ik (k2 + 1)℄3=2 I(k); (11)where we setI(k) == 1Z�1 �th4 x� 2ik th3 x� 2ik3 th x� k4� exp(2ikx) dx:We note that when k 6= 0,1Z�1 exp(2ikx) dx = 0:We now evaluate the integrals 
ontained in I :1Z�1 th x exp(2ikx) dx = �ish(�k) ; (12)1Z�1 th3 x exp(2ikx) dx = �i �1� 2k2�sh(�k) ; (13)1Z�1 th4 x exp(2ikx) dx = 4�k �k2 � 2�3 sh(�k) : (14)Hen
e, the integral I isI(k) = �2�k �k2 + 1�3 sh (�k) (15)and a

ording to Eq. (11),J(x) = g 2�i (1� ik) exp(�ikx)3 [2ik (k2 + 1)℄3=2 sh(�k) : (16)The re�e
tion 
oe�
ient is obtained from Eq. (5) andEq. (16) by letting x! �1:R(k) = ���� J(x) 1(x) ����2 = � �g3k (k2 + 1) sh (�k)�2 � 1: (17)The re�e
tion 
oe�
ient rapidly de
reases as k in-
reases. The 
ondition of the appli
ability of this ap-proa
h is g � k2. The values k � 1 are also a

eptablewhen g � k2.

We now 
onsider the se
ond term in Æ ; Eq. (10):K(x) = � 1(x) xZ0 f(x0) 2(x0) dx0: (18)As x! �1, the quantity K(x) is determined by largevalues of x0 � 1. Hen
e, thx0 � 1 in the integrand ofEq. (18). We obtain the se
ular termK(x) = g ik � 12ik2p2ik (k2 + 1)x exp(ikx): (19)On the other hand, it follows from Gross�Pitaevskiiequation (8) as x! �1 thatd2 dx2 + k2 = 2gj j2 : (20)The solution of this equation in the form of a transmit-ted wave is (see Eq. (5))~ 1(x) = ik � thxp2ik (k2 + 1) exp (ik0x) ;where k0 =pk2 � g=k � k � g=2k2;exp(ik0x) � exp(ikx) h1� i gx2k2 i :The se
ular term in the transmitted wave at jxj � 1 isÆ ~ 1(x) = ~ 1(x)�  1(x) == g ik � 12ik2p2ik (k2 + 1)x exp (ikx) : (21)This is just the same se
ular term as in Eq. (19) [14℄.The se
ular term does not in�uen
e the re�e
tion 
oef-�
ient R(k) in (17).Hen
e, the total wave fun
tion of the nonlinearproblem at the �rst resonan
e (U0 = �1) has the form (x) = ~ 1(x) + g 2�(ik � 1) exp(�ikx)3 [2ik (k2 + 1)℄3=2 sh(�k) : (22)The reason for the o

uren
e of se
ular terms is thatas x ! �1, the inhomogeneous term exp(ikx) is si-multaneously a solution of the homogeneous di�erentialequation. In the re�e
ting wave exp(�ikx), the valueof k also 
hanges be
ause of se
ular terms, but this doesnot a�e
t the re�e
tion 
oe�
ient in the terms of the�rst order in the small parameter g=k2 � 1. Analo-gously, the 
ondition T + R = 1 is satis�ed with thea

ura
y of terms linear in this parameter.687



H. A. Ishkhanyan, V. P. Krainov ÆÝÒÔ, òîì 136, âûï. 4 (10), 20093. TRANSMISSION RESONANCES IN THEGROSS�PITAEVSKII EQUATIONWe now 
onsider the vi
inity of the �rst resonan
e,when U0 = �1+
 with 
 � 1. In this 
ase, the Gross�Pitaevskii equation takes the form (see Eq. (8))d2 dx2 + k2 + 2� 2

h2 x  = 2gj j2 : (23)In the iteration s
heme for solution of this equation, wewrite  (x) =  1(x) + � (x);where � (x) �  1(x):The inhomogeneous linear di�erential equation for� (x) is d2� dx2 + k2� + 2
h2 x� = F (x) (24)where we setF (x) = 2gj 1j2 1 + 2

h2 x 1: (25)Substituting  1(x) from Eq. (5) in Eq. (25), we obtainF (x) = �g k2 + th2 xk (k2 + 1) + 2

h2 x��� ik � thxp2ik (k2 + 1) exp (ikx) : (26)The solution of Eq. (24) is given by (see Eq. (10))� (x) =  2(x) xZ1 F (x0) 1(x0) dx0 ��  1(x) xZ0 F (x0) 2(x0) dx0: (27)As x ! �1, the �rst term in this equation 
an berepresented in the form (see Eq. (18))M(x) =  2(x) �1Z1 F (x0) 1(x0) dx0 == J(x) + 2
(1� ik) exp(�ikx)[2ik (k2 + 1)℄3=2 L(k) (28)where L(k) = 1Z�1 (thx� ik)2
h2 x exp(2ikx) dx: (29)
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Fig. 2. The dependen
e of the re�e
tion 
oe�
ientR(k) derived in a

ordan
e with Eq. (32) on k; g = 0:2,
 = 0 (1 ) and 0:05 (2 )This integral 
an be evaluated similarly to I(k):L(k) = 2�k �k2 + 1�3 sh(�k) : (30)Hen
e,M(x) = 2�i(1� ik) exp(�ikx)3 sh(�k)p2ik (k2 + 1) �� � g2k (k2 + 1) � 
� : (31)The re�e
tion 
oe�
ient is (see Eq. (18))R(k) = ����M(x) 1(x) ����2 = "� �g � 2
k �k2 + 1��3k (k2 + 1) sh (�k) #2 � 1:(32)The re�e
tion 
oe�
ient R(k) is zero under the 
ondi-tion g = 2
k �k2 + 1� : (33)In Fig. 2, the re�e
tion 
oe�
ient R(k) derived in a
-
ordan
e with Eq. (32) is represented as a fun
tion ofk in the example where g = 0:2, 
 = 0 and 0:05.4. CONCLUSIONThe s
attering of Bose�Einstein 
ondensate by theRosen�Morse potential has been dis
ussed in termsof stationary states of the Gross�Pitaevskii equation.Negle
ting the mean-�eld intera
tion outside thepotential, the in
oming and outgoing waves and the688
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e re�e
tion by the one-dimensional Rosen�Morse potential : : :re�e
tion and transmission probabilities 
an be de�nedwithin the approximation of a weak nonlinear param-eter. The vi
inity of resonan
es has been investigatedwhere the role of a weak nonlinearity is signi�
ant. Asimple analyti
 expression for the re�e
tion 
oe�
ientin the 
ase where re�e
tion is absent in the linearproblem and also the re�e
tion 
oe�
ient in thevi
inity of resonan
es of the linear problem have beenobtained. New positions of resonan
es were foundwhere the re�e
tion 
oe�
ient is zero in the presen
eof both nonlinearity and some small detuning fromresonan
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