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SPONTANEOUS SYMMETRY BREAKING IN GENERALRELATIVITY. VECTOR ORDER PARAMETERB. E. Meierovih *Kapitza Institute for Physial Problems, Russian Aademy of Sienes117334, Mosow, RussiaReeived January 14, 2009Gravitational properties of a hedgehog-type topologial defet in two extra dimensions are onsidered in generalrelativity using a vetor as the order parameter. All previous onsiderations were done using the order parameterin the form of a multiplet in the target spae of salar �elds. The di�erene of these two approahes is analyzedand demonstrated in detail. Regular solutions of the Einstein equations are studied analytially and numerially.It is shown that the existene of a negative osmologial onstant is su�ient for the spontaneous symmetrybreaking of the initially �at bulk. Regular on�gurations have an inreasing gravitational potential and are ableto trap the matter on the brane. If the energy of spontaneous symmetry breaking is high, the gravitationalpotential has several minimum points. Spinless partiles that are idential in the uniform bulk, being trappedat separate minima, aquire di�erent masses and appear to the observer on the brane as di�erent partiles withinteger spins.PACS: 04.50.-h, 11.27.+d1. INTRODUCTIONThe theories of brane world and multidimensionalgravity are widely disussed in the literature. A nat-ural physial onept is that a distinguished surfaein the spae�time manifold is a topologial defet thatappeared as a result of a phase transition with spon-taneous symmetry breaking. The marosopi theoryof phase transitions allows onsidering the brane worldonept self-onsistently, even without the knowledgeof the nature of the physial vauum. The propertiesof topologial defets (strings, monopoles, : : : ) are gen-erally desribed with the aid of a multiplet of salar�elds forming a hedgehog on�guration in extra dimen-sions (see [1℄ and the referenes therein). The salarmultiplet plays the role of the order parameter. Thehedgehog on�guration forms a vetor proportional toa unit vetor in the Eulidean target spae of salar�elds. This model is self-onsistent, but it is not theonly generalization of a plane monopole to the urvedspae�time.In a �at spae�time, there is no di�erene betweena vetor and a hedgehog-type multiplet of salar �elds.*E-mail: meierovih�yahoo.om

On the ontrary, in a urved spae�time, salar multi-plets and vetors are transformed di�erently. In gen-eral relativity, the two approahes (based on a multipletof salar �elds and a vetor order parameter) thereforegive di�erent results whih are worth omparing. Deal-ing with a vetor order parameter seems to be moredi�ult, whih is probably the reason why we ouldnot �nd any papers onsidering phase transitions witha hedgehog-type vetor order parameter in general rel-ativity. 2. GENERAL FORMULAS2.1. LagrangianThe order parameter enters the Lagrangian viasalar bilinear ombinations of its derivatives and viaa salar potential V allowing a spontaneous symmetrybreaking. If �I is a vetor order parameter, then Vshould be a funtion of the salar�K�K = gIK�I�K ;and a bilinear ombination of the derivatives is a tensorSIKLM = �I;K�L;M : (1)52



ÆÝÒÔ, òîì 136, âûï. 1 (7), 2009 Spontaneous symmetry breaking in general relativity : : :The index � ;K� is used as usual for ovariant deriva-tives. There are three ways to simplify SIKLM intosalars, and the most general form of the salar Sformed via ontrations of SIKLM isS = A ��K;K�2 +B�L;K�;KL + C�M;K�K;M ; (2)where A;B, and C are arbitrary onstants. Di�erenttopologial defets an be lassi�ed by these param-eters. In a urved spae�time, the salar S dependsnot only on the derivatives of the order parameter butalso on the derivatives of the metri tensor. This is theprinipal di�erene between a vetor and a multiplet ofsalar �elds.The general form of the Lagrangian determininggravitational properties of topologial defets with avetor order parameter isL��I ; gIK ; �gIK�xL � = Lg + Ld; (3)where Lg = R2�2 (4)is the Lagrangian of the gravitational �eld, R is thesalar urvature of spae�time, �2 is the (multidimen-sional) gravitational onstant, andLd = A ��K;K�2+B�I;K�;KI +C�I;K�K;I�V ��K�K� (5)is the Lagrangian of a topologial defet. The ovariantderivative�P ;M = ��P�xM �� 12gLA��gAM�xP + �gAP�xM � �gMP�xA ��L (6)and raising of indies �K = gIK�I involve gIK and�gIK=�xL, and it is therefore onvenient to express theLagrangian as a funtion of �I , gIK , and �gIK=�xL.2.2. Energy�momentum tensorVarying the Lagrangian Ld in (5) with respet toÆgIK and having in mind thatÆgIK = �gKMgINÆgNM ; (7)we obtain the energy�momentum tensor1)1) It di�ers from (94.4) in [2℄ beause the Lagrangian is on-sidered there as a funtion of gIK and �gIK=�xL. Here andbelow, p�g stands for p(�1)D�1g.

