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BOUND STATES AND SCATTERING LENGTHS OF THREETWO-COMPONENT PARTICLES WITH ZERO-RANGEINTERACTIONS UNDER ONE-DIMENSIONAL CONFINEMENTO. I. Kartavtsev a, A. V. Malykh a*, S. A. So�anos baJoint Institute for Nu
lear Resear
h141980, Dubna, RussiabUniversity of South Afri
a0003, Pretoria, South Afri
aRe
eived August 19, 2008The universal three-body dynami
s in ultra
old binary gases 
on�ned to one-dimensional motion is studied. Thethree-body binding energies and the (2 + 1)-s
attering lengths are 
al
ulated for two identi
al parti
les of massm and a di�erent parti
le of mass m1, whose intera
tion is des
ribed in the low-energy limit by zero-range po-tentials. The 
riti
al values of the mass ratio m=m1 at whi
h three-body states o

ur and the (2+1)-s
atteringlength vanishes are determined for both zero and in�nite intera
tion strength �1 of the identi
al parti
les. Anumber of exa
t results are listed and asymptoti
 dependen
es for both m=m1 ! 1 and �1 ! �1 arederived. Combining the numeri
al and analyti
 results, we dedu
e a s
hemati
 diagram showing the number ofthree-body bound states and the sign of the (2 + 1)-s
attering length in the plane of the mass ratio and theintera
tion-strength ratio. The results provide a des
ription of the homogeneous and mixed phases of atomsand mole
ules in dilute binary quantum gases.PACS: 31.15.a
, 03.65.Ge, 34.50.-s1. INTRODUCTIONDynami
s of few parti
les 
on�ned in low dimen-sions is of interest in 
onne
tion with numerous inves-tigations ranging from atoms in ultra
old gases [1�7℄to nanostru
tures [8�10℄. Experiments with ultra
oldgases in the one-dimensional (1D) and quasi-1D trapshave re
ently been performed [1; 11�13℄, motivated bythe rapidly growing interest in the investigation of mix-tures of ultra
old gases [14�20℄. Di�erent aspe
ts of thethree-body dynami
s in one dimension have been an-alyzed in a number of re
ent papers, e. g., the bound-state spe
trum of two-
omponent 
ompound in [21℄,low-energy three-body re
ombination in [22℄, appli
a-tion of the integral equations in [23℄, and variants ofthe hyperradial expansion in [24�26℄.We emphasize that the exa
t solutions are knownfor an arbitrary number of identi
al parti
les with 
on-*E-mail: maw�theor.jinr.ru

ta
t intera
tion in one dimension [27; 28℄; in parti
ular,it was found that the ground-state energy EN of N at-tra
ting parti
les s
ales as EN=EN=2 = N(N2 � 1)=6.There is a vast literature in whi
h the exa
t solution isused to analyze di�erent properties of few- and many-body systems; several examples of this approa
h 
anbe found in Refs. [29�32℄.The main parameters 
hara
terizing the multi
om-ponent ultra
old gases, i. e., the masses and intera
-tion strengths, 
an be easily tuned within wide rangesin the modern experiments, whi
h deal with di�erent
ompounds of ultra
old atoms and adjust the two-bo-dy s
attering lengths to arbitrary values by using theFeshba
h-resonan
e and 
on�nement-resonan
e te
h-nique [33℄. Under properly 
hosen s
ales, all the prop-erties of the system depend on two dimensionless pa-rameters, i. e., the mass ratio and the intera
tion-strength ratio, the most important 
hara
teristi
s be-ing the bound-state energies and the (2 + 1)-s
atte-ring lengths. In parti
ular, knowledge of these 
ha-419



