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We consider the quantum above-barrier reflection of a particle by the one-dimensional Rosen—Morse potential
well, for the nonlinear Schrédinger equation (the Gross—Pitaevskii equation) with a small nonlinearity. The most
interesting case is realized in resonances when the reflection coefficient is exactly equal to zero for the linear
Schrédinger equation. Then the reflection is determined by only a small nonlinear term in the Gross—Pitaevskii
equation. The simple analytic expression is obtained for the reflection coefficient produced only by the non-
linearity. The analytic condition is found for the common action of the potential well and the nonlinearity to
produce the zero reflection coefficient. The reflection coefficient is also derived analytically in the vicinity of a

resonance shifted by the nonlinearity.
PACS: 05.30.Jp, 03.75.Lm, 03.75.Hh, 03.65.Ge

1. INTRODUCTION

Quantum tunneling in physical systems is a hot
topic. The most direct way to study these physi-
cal properties is to find the exact solutions of the
Schrédinger equation that dominates the system dy-
namics. However, only in a few cases with the simplest
potentials, like a square well, the Schrodinger equation
can be solved exactly. In most circumstances, exact
solutions are difficult to obtain due to not only the ef-
fect of the external field exerted on particles but also
the interaction of particles. The most direct generaliza-
tion of the single-particle case is the tunnelling of the
mean field through a barrier in the Gross—Pitaevskii, or
the nonlinear Schrédinger equation [1]. We emphasize
that this is a nonlinear tunneling problem in the mean-
field approximation. There have been various theo-
retical studies. From the theoretical standpoint, the
main complication in the description of a quasistationa-
ry scattering process of particles obviously comes from
the presence of the atom—atom interaction. In leading
order, the effect of this interaction is included in the
nonlinear term in the Schrodinger-like Gross—Pitaevskii
equation for the wave function. The dynamics of solu-
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tions of this equation is very complex and rich. The
phenomena of coherence, macroscopic tunneling, vor-
tex formation, instabilities, focusing, and blowup are
all concepts related to the nonlinear nature of the sys-
tems.

A convenient theoretical approach is based on the
one-dimensional Gross—Pitaevskii equation

(

which describes the dynamics in the mean-field approx-
imation at low temperatures. Another important ap-
plication is the propagation of electromagnetic waves
in nonlinear media. The ansatz
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Y(z,t) = exp(—iut/h)Y(x)

reduces the Gross—Pitaevskii equation to the cor-
responding time-independent (stationary) nonlinear
Schrédinger equation
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with the chemical potential p.
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To consider solutions in a finite trap, the Ro-
sen—Morse potential

Uo

ch? (az)

Viz) = (2)
is studied in this paper. This potential yields ana-
lytic solutions, unlike harmonic traps. It also pro-
vides a model for a finite-depth trap. The treatment
of transport within this mean-field theory reveals new
interesting phenomena arising from the nonlinearity of
the equation. As was already shown in Refs. [2,3], a
complex solution of Eq. (1) with the one-dimensional
square-well potential is given in terms of the Jacobi el-
liptic functions dn(z). The Gross—Pitaevskii equation
for a one-dimensional finite square-well potential was
studied in Ref. [4] in terms of incoming and outgoing
waves. The transmission coefficient 7" becomes equal
to one periodically as a function of the chemical po-
tential . Thus, there is the total transparency of the
potential barrier at resonances.

The resonance line shape was investigated in re-
cent paper [5]. The stationary nonlinear Schrodinger
equation or the Gross—Pitaevskii equation for one-di-
mensional potential scattering was studied in that pa-
per. The nonlinear transmission function exhibits a
distorted profile, which differs from the Lorentzian one
found in the linear case. This nonlinear profile function
is analyzed and related to Siegert-type complex reso-
nances. It is shown that the characteristic nonlinear
profile function can be conveniently described in terms
of skeleton functions depending on a few parameters.
These skeleton functions also determine the decay be-
havior of the underlying resonance state.