TIK = 2p�g 264�p�g Ld�gIK ++ gQKgPI ��xL 0B�p�g �Ld� �gPQ�xL 1CA375 : (8)In the ase of the vetor order parameter, the potentialV ��K�K� = V �gIK�I�K�also undergoes a variation as gIK is varied.We proeed with the derivations taking the spe-i� properties of partiular topologial defets into a-ount.3. GLOBAL STRING IN EXTRA DIMENSIONSIn our previous papers with Bronnikov (see [1℄ andthe referenes therein), we onsidered global monopolesand strings as topologial defets with the order param-eter in the form of a hedge-hog-type multiplet of salar�elds in some �at target spae. The aim of this paper isto desribe these defets using a vetor order parameterand ompare the results.3.1. MetriThe diretion of the vetor spei�es one oordi-nate, and in the simplest ase, the system is uniformand isotropi with respet to all the other oordinates.In [1℄, we presented the detailed properties of globalstrings in two extra dimensions. In what follows, wetherefore onsider a topologial defet in a spae�timewith two extra dimensions. The order parameter isa spae-like vetor (gIK�I�K < 0) direted normallyfrom the brane hypersurfae and depending on the onlyone spei� oordinate, the distane from the brane.The whole (D = d0 + 2)-dimensional spae�time hasthe struture Md0� R1� �1 and the metrids2 = e2(l)���dx�dx� � �dl2 + e2�(l)d'2� ; (9)where ��� = diag (1;�1; : : : ;�1) is the d0-dimensionalMinkowski brane metri (d0 > 1) and ' is the angularylindrial oordinate in extra dimensions;  and � arefuntions of the distinguished extra-dimensional oor-dinate l, the distane from the enter (i.e., from thebrane), and e�(l) = r (l) is the irular radius. Greek in-dies �; �; : : : orrespond to the d0-dimensional spae�time on the brane, and I;K; : : : to all the D = d0 + 253



B. E. Meierovih ÆÝÒÔ, òîì 136, âûï. 1 (7), 2009oordinates. The metri tensor gIK is diagonal, and itsnonzero omponents aregIK =8>>>><>>>>: e2 ; I = K = 0;�e2; 0 < I = K < d0;�1; I = K = d0;�e2�; I = K = ':The urvature of the metri on the brane aused bymatter is supposed to be muh smaller than the urva-ture of the bulk aused by the brane formation.3.2. Regularity onditionsIf the e�et of matter on the brane is negleted, thenthere is no physial reason for singularities, and theself-onsistent struture of a topologial defet shouldbe regular. A neessary ondition of regularity is the�niteness of all invariants of the Riemann urvaturetensor. The nonzero omponents of the Riemann ten-sor areRABCD == 8>>>><>>>>:�02 �ÆACÆBD � ÆADÆBC � ; A;B;C;D < d0;��00; A = C = '; B;D < d0;� �00+02� ÆBD; A = C = d0; B;D < d0;� ��00+�02� ; A = C = d0; B = D = '; (10)where the prime denotes d=dl. One of the invari-ants of the Riemann tensor is the Krethmann salarK = RABCDRCDAB , whih is the sum of all nonzeroRABCD squared, and hene all the nonzero omponentsof the Riemann tensor, and spei�ally0; 00 + 02; �00; �00 + �02 (11)must be �nite. r = 0 is a singular point of the ylind-rial oordinate system. The absene of a urvaturesingularity in the enter follows from the last onditionin (11). Let �00 + �02 =  <1 at l = 0: (12)Integrating (12) in the viinity of the enter, we have�0 = 1l + 13l +O �l3� : (13)Relation (13) ensures the orret (= 2�) irumferene-to-radius ratio, or, equivalently, dr2 = dl2 as l ! 0.The quantity �00 is �nite at l = 0 if0 = O (l) or smaller as l! 0: (14)