O. I. Kartavtsev, A. V. Malykh, S. A. So�anos ÆÝÒÔ, òîì 135, âûï. 3, 2009ra
teristi
s is essential for des
ribing the 
on
entra-tion dependen
e and phase transitions in dilute two-
omponent mixtures of ultra
old gases.In this paper, the two-
omponent three-body sys-tem 
onsisting of a parti
le of mass m1 and two identi-
al parti
les of mass m intera
ting via a 
onta
t (Æ-fun
tion) inter-parti
le potential is studied. In thelow-energy limit, the 
onta
t potential is a good ap-proximation for any short-range intera
tion and its useprovides a universal, i. e., independent of the potentialform, des
ription of the dynami
s [23; 26; 34�37℄. Morespe
i�
ally, it is assumed that one parti
le intera
tswith the other two via an attra
tive 
onta
t intera
-tion of strength � < 0, and the sign of the intera
tionstrength �1 for the identi
al parti
les is arbitrary. This
hoi
e of the parameters is 
onditioned by the inten-tion to 
onsider a su�
iently ri
h three-body dynami
s(three-body bound states exist only if � < 0).Most of the numeri
al and analyti
 results 
an beobtained by solving a system of hyperradial equations(HREs) [38℄. It is important that all the terms inHREs are derived analyti
ally; the derivation methodand the analyti
 expressions are similar to those ob-tained in a number of problems with zero-range inter-a
tions [26; 36; 37℄. To des
ribe the dependen
e on themass ratio and intera
tion-strength ratio for the three-body binding energies and the (2+1)-s
attering length,the two limit 
ases �1 = 0 and �1 ! 1 are 
onsid-ered and the pre
ise 
riti
al values of m=m1 for whi
hthe three-body bound states o

ur and the (2 + 1)-s
attering length vanishes are determined. Combiningthe numeri
al 
al
ulations, exa
t analyti
 results, qual-itative 
onsiderations, and the dedu
ed asymptoti
 de-penden
es, we produ
e a s
hemati
 phase diagram thatshows the number of the three-body bound states andthe sign of the (2 + 1)-s
attering lengths in the planeof the parameters m=m1 and �1=j�j. This sign is im-portant in studying the stability of mixtures 
ontainingboth atoms and diatomi
 mole
ules.This paper is organized as follows. In Se
. 2, theproblem is formulated, the relevant notation is intro-du
ed, and the method of �surfa
e� fun
tions is de-s
ribed; the analyti
 solutions, numeri
al results, andasymptoti
 dependen
es are presented and dis
ussed inSe
. 3; 
on
lusions are given in Se
. 4.2. GENERAL OUTLINE AND THE METHODThe Hamiltonian of three parti
les 
on�ned in onedimension and intera
ting through the pairwise 
onta
tpotentials with strengths �i is given by