Macroscopic quantum tunneling of Bose—Einstein
condensates in a finite potential well has been consid-
ered in Ref. [6]. The nonlinearity, which is propor-
tional to both the number of atoms and the interaction
strength, can transform bound states into quasibound
ones. The latter have a finite lifetime due to tunneling
through the barriers at the borders of the well. They
predict the lifetime and stability properties for repul-
sive and attractive condensates in one, two, and three
dimensions, for both the ground state and the excited
soliton and vortex states.

Resonance solutions of the nonlinear Schrodinger
equation, the tunneling lifetime, and fragmentation of
trapped condensates were investigated in Ref. [7]. It
is shown there how the lifetimes and energies of reso-
nance states can be calculated by applying the complex
scaling transformation to the nonlinear Schrédinger
equation. It is essential to first apply the complex
scaling transformation to the full Hamiltonian and to
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subsequently derive the correct complex scaled nonlin-
ear Schrodinger equation from the result. The non-
linear Schrédinger equation is physically relevant and
amenable to numerical calculations. To analyze the re-
sults obtained by solving this equation, it is necessary
to realize the close association of resonance phenomena
with fragmentation of the system.

In Ref. [8], the hydrodynamic representation of the
Gross—Pitaevskii and the nonlinear Schrédinger equa-
tions was used to analyze the dynamics of macroscopic
tunneling processes. A tendency toward wave break-
ing and shock formation during the early stages of the
tunneling process was observed. A blip in the density
distribution appears on the outskirts of the barrier and
may transform into a bright soliton under proper con-
ditions.

A particle moving through a classically allowed re-
gion can be reflected by a potential without reaching
a classical turning point. Above-barrier reflection also
occurs when Uy < 0 and the chemical potential p > 0.
In the linear problem (¢ = 0 in Eq. (1)) with poten-
tial (2), the reflection coefficient R is determined by the
expression (see [9,10])

cos? [ Ty/1 = Bmlo
2 h2a?
= p T\ (3)
o [T m mUo
Sh <E) + COS2 (E ]. — W)

where k = /2mpu/h. The inequality 8mU, < h%*a?
is suggested for the above-barrier transmission and
reflection. We everywhere use the system of units
h =m = «a = 1. It follows that in linear problem,
R =0 when 1—8U = (2n+1)® with n = 1,2,3,...
Hence, the reflection coefficient in this resonant case is
determined only by the nonlinearity.

To avoid secular terms, we use the multiple-scale
analysis for the derivation of the resonant reflec-
tion coefficient. This approach was used in studying
Bose—Einstein solitons in highly asymmetric traps [11].
Quantum reflection of an incident soliton by an attrac-
tive sech-squared-shape potential

v

V(@) = _ch2(x/ac0)

(the Rosen—Morse potential) was analyzed numerically
in [12]. The prediction was that quantum reflection can
occur to a kind of macroscopic quantum objects, atomic
matter-wave bright solitons. The pronounced switching
between reflection and transmission is a characteristic
behavior that should be observable for sufficiently well
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localized and deep potential wells, such as those cre-
ated by a strongly focused red-detuned laser beam or
a second, incoherent soliton.

It was shown in [13] that the well-known absolute
transmission of the nonlinear system can occur in the
Rosen—Morse potential. The authors investigated the
atomic trap and transport of a Bose—Einstein conden-
sate in one-dimensional waveguide with an obstacle po-
tential of the sech-squared form. By applying a non-
balance condition, they obtained exact solutions of the
system, which contain the bound states and transmis-
sion states.

The nonlinearity is assumed to be small, i.e., g < u.
It is then possible to find a simple analytic expression
by the multi-scale approach for the reflection coefficient
for the Rosen—Morse potential in the vicinity of reso-
nances. Just this is the goal of our work.