3.3. Vetor order parameterOur aim is to onsider the order parameter as avetor in extra dimensions direted normally from theMinkowski hypersurfae. In the ylindrial oordinatesystem of extra dimensions, the only nonzero ompo-nent of the vetor order parameter is�d0 � �: (15)In the spae�time with metri (9), the ovariant deriva-tive �I;K = Æd0I Æd0K �0 � 12ÆIKg0II� (16)is a symmetri tensor:�I;K = �K;I :Hene, �I;K�;KI = �I;K�K;I ;and Lagrangian (5) takes the formLd = A �0 + 12�XK gKKg0KK!2 ++ eB �02 + 14�2XL �gLLg0LL�2!� V ���2� ; (17)whih ontains only two arbitrary onstants A andeB = B + C. In (17), we set gd0d0 = �1 in aordanewith (9). But we should keep in mind that (17) annotbe used in (8). To derive energy�momentum tensor (8),we should use Lagrangian (5) and set gd0d0 = �1,�gd0d0�0 = 0 after the di�erentiation. Nevertheless, the�eld equation an be derived using (17) in the generalformula 1p�g ��p�g Ld��0 �0 � �Ld�� = 0: (18)In the spae�time with metri (9), the sums in (17) areSn = 12n XK �gKKg0KK�n = d00n + �0n;n = 1; 2; : : : ; (19)and the determinant of the metri tensor isg = (�1)D�1 e2(d0+�): (20)54



ÆÝÒÔ, òîì 136, âûï. 1 (7), 2009 Spontaneous symmetry breaking in general relativity : : :3.4. Field equationWe onsider the ase A 6= 0, eB = 0 in what follows.The ase A = 0, eB 6= 0 will be onsidered elsewhere.Substituting (17) with A = 1=2 and eB = 0 in (18), weobtain the following �eld equation in the ase of vetororder parameter:[�0 + (d00 + �0)�℄0 + �V�� = 0: (21)In the ase of the multiplet of salar �elds, we had [1℄�00 + �0 (d00 + �0)� �e�2� + �V�� = 0: (22)Unlike (22), �eld equation (21) does not depend di-retly on � (and hene on the irular radius r = ln�),but instead inludes seond derivatives of the metritensor. In the �at spae�time,0 = 0; �0 = 1l ; �00 = � 1l2 ; e�2� = 1l2 ;and both �eld equations redue to�00 + 1l �0 � 1l2�+ �V�� = 0: (23)3.5. Energy-momentum tensorThe energy�momentum tensor in (8) inevitably on-tains seond derivatives, but they an be eliminatedwith the aid of �eld equation (21). The �nal result ofa rather tiresome derivation isTKI = 12ÆKI [�0 + (d00 + �0)�℄2 + ÆKI V ++ �Æd0I ÆKd0 � ÆKI � �V�� �: (24)Unlike in the salar multiplet ase, energy�momentumtensor (24) ontains not only the potential V but alsoits derivative �V =��.Corretness of (24) is heked by the derivation ofthe ovariant divergene TKI;K (atually, TKd0;K). Again,with the aid of �eld equation (21), we on�rm thatTKd0;K = 0. 3.6. Einstein equationsThe same way as in [1℄, we use the Einstein equa-tions in the form RKI = �2 eTKI ;where RKI is the Rii tensor,

RKI = 8><>: ÆKI [00 + 0 (d00 + �0)℄ ; I < d0;ÆKd0 �d0 �00 + 02�+ �00 + �02� ; I = d0;ÆK' [�00 + �0 (d00 + �0)℄ ; I = ';andeTKI = TKI � 1d0 ÆKI T = � 1d0 ÆKI [�0+(d00+�0)�℄2�� ÆKI 2d0V + ÆKI �Æd0I + 1d0� �V�� �:In the ase of the vetor order parameter, the set ofEinstein equations00 + 0 (d00 + �0) == �2 �� 1d0 [�0+(d00+�0) �℄2�2Vd0 + 1d0 �V�� �� ; (25)d000 + �00 + d002 + �02 == �2 �� 1d0 [�0 + (d00 + �0) �℄2 �� 2Vd0 +�1 + 1d0� �V�� �� ; (26)�00 + �0 (d00 + �0) == �2 �� 1d0 [�0+(d00+�0)�℄2�2Vd0 + 1d0 �V�� �� (27)onsists of three �rst-order equations for 0, �0, and �.Both  and � enter Eqs. (25)�(27) not diretly but viathe derivatives. In the ase of a salar multiplet orderparameter (see Eqs. (14)�(16) in [1℄), � enters the Ein-stein equations diretly, and the system of equations isof the fourth order.Field equation (21) is not independent. It is a on-sequene of Einstein equations (25)�(27) due to theBianhi identity.3.6.1. First integralEliminating the seond derivatives 00 and �00in (25)�(27), we obtain the relation(d00 + �0)2 � �d002 + �02� == ��2 n[�0 + (d00 + �0) �℄2 + 2V o ; (28)whih an be onsidered a �rst integral of sys-tem (25)�(27).55