H = �Xi ~22mi �2�x2i +Xi �iÆ(xjk); (1)where xi and mi are the 
oordinate and mass of theith parti
le, xjk = xj �xk, and fijkg is a permutationof f123g. To study the aforementioned two-
omponentthree-body systems, we assume that parti
le 1 intera
tswith two identi
al parti
les 2 and 3 through attra
tivepotentials and set m2 = m3 = m and �2 = �3 � � < 0for simpli
ity. The 
orresponding solutions are 
lassi-�ed by their parity and are symmetri
 or antisymmetri
under the permutation of identi
al parti
les, depend-ing on whether these parti
les are bosons or fermions.The even (odd) parity solutions are denoted by P = 0(P = 1).In what follows, the dependen
es of the three-bodybound-state energies and the (2+1)-s
attering lengthson two dimensionless parameters m=m1 and �1=j�j areinvestigated. Hereafter, we set ~ = j�j = m = 1,and therefore m�2=~2 and ~2=mj�j are the unitsof energy and length. Furthermore, we let A andA1 denote the respe
tive s
attering lengths for the
ollision of the third parti
le with the bound pairof di�erent and identi
al parti
les. The s
atteringlength is 
onsidered at the lowest two-body thresh-old, whi
h 
orresponds to determination of A if�1=j�j > �p2=(1 +m=m1) and A1 otherwise. Withthe 
hosen units, Eth = �1=2(1 + m=m1) andE0th = ��21=4 are two-body thresholds, i. e., the re-spe
tive bound-state energies of two di�erent and twoidenti
al parti
les.The binding energy and the s
attering length aremonotoni
 fun
tions of the intera
tion strength, andtherefore mu
h attention is given to 
al
ulations in twolimit 
ases of zero (�1 = 0) and in�nite (�1 ! 1) in-tera
tion between identi
al bosons. It is interesting tore
all here that due to the one-to-one 
orresponden
eof the solutions [39℄, all the results derived for systemsin whi
h the identi
al parti
les are bosons and �1 !1are appli
able to systems in whi
h the identi
al parti-
les are fermions and the s-wave intera
tion betweenthem is zero (�1 = 0) by de�nition.The numeri
al and analyti
 results are mostlyobtained by solving a system of HREs [38℄ wherethe various terms are derived analyti
ally [26; 36; 37℄.The HREs are written using the 
enter-of-mass
oordinates � and �, whi
h are expressed via thes
aled Ja
obi variables as � sin� = x2 � x3 and� 
os� = (2x1 � x2 � x3) 
tg! given the kine-mati
 rotation angle ! = ar
tgp1 + 2m=m1, withEth = � 
os2 !. The total wave fun
tion is expandedas in papers [24�26; 37℄,420
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attering lengths : : :	 = 1p� 1Xn=1 fn(�)�n(�; �); (2)with respe
t to a set of fun
tions �n(�; �) satisfyingthe equation � �2��2 + �2��n(�; �) = 0 (3)at �xed �, supplemented by the 
ondition��n(�; �)�� �����=!+0�=!�0 + 2� 
os!�n(!; �) = 0; (4)whi
h represents the 
onta
t intera
tion between di�er-ent parti
les [26; 35; 37; 40℄. Taking the symmetry re-quirements into a

ount, we 
an 
onsider the variable� in the range 0 � � � �=2 and impose the boundary
onditions�(1� P ) ��n�� + P�n��=�=2 = 0 ; (5)�(1� T ) ��n�� + T�n��=0 = 0 ; (6)where P = 0 (P = 1) for even (odd) parity and T = 0(T = 1) for �1 = 0 (�1 ! 1). These boundary 
ondi-tions are imposed if two identi
al parti
les are bosons,but the 
ase T = 1 is equally appli
able if two identi
alparti
les are nonintera
ting (�1 = 0) fermions.The solution of Eq. (3) satisfying boundary 
ondi-tions (5) and (6) 
an be written as�n(�; �) = Bn ��8>>>>>>>>><>>>>>>>>>:

os��n �!��2 ��P�2 � 
os��n��T�2 � ;� � !;
os��n!�T�2 � 
os��n ����2��P�2 � ;� � !; (7)where the normalization 
onstant is given byB2n = ��2 
os2 ��n �! � �2�� P�2 � �� 
os2 ��n! � T�2 � 
os!��1 d�2nd� : (8)To meet 
ondition (4), the eigenvalues �n(�) must sat-isfy the equation2� 
os! 
os[�n!�(�n+P )�=2℄ 
os(�n!�T�=2)++ �n sin[(�n + P � T )�=2℄ = 0: (9)