2. THE MODEL AND SOLUTIONS

We assume that a particle moves in the positive di-
rection of the x axis. At x — —oo, there are both
incident and reflecting waves, and at * — 400, there is
only the transmitted wave. For simplicity, we consider
only the first resonance, i.e., n = 1. Then Uy = —1.

k%/2

—1.0 3

Fig.1. The potential —1/ch? x for the first resonance
(n = 1) provides total transmission

The potential corresponding to this resonance case is
shown in Fig. 1. When g = 0, Eq. (1) takes the form

1d2y 1 2

The linearly independent solutions of Eq. (4) are

ik —thz .
¢1 (l’) = \/W exp (Zkl’) y (5)
Pa(x) = ikt the exp (—ikz) .

V2ik (k2 + 1)

The Wronskian of these solutions is

Py ()1 () — ¥y (@) (z) = L. (6)

We choose the unperturbed solution of Eq. (4) in the
form 1 (z). Then the transmission coefficient is

P NG|

[ (=o0)
i.e., there is no reflection at any value of k.
We now consider the case g # 0. The differential
Gross—Pitaevskii equation is of the form
d?v

W+k2w+

; (7)

¥ = 2g[Y[*ep. (8)

2
cnr

In the iteration scheme, we introduce

U(x) = i (z) + 0¢(x),

where
Sp(x) < Y1 ().

Then Eq. (8) implies the inhomogeneous linear differ-
ential equation

263) p
T T k* 61 + 7 xMJ =29l |*P1 = f(z), (9)

where we set

k2 + thz

f(z) =gm

Y1 ().

The particular solution of Eq. (9) is chosen as
S0(e) = vala) [ Fla'yin (o) d' -

() / @y (') de . (10)
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We now derive the first term in the right-hand side

Mmzwxm/fwwufo

(tha + ik) exp(—ikz)
ke (k2 + 1) [2ik (k2 + 1)]*/?

I(k), (11)

where we set

I(k)
—Zo
We note that when k # 0,

/

We now evaluate the integrals contained in I:

exp(2ikax) dx = 0.

. i
/ th z exp(2ikx) de = (k) (12)
T . i (1-2k2)
/th x exp(2ike) doe = (k) (13)
T Ak (K2 — 2)
4 . _
/th zrexp(2ikz) dx = 3sh(ah) (14)
Hence, the integral [ is
2rk (k? +1)
I(k)=——F—7FF"— 1
(k) 3sh(mk) (15)
and according to Eq. (11),
ori (1 — .
() = i (1 —ik) exp(—ikx) (16)

3[2ik (k2 + 1)]*/* sh(nk)

The reflection coefficient is obtained from Eq. (5) and
Eq. (16) by letting @ — —oo:

2 2

& <1. (17)

k2 + 1) sh (k)

M“=Mﬁ>

e

The reflection coefficient rapidly decreases as k in-
creases. The condition of the applicability of this ap-
proach is g < k2. The values k < 1 are also acceptable
when ¢ < k2.

(th* 2 — 2ik th® » — 2ik® th — k*) exp(2ikz) da.
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We now consider the second term in v, Eq. (10):

K(z)

wuvﬂwwwm¢ (18)

As # — +o00, the quantity K (x) is determined by large
values of 2/ > 1. Hence, th2' ~ 1 in the integrand of
Eq. (18). We obtain the secular term

tkF1

K(z) =
S NGRS

xexp(ikx). (19)

On the other hand, it follows from Gross—Pitaevskii
equation (8) as ¥ — %00 that

d
gy + k> = 2g|y*0. (20)

The solution of this equation in the form of a transmit-
ted wave is (see Eq. (5))
itk —thz

V2ik (k2 + 1)

U (x) = exp (ik'z),

where

E=\k?—g/k~k—g/2k*,

The secular term in the transmitted wave at 2] > 1 is

19

exp(ik'r) ~ exp(ikz) [ e

Sty (x) =t (z) — Y (x) =
B tkF1
ik (2 + 1)

xrexp (ikz). (21)
This is just the same secular term as in Eq. (19) [14].
The secular term does not influence the reflection coef-
ficient R(k) in (17).