B. E. Meierovih ÆÝÒÔ, òîì 136, âûï. 1 (7), 20093.6.2. Further simpli�ationEquations (25) and (27) have the same right-handsides. Subtrating one from the other yields the equa-tion (0 � �0)0 + (0 � �0) (d00 + �0) = 0; (29)whih an be used instead of one of Eqs. (25) and (27).With the aid of relations (28) and (29) the ompleteset of equations an be redued to a simpler form. In-troduing new funtionsU = 0 � �0; W = d00 + �0; Z = �0 +W�; (30)we obtain the set of four �rst-order equationsU 0 = �UW; (31)W 0 = �2 d0 + 1d0 ��V�� �� 2V � Z2��W 2; (32)�0 = Z �W�; (33)Z 0 = ��V�� : (34)The funtions �0 and 0, and their ombinationS2 = d002 + �02in (19) are expressed via U and W as follows:0 = U +Wd0 + 1 ; �0 = W � d0Ud0 + 1 ; S2 = d0U2 +W 2d0 + 1 :The �rst integral (28), rewritten in terms of U , W ,and Z asW 2 � U2 = ��2 d0 + 1d0 �Z2 + 2V 	 ;allows simplifying (32) even further:W 0 = �2 d0 + 1d0 �V�� �� U2:The set of equationsU 0 = �UW;W 0 = �2 d0 + 1d0 �V�� �� U2;�0 = Z �W�;Z 0 = ��V�� (35)is most onvenient for both analyti and numerialanalysis.

3.7. General analysis of the equationsEquations (25)�(27) are invariant under the addi-tion of arbitrary onstants to  and �. Without loss ofgenerality, we an set  (0) = 0: (36)The requirement of regularity in the enter ditatesondition (13), and, if we do not onsider on�gura-tions with an angle de�it (or surplus), we haver = e� = l as l ! 0: (37)Integrating (29) with boundary onditions (36)and (37), we obtain0 � �0 = �e�(d0+�): (38)It follows from (38) that �0 > 0 everywhere.We reall that topologial defets formed as mul-tiplets of salar �elds [1℄ are of three types. Integralurves an terminate with:a) an in�nite irular radius r (l) as l!1;b) a �nite irular radius r1 = r (1) = onst <1;) a seond enter r = 0 at some �nite l = l.In the vetor order parameter ase, the situationis di�erent. Equation (38) allows proving that a reg-ular on�guration an terminate neither with a �niteirular radius r1 as l !1 nor in the seond enter.We suppose for a moment that r1 = onst < 1.Then �0(1) = 0, and (38) redues to0 = � 1r1 e�d0 as l!1:After integration, we haveed0 = d0r1 (l0 � l) ;where l0 is a onstant of integration. The left-handside is obviously positive, while the right-hand side be-omes negative and in�nitely large as l ! 1. Hene,r1 = onst <1 is impossible.The seond enter is also impossible. In the viinityof the seond enter, the left-hand side of (38) beomeslarge positive due to ��0, and the right-hand side re-mains negative.We onlude that regular on�gurations of topolog-ial defets with the vetor order parameter start at theenter l = 0 and terminate at l!1 with an in�nitelyinreasing irular radius r (l)!1.It follows from the requirement of regularity in (14)that 0 = 000 l as l! 0. From the �rst integral (28), we�nd the relation between 000 , �00, and V0:000 = ��2d0 �2�020 + V0� ; (39)56



ÆÝÒÔ, òîì 136, âûï. 1 (7), 2009 Spontaneous symmetry breaking in general relativity : : :where V0 is the value of the potential at the enterl = 0. In both ases (salar multiplet and vetor or-der parameter), the value �00 = �0 (0) is not restritedby the equations. The di�erene is that in the salarmultiplet ase, �00 is uniquely �xed by the regularity re-quirement, and in the ase of vetor order parameter,�00 remains a free parameter.3.8. Asymptoti behaviorThe regularity ondition requires that 0 be �niteeverywhere. Within the domain of regularity, 0 tendsto a �xed �nite value 01 as l ! 1. As soon asr (l)!1 as l!1, we see from (38) that 0��0 ! 0.Hene, �0 (1) = 01. The �eld � (l) also tends to its�nite value �1 = � (1). It then follows from �eldequation (21) that �V =��! 0 as l!1, i.e., the reg-ular on�guration terminates at an extremum of thepotential V (�). LetV1 = V (�1) ; V 0 (�1) = 0:From the �rst integral (28), we �nd the limit value 01:01 =s� 2�2V1(d0 + 1) [d0 + (d0 + 1)�2�21℄ : (40)A neessary ondition for the existene of regularon�gurations of topologial defets with the vetor or-der parameter is V1 < 0.To �nd the asymptoti behavior of � (l) and W (l),we linearize Eqs. (35) as l!1:� = �1 + Æ�;W = (d0 + 1) 01 + ÆW;ÆW 0 = �2 d0 + 1d0 V 001�1Æ�;Æ�0 = ÆZ � (d0 + 1) 01Æ�� �1ÆW; (41)ÆZ 0 = �V 001Æ�;where primes denote the derivatives d=dl (ÆW 0 == dÆW=dl; : : : ) exeptV 001 = �2V��2 �����=�1 :Eliminating ÆZ and ÆW , we obtain a seond-order lin-ear homogeneous equation for Æ�,Æ�00 + (d0 + 1) 01Æ�0 + 2�2 jV1jV 001d0 (d0 + 1) 021 Æ� = 0:

If the extremum of the potential is a minimum(V 001 > 0), the nontrivial solution vanishes as l!1:Æ� = Ae�+l +Be��l; (42)where A and B are onstants of integration, and botheigenvalues�� = � (d0 + 1) 012 �� 1�s1� 8�2 jV1jV 001d0 (d0 + 1)3 041 ! (43)are either negative or have negative real parts. Theabsene of inreasing solutions is the reason why �00 re-mains a free parameter in the vetor order parameterase.The asymptoti behavior of the �eld � (l) far fromthe enter is determined by two onstant parametersof the symmetry breaking potential near its extremum,V1 and V 001. If the extremum is a minimum, V 001 > 0,then the expression under the root an be both positiveand negative. Therefore, � (l) an tend to �1 eithersmoothly or with osillations. In the spae of physialparameters, the boundary between smooth and osil-lating solutions is determined by the relation8�2 jV1jV 001d0 (d0 + 1)3 041 = 1: (44)Osillating behavior of the �eld � (l) indues osil-lations of �0 and 0. If 0 hanges sign, then  (l) anhave minima. We reall that  ats as a gravitationalpotential, and hene the matter an be trapped nearthe minima of  (l).Usually, � = 0 is a maximum of the potential V (�).This is also an extremum, �V=�� = 0 at � = 0. Re-gular on�gurations that start at the enter l = 0 with� (0) = 0 an also terminate with �1 = 0 as l!1. Inthis ase, V 001 = V 00 (0) < 0, and linear set (41) reduesto the following asymptoti equation for � (l):�00 + (d0 + 1) 01�0 � jV 001j� = 0:Its general solution is a linear ombination of funtionsvanishing and growing as l!1,� = Ae��+l +Be���l;�� = (d0+1) 012 �s (d0+1)2 0214 + jV 001j; l!1:The regularity requirement demands that the in-reasing solutions be exluded from onsideration. Thisan be done at the expense of �00. Regular solutions ter-minating at a maximum of the potential an exist onlyat some �xed values of �00.57