We note that the 
ase P = 1 and T = 0 is formallyequivalent to the 
ase P = 0 and T = 1 under therepla
ement of ! with �=2� !.The expansion of the total wave fun
tion (2) leadsto an in�nite set of 
oupled HREs for the radial fun
-tions fn(�),� d2d�2 � �2n(�)� 1=4�2 +E� fn(�)�� 1Xm=1 �Pmn(�)�Qmn(�) dd� � dd�Qmn(�)��� fm(�) = 0: (10)Using the method des
ribed in Refs. [26; 36; 37℄, we 
anderive analyti
 expressions for all the terms in Eq. (10),Qnm(�) � h�n �� �0mi = p"0n"0m"m � "n ; (11)Pnm(�) � h�0n �� �0mi == 8>>>>>>><>>>>>>>: Qnm �"0n + "0m"m � "n + 12 �"00n"0n � "00m"0m�� ;n 6= m;�16 "000n"0n + 14 �"00n"0n�2 ; n = m; (12)where "n = �2n and the prime denotes derivative withrespe
t to �.The obvious boundary 
ondition for HREs (10),fn(�) ! 0 as � ! 0 and � ! 1, was used in solv-ing the eigenvalue problem. To 
al
ulate the s
atteringlength A, we should impose the asymptoti
 boundary
ondition for the �rst-
hannel fun
tionf1(�) � � sin! �A: (13)All other boundary 
onditions remain the same as forthe eigenvalue problem. Condition (13) follows fromthe asymptoti
 form of the threshold-energy wave fun
-tion as � ! 1, whi
h tends to the two-body bound-state wave fun
tion times a fun
tion des
ribing the rel-ative motion of the third parti
le and the bound pair.The linear dependen
e of the latter fun
tion at largedistan
e between the third parti
le and the bound pairleads to asymptoti
 expression (13) for the �rst-
hannelfun
tion in expansion (2). On the other hand, expres-sion (13) is 
onsistent with the asymptoti
 solution ofthe �rst-
hannel equation in (10), in whi
h the long-range terms P11(�) and �1=4�2 
an
el ea
h other atlarge �.421
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t solutionsThere are several examples where an analyti
 solu-tion of the S
hrödinger equation for the systems under
onsideration 
an be obtained. First, for a system 
on-taining one heavy and two light parti
les (in the limitm=m1 ! 0), using the separation of variables, the so-lutions 
an be straightforwardly written for both zeroand in�nite intera
tion strength between the light par-ti
les. In parti
ular, for �1 = 0, there is a single boundstate with the binding energy E3 = �1 and the (un-normalized) wave fun
tion is	b = exp (�jx12j � jx13j) ; (14)and the s
attering wave fun
tion at the threshold en-ergy Eth = �1=2 is	s
 = (jx12j � 1) exp(�jx13j) ++ (jx13j � 1) exp(�jx12j); (15)whi
h gives the (2 + 1)-s
attering length A = 1. Onthe other hand, for �1 ! 1, the three-body systemis not bound, and the s
attering wave fun
tion at thethreshold energy Eth = �1=2 is	s
 = jx12 exp(�jx13j)� x13 exp(�jx12j)j; (16)whi
h gives A = 0.Furthermore, as mentioned in the Introdu
tion, theexa
t solution is known for an arbitrary number N ofidenti
al parti
les with 
onta
t intera
tions in one di-mension [27; 28℄, and if the intera
tion is attra
tive,then there is a single bound state, whose energy equalsEN = �N(N2 � 1)=24. In parti
ular, for three identi-
al parti
les (m = m1 and �1 = �), there is only onebound state with the energy E3 = �1, and the (unnor-malized) wave fun
tion is	b = exp0��12 Xi<j jxij j1A ; (17)and the exa
t s
attering wave fun
tion at the two-bodythreshold Eth = E0th = �1=4 is	s
 =Xi<j exp��12 jxij j��� 4 exp0��14Xi<j jxij j1A ; (18)