Hence, the total wave function of the nonlinear
problem at the first resonance (Uy = —1) has the form

g 27 (ik — 1) exp(—ikx)
3[2ik (k2 + 1)]*/ sh(rk)

¥(z) = Yi(z) + (22)

The reason for the occurence of secular terms is that
as © — oo, the inhomogeneous term exp(ikz) is si-
multaneously a solution of the homogeneous differential
equation. In the reflecting wave exp(—ikz), the value
of k also changes because of secular terms, but this does
not affect the reflection coefficient in the terms of the
first order in the small parameter g/k*> < 1. Analo-
gously, the condition T'+ R = 1 is satisfied with the
accuracy of terms linear in this parameter.
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3. TRANSMISSION RESONANCES IN THE
GROSS-PITAEVSKII EQUATION

We now consider the vicinity of the first resonance,
when Uy = —1+4+v with v < 1. In this case, the Gross—
Pitaevskii equation takes the form (see Eq. (8))

2—2y

5 = 29|9|*. (23)
ch”z
In the iteration scheme for solution of this equation, we
write

d
kT A
I + kY +

¥(x) = ¢ (2) + AY(x),
where
AY(z) < ().
The inhomogeneous linear differential equation for

A(x) is
2

ch?z

42 Ay

T + E2AY +

A = F(z) (24)

where we set

2y
ch®z
Substituting ¥ (x) from Eq. (5) in Eq. (25), we obtain

F(z) = 2g|¢n|*yr + (R (25)

B2 +th’z 2y ]

E(k2+1)  ch’x
itk —tha

X —_—

2ik (k2 + 1)

Fo) = |g
exp (tkz). (26)

The solution of Eq. (24) is given by (see Eq. (10))

T

AM@zwm/ﬂmemf—

—wmm/Fummwvmﬂ (27)
0

As © — —oo, the first term in this equation can be
represented in the form (see Eq. (18))

M(z) = (o) [ Fa')un () do’ =

2v(1 — ik) exp(—ikz)

= J)+ TS L (29)
where
L(k) = / Wexp(%k@dm. (29)

R, 107°

Fig.2. The dependence of the reflection coefficient
R(k) derived in accordance with Eq. (32) on k; g = 0.2,
~ =0 (1) and 0.05 (2)

This integral can be evaluated similarly to I(k):

2k (K* +1)
L) = = em (80)
Hence,
Mz) = 2mi(1 — ik) exp(—ikz) "

3sh(rk)/2ik (k2 + 1)

g
—_— — 7| . 1
8 [2k(k2+1) 7} (31)
The reflection coefficient is (see Eq. (18))

M(z) ’

P1(z)

R(k) = ‘ < 1.

2 _ 7r(g—27k(k2+1))
| 3k (k2 +1)sh(mk)

(32)

The reflection coefficient R(k) is zero under the condi-
tion

g=2vk(K*+1). (33)

In Fig. 2, the reflection coefficient R(k) derived in ac-
cordance with Eq. (32) is represented as a function of
k in the example where ¢ = 0.2, v = 0 and 0.05.

4. CONCLUSION

The scattering of Bose—Einstein condensate by the
Rosen-Morse potential has been discussed in terms
of stationary states of the Gross—Pitaevskii equation.
Neglecting the mean-field interaction outside the
potential, the incoming and outgoing waves and the
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reflection and transmission probabilities can be defined
within the approximation of a weak nonlinear param-
eter. The vicinity of resonances has been investigated
where the role of a weak nonlinearity is significant. A
simple analytic expression for the reflection coefficient
in the case where reflection is absent in the linear
problem and also the reflection coefficient in the
vicinity of resonances of the linear problem have been
obtained. New positions of resonances were found
where the reflection coefficient is zero in the presence
of both nonlinearity and some small detuning from
resonance in the linear problem.

This work is supported by the RFBR (grant
Ne07.02.00080).
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