B. E. Meierovih ÆÝÒÔ, òîì 136, âûï. 1 (7), 20093.9. Boundary onditionsThe omplete set of equations determining thestruture of a topologial defet in the ase of a vetororder parameter, Eqs. (25), (27), and (28), is of thethird order with respet to the three unknowns 0, �0,and �. The simple solution is uniquely determined bythe values of these three funtions at any regular point.The enter l = 0 is a singular point of the ylindrialoordinate system. The ondition � (0) = 0 is satis�edfor both symmetries (high and broken). �0 is in�niteat l = 0. We have to set the boundary onditions verylose to the enter, but not exatly at l = 0.For numerial analysis, it is onvenient to deal witha system of four �rst-order equations solved for deriva-tives (35). The symmetry breaking potential V (�) en-ters Eqs. (35) only via its derivative �V =��. If we leaveonly the leading terms in the boungary onditions,U = �1l ; W = 1l as l! 0;then we lose any information about the absolute valueof the potential. The value V0 = V (0) appears in thenext approximation. Using expansion (13) of �0 in theviinity of the enter and Eq. (38), we express  in termsof 000 :  = � (d0 � 2) 000 :To preserve the omplete information about the sym-metry breaking potential, we have to write the boun-dary onditions as l! 0 as followsU = 13 (d0+1) 000 l�1l ; W = 23 (d0+1) 000 l+1l ;� = �00l; Z = 2�00: (45)The values 000 , �00, and V0 are not independent. Theyare onneted with eah other by Eq. (39).3.10. Solutions in ase �V =�� = 0If the potential V = V0 is independent of �, thenit atually plays the role of the osmologial onstant� = �2V0. The peuliarity of the vetor order param-eter is that Eqs. (35) lose the information about thepotential if �V =�� � 0. V0 is present only in boundaryonditions (45). Equations (35) with �V =�� � 0 andboundary onditions (45) have the analyti solutionU = � pCsh�pC l� ; W = pC th�pC l� ;� (l) = 2�00pC th pC l2 ;

whereC = 2 (d0 + 1) 000 = �2 (d0 + 1)d0 �2�2�020 +�� : (46)The solution is regular if C � 0, i.e., � � �2�2�020 . Forg00 = e2 and r = e�, we �ndg00 (l) = e2 =  h pCl2 !4=(d0+1) ;r (l) = 2 sh pC l2 !pC  h pCl2 !�(d0�1)=(d0+1) :The slope �00 remains arbitrary. If �00 = 0, this solu-tion redues to the one found earlier (see [1℄ and [3℄) inthe speial ase � � 0. The point is that the Einsteinequations with a negative osmologial onstant havea nontrivial solution (with a nonzero order parameter)even without a symmetry breaking potential.The neessary ondition for regular solutions withbroken symmetry is the existene of extremum points ofV (�), where �V =�� = 0. In ase V = onst, the on-dition �V =�� = 0 is satis�ed identially, and the orderparameter � an formally tend to any �1 as l ! 1.The above analyti solution shows that the existeneof a negative osmologial onstant is su�ient for thesymmetry breaking of a uniform �at bulk.The speial ase C = +0 in (46) with 000 = 0 and�00 = �r� �2�2 (47)orresponds to the �at bulk g00 (l) = 1, and r (l) = l.3.11. Weak urvature of spae�timeThe limit �2 ! 0 is the transition to a �at spae�ti-me. The funtions �0 and 0 redue to �0 = l�1 and0 = 0. Field equation (21) redues to (23), whih is theusual equation for the order parameter in ylindrial o-ordinates in a �at spae�time. The symmetry breakingpotential V is a funtion of �2, and hene �V =�� � �and (23) has a trivial solution � = 0 orresponding tothe symmetri (unbroken) state. The nontrivial solu-tions that start with � (0) = 0, �0 (0) 6= 0 and termi-nate with � = �m at an extremum of the potential(�V (�m)=�� = 0) desribe the states of broken sym-metry. Equation (23) is nonlinear. However, depen-ding on the form of the potential V (l), it an also havea sequene of nontrivial solutions �n (l), n = 0; 1; 2 : : : ,with zero boundary onditions � (0) = � (1) = 058



ÆÝÒÔ, òîì 136, âûï. 1 (7), 2009 Spontaneous symmetry breaking in general relativity : : :on both ends. The disrete sequene of derivatives�n = �0n (0) forms the eigenvalues for the eigenfun-tions �n (l). The funtions �n (l) hange sign n times.The nontrivial solutions of the �eld equation with �0 (0)within the interval (�n; �n+1) hange sign n+1 times.The prinipal di�erene between Eqs. (21) and (23)is that the oe�ient (d00 + �0) at �0 in a urvedspae�time does not vanish as l ! 1. If � = �m isa minimum of V (�), then V 00 (�m) > 0, and the lin-earized �eld equation (23) in the ase of a �at spae�time as l!1 redues to�00 + V 00 (�m) (�� �m) = 0and desribes nonvanishing osillations. In a urvedspae�time, the osillations vanish as l ! 1 in aor-dane with (42).Further detailed analysis is done with the aid of nu-merial integration.4. NUMERICAL ANALYSIS4.1. Regular solutions in the spae ofparametersThe numerial integration of Eqs. (35) is performedfor the �Mexian hat� potential taken in the same formas in [1℄: V = ��44 ""+�1� �2�2�2# : (48)Potential (48) has three extremum points: a maximumat � = 0 and two minima at � = ��. At the limitvalues of the order parameter, we have1) V 01 = 0; V 001 = 2�2; �1 = ��;2) V 01 = 0; V 001 = ��2; �1 = 0:The dimensionless parameter " moves the �Mexianhat� up and down. It is equivalent to adding a osmo-logial onstant. The energy of spontaneous symmetrybreaking is haraterized by �2=(D�2), anda = 1p�� (49)determines the length sale, as usual. In most ases,a is assoiated with the ore radius of a topologialdefet. Without loss of generality, we set a = 1 inomputations. The strength of the gravitational �eldis haraterized by the dimensionless parameter� = �2�2: (50)
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Fig. 1. The domain of regular on�gurations in theplane ("; �00) for d0 = 4 and � = 1. The upper urveis the boundary of the existene of regular solutions.Other urves separate the regions with di�erent signs of�1: Below the lower urve, �(l) does not hange sign.Between the �rst and the seond urves from bottom,the order parameter hanges its sign one. Betweenthe seond and the third urves, it hanges sign twie,and so on. The urves quikly ondense to the upperurveIn the ase of a vetor order parameter, the state ofbroken symmetry is ontrolled by four parameters d0, ",�, and �00. The main di�erene is that in the salar mul-tiplet ase, regular on�gurations with given d0, ", and� existed only for a �xed value of �00, but with a vetororder parameter, regular on�gurations with given d0,", and � exist within some interval 0 < �00 � �00 max,whose upper boundary �00 max depends on d0, ", and�. This additional parametri freedom allows forgetingabout the so-alled ��ne tuning� of the physial param-eters.For visual demonstration, it is worth �xing d0 = 4and one of the other three parameters. Then the do-main of existene of regular solutions an be presentedas a map in the plane of two remaining parameters.Figure 1 shows the domain of regular on�gurationsin the plane ("; �00) for d0 = 4 and � = 1. Depending onthe values of " and �00, the order parameter � (l) tendsto +�, 0, or �� as l ! 1. The sequene of urvesfn (") in Fig. 1 are those where � (l) ! 0 as l ! 1.They separate the domains with di�erent signs of �1.Below the bottom urve f1 ("), where 0 < �00 < f1 ("),the order parameter � (l) does not hange sign. Be-tween f1 (") < �00 < f2 ("), it hanges the sign one.In the domain f2 (") < �00 < f3 ("), it hanges the signtwie, and so on. The urves fn (") rapidly ondense tothe upper urve f1 (") as n!1. f1 (") is the upperboundary of the existene of regular solutions (in the59
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Fig. 2. Map of regular solutions in the plane (�;�")for �00 = �p�("+ 1)=8, d0 = 4. The solid urveseparates the regions of smooth (above) and osillat-ing (below) behavior of the order parameter as l!1.To the left of the dashed urve, the order parameterhanges signpartiular ase d0 = 4 and � = 1).The urves in Fig. 1 are those where�1 (�00; "; d0 = 4;� = 1) = 0: (51)Similar urves an be shown for �xed �00 in theplane (";�). For instane, the dashed line in Fig. 2is the �rst of the urves �1(�00 = �p�("+ 1)=8; ",d0 = 4;�) = 0, where the order parameter tends tozero as l !1. The value �00 = �p�("+ 1)=8 in (47)orresponds to 000 = 0 in (39). This is the ase C = 0in (46), and hene the symmetry breaking of the �atbulk is entirely aused by the potential V (�), not bythe osmologial onstant. To the right of the dashedline, � (l) does not hange sign.For potential (48), boundary line (44) between theosillating and smooth � (l) is�"b = 16(1 +G)2G ; G = d0 + 1d0� : (52)It is shown in Fig. 2 (solid line). Below the solid line,the order parameter � (l) tends to its limit value �1with damped osillations (see Fig. 3), and above thisurve, without osillations (see Fig. 4). The urves in
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Fig. 3. Osillating solutions in the lose viinity of thelower point on the dashed urve in Fig. 2: " = �17:413(1 ), �17:403 (2 ), �17:390 (3 )
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Fig. 4. Smooth solutions in the lose viinity of theupper point on the dashed urve in Fig. 2: " = �2900(1 ), �2893 (2 ), �2880 (3 )
Fig. 3 orrespond to the lose viinity of the lower blakpoint on the dashed urve in Fig. 2, and the urves inFig. 4 orrespond to the viinity of the upper blakpoint.60



ÆÝÒÔ, òîì 136, âûï. 1 (7), 2009 Spontaneous symmetry breaking in general relativity : : :4.2. Neutral quantum partile in thespae�time with metri (9)A neutral spinless quantum partile is desribed bya salar wave funtion � with the LagrangianL� = 12gAB��;B�;A � 12m20���: (53)In a uniform bulk (while the symmetry is not bro-ken), � desribes a free partile with mass m0 and spinzero in the D-dimensional spae�time. In the broken-symmetry spae�time with metri (9), � satis�es theKlein�Gordon equation1p�g �p�ggAB�;A�;B +m20� = 0: (54)All oordinates exept xd0 = l are yli variables, andthe onjugate momenta are quantum numbers. Thewave funtion in a quantum state is� �xA� = X (l) exp (�ip�x� + in') ; (55)where p� = (E;p) is the d0-momentum within thebrane and n is the integer angular momentum on-jugate to the irular extra-dimensional oordinate '.X (l) satis�es the equation [1℄X 00 +WX 0 + �p2e�2 � n2e�2� �m20�X = 0: (56)The eigenvalues of p2 = E2�p2 ompose the spetrumof squared masses, as observed on the brane. The quan-tum number n is the integer proper angular momentumof the partile. From the standpoint of the observer onthe brane, it is the internal momentum, idential to thespin of the partile.After the substitutiondl = edx; X (l) = y (x)pf (x) ;f (x) = exp��12 [(d0 � 1)  + �℄� ;Eq. (56) takes the form of the Shrödinger equationyxx + �p2 � Vg (x)� y = 0: (57)The gravitational potentialVg (x) = e2 �e�2�n2 +m20�++ 12 1pf ddx � 1pf dfdx� (58)
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Fig. 5. A solution with the osillating order param-eter �(l). Here, d0 = 4, " = �2, � = 10, and�00 =p�("+ 1)=8determines the trapping properties of partiles to thebrane. In terms of U ,W , and � in (30), the dependeneof gravitational potential (58) on the distane l isV (l) = e2 �e�2�n2 +m20�++ e24 (d0W � U) (U + (d0 + 2)W )(d0 + 1)2 ++ e22 ��2 �V�� �+ U (W � d0U)d0 + 1 � : (59)4.3. OsillationsIn terms of (52), eigenvalues (43) are expressed as�� = �r� "8 (G+ 1) �� "1�r1 + 16"G (G+ 1)2 # : (60)The osillations display themselves the stronger, thesmaller is j"j. In the limit ases of small and large �,the osillation frequeniesjIm�j = 8>>><>>>: p2; �! 0;s2�1 + 1d0��; �!1;are independent of " as l!1.Osillations of the order parameter �(l) (see Fig. 5)indue osillations of gravitational potential (58). At61
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Fig. 6. The gravitational potential V (l) in (59) for thesame set of the parameters as in Fig. 5, d0 = 4, " = �2,� = 10, and �00 = p�("+ 1)=8. The initial mass ofa test partile is m0 = 0. The solid urve orrespondsto the angular momentum n = 0 and the dashed oneto n = �1j"j � 1 and �� 1, the gravitational potential has manypoints of minimum (see Fig. 6).The length sale a in (49) remains an arbitraryparameter of the theory. The physial interpretationis di�erent in the limit ases of large and small a. If

a is extremely large, eah minimum of the potential (l)forms its own brane. If the potential barrier is high, thebranes are separated from one another. In the oppo-site limit, when the sale length a is extremely small,all points of minimum are loated within one ommonbrane, and in the Kaluza�Klein spirit, the points ofminimum are beyond the resolution of modern devies.Low-energy partiles an be trapped by the pointsof minimum of potential (58). Neutral spinless parti-les idential in the bulk, aquire di�erent masses andangular momenta when trapped at di�erent minimumpoints. If the sale length a is extremely small, then foran observer within the brane, they appear as di�erentpartiles with integer spins.Most elementary partiles have half-integer spins.The simple ase of spontaneous symmetry breakingonsidered above annot relate the origin of half-integerspins to extra-dimensional angular momenta.REFERENCES1. K. A. Bronnikov and B. E. Meierovih, Zh. Eksp. Teor.Fiz. 133, 293 (2008).2. L. D. Landau and E. M. Lifshits, Field Theory, Nauka,Mosow (1973).3. J. M. Cline, J. Desheneau, M. Giovannini, and J. Vi-net, arXiv:hep-th/0304147v2.
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