whi
h implies that the (2 + 1)-s
attering length is in-�nite, jAj ! 1, i. e., there is a virtual state at thetwo-body threshold [24℄.Further exa
t results 
an be obtained by using theabove 
orresponden
e of the three-body solutions forthe in�nite intera
tion strength (�1 !1) between twoidenti
al bosons and for two nonintera
ting fermions(�1 ! 0). For example, for three equal-mass parti
les(m = m1), the exa
t wave fun
tion at the two-bodythreshold (Eth = �1=4) is given by	s
 == 8>>>>>><>>>>>>: exp��x132 �+ exp�x122 ���2 exp��x232 � ; x13 � 0;���exp�x132 �� exp�x122 ���� ; x13 � 0: (19)As follows from (19), the (2+1)-s
attering length is in-�nite; as a matter of fa
t, this implies a rigorous proofof the 
onje
ture in [21℄ that m = m1 is the exa
t 
riti-
al value for the emergen
e of a three-body bound statein the 
ase of in�nite repulsion (�1 !1) between twoidenti
al bosons.It is worthwhile to re
all the exa
t solution for threeequal-mass parti
les (m = m1) if the intera
tion be-tween two of them is turned o� (�1 = 0) [41℄. A tran-s
endental equation was derived for the ground-stateenergy, whose approximate solution gives the ratio ofthree-body and two-body energies E3=Eth � 2:08754.3.2. Numeri
al 
al
ulationsFor even-parity states (P = 0) and the two limitvalues of the intera
tion strength between identi
albosons, �1 = 0 and �1 ! 1, HREs (10) are solvedto determine the mass-ratio dependen
e of three-bodybinding energies and the (2 + 1)-s
attering length A.The 
al
ulations show a su�
iently fast 
onvergen
e asthe number of 
hannels in
reases; 15-
hannel results arepresented in Fig. 1. The pre
ise 
riti
al values of themass ratio value at whi
h the three-body bound statesarise (jAj ! 1) and the (2+1)-s
attering length A = 0are presented in the Table and are marked by 
rossesin Figs. 1 and 3. The 
ondition that the ground-stateenergy is twi
e the threshold energy is important be-
ause it determines whether produ
tion of the triatomi
mole
ules is possible in a gas of diatomi
 mole
ules.The mass ratio value at whi
h E3=Eth = 2 is deter-mined to be m=m1 � 49:8335 as �1 ! 1; for theex
ited states, the 
ondition E3=Eth = 2 is satis�ed for422
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Fig. 1. Mass-ratio dependen
es for the even-parity states; shown are the ratio of the three-body bound-state energies to thetwo-body threshold energy (a) and the (2+1)-s
attering length A (b). Presented are the 
al
ulations for a system 
ontainingtwo identi
al bosons with zero (solid lines) and in�nite (dash-dotted lines) intera
tion strength �1. The dash-dotted linesalso represent the results for a system 
ontaining two identi
al nonintera
ting (�1 = 0) fermions. En
ir
led are the pointsat whi
h the exa
t analyti
 solution is knownTable. The even-parity 
riti
al values of the mass ratio m=m1 at whi
h the (2 + 1)-s
attering length be
omes zero(marked by A = 0) and the nth three-body bound state arises (marked by jAj ! 1). Cal
ulations are done for twovalues of the intera
tion strength between the identi
al parti
les, �1 = 0 and �1 !1�1 = 0 �1 !1n m=m1(A = 0) m=m1(jAj ! 1) m=m1(A = 0) m=m1(jAj ! 1)1 � � 0� 1�2 0.971 2.86954 5.2107 7.37913 9.365 11.9510 16.1197 19.02894 22.951 26.218 32.298 35.8795 41.762 45.673 53.709 57.9236 65.791 70.317 80.339 85.1597 95.032 100.151 112.179 117.5838 129.477 135.170 149.222 155.1939 169.120 175.374 191.463 197.98910 213.964 220.765 238.904 245.973� Exa
t.m=m1 � 130:4516 if �1 = 0 and m=m1 � 266:1805 if�1 !1.As is shown in Fig. 1, the binding energies in
reasewith in
reasing the mass ratio, whereas the s
atteringlength A has a general trend to de
rease with in
reasingthe mass ratio on ea
h interval between two 
onse
utive
riti
al mass ratios at whi
h the bound states appear.
Nevertheless, the 
al
ulations for �1 = 0 show thatA(m=m1) be
omes a nonmonotoni
 fun
tion at smallm=m1. More pre
isely, the s
attering length takes amaximum value A � 1:124 at m=m1 � 0:246. We noteagain that the mass-ratio dependen
e of the energy ands
attering length (plotted in Fig. 1) and the 
riti
al val-ues of the mass ratio (presented in the Table) are the423
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ontaining twoidenti
al bosons as �1 !1 and for the three-body sys-tem 
ontaining two identi
al nonintera
ting (�1 = 0)fermions.It is interesting to note that the 
al
ulated bind-ing energy E3=Eth � 2:087719 for three equal-massparti
les (m = m1) if two identi
al ones do not in-tera
t with ea
h other (�1 = 0) is very 
lose to theresult E3=Eth � 2:08754 obtained in [41℄ from an an-alyti
 trans
endental equation (see Se
. 3.1). A smalldis
repan
y most probably stems from the approxima-tions made in numeri
al solution of the trans
endentalequation in [41℄. The (2+1)-s
attering length turns outto be small and negative, A � �0:09567, for m = m1and �1 = 0 and takes a zero value at a slightly smallermass ratio m=m1 � 0:971 (see Table).Analogously, the odd-parity (P = 1) solutions forthe three-body system 
ontaining two identi
al nonin-tera
ting bosons (�1 = 0) were obtained. As followsfrom Eq. (9), the eigenvalues �n(�) entering HREs (10)are nonnegative, whi
h implies that there are no three-body bound states. The 
al
ulated dependen
e of thes
attering length A is shown in Fig. 2; A in
reasesmonotoni
ally with in
reasing the mass ratio followingthe asymptoti
 dependen
e dis
ussed in Se
. 3.3.3.3. Asymptoti
 dependen
es3.3.1. Large attra
tive intera
tion of twoidenti
al parti
lesIn the limit of large attra
tive intera
tion betweenthe identi
al parti
les, �1 ! �1, the even-parity wavefun
tion takes, with a good a

ura
y, the fa
tored form	 = �0(x23)u(y), y = (2x1 � x2 � x3) 
tg!, where�0(x) =pj�1j=2 exp(�j�1xj=2) is the wave fun
tion ofthe tightly bound pair of identi
al parti
les with theenergy E0th = ��21=4, and u(y) des
ribes the relativemotion of a di�erent parti
le 1 with respe
t to thispair. Within this approximation, u(y) is a solution ofthe equation� d2dy2+2j�1j exp��r1+2mm1 j�1yj�+�214 +E��� u(y) = 0; (20)whi
h gives the �1-independent leading-order terms inthe asymptoti
 expansion of the three-body binding en-ergy " � 4=(1 + 2m=m1) and the (2 + 1)-s
atteringlength A1 � 14 �1 + 2mm1� : (21)

3.3.2. One light and two heavy parti
lesFor a large mass ratio m=m1, we 
an use the adia-bati
 and semi
lassi
al approximations, whi
h providea universal des
ription of the energy spe
trum [40℄. Todes
ribe the three-body properties in the limit of largem=m1 ! 1 (! ! �=2 �pm1=2m), we 
onsider the�rst eigenvalue �1(�) � i�(�), whose large-� asymptoti
dependen
e is approximately given by� 
os! = �1 + (�1)P e��(��2!) ; (22)as follows from Eq. (9) for the system 
ontaining twoidenti
al bosons for both �1 = 0 and �1 = 1 and,equivalently, for the system 
ontaining two identi
alnonintera
ting fermions.The number n of the three-body even-parity(P = 0) bound states 
an be determined for largem=m1 using the one-
hannel approximation in (10)and the e�e
tive potential ��2(�)=�2 obtained fromEq. (22). In the framework of the semi
lassi
alapproximation, taking the large-� asymptoti
 de-penden
e (22) into a

ount, we obtain the relationm=m1 � C(n + Æ)2 in the limit of large n and m=m1.The 
onstant C 
an be found asC = �22 24 1Z0 p2t+ t2 1 + (1� ln t)t2t(1 + t)2 dt35�2 �� 2:59; (23)where the integral is expressed by setting t == exp[��(� � 2!)℄ in the leading term of thesemi
lassi
al estimate,
os! 1Z0 d��h(1 + e�(�)(��2!)i2 � 1�1=2 = �n: (24)Fitting the 
al
ulated mass-ratio dependen
e of the
riti
al values at whi
h the bound states appear to then-dependen
e C(n + Æ)2 (up to n = 20, see the Ta-ble for 10 lowest values), we obtain C � 2:60 for both�1 !1 and �1 = 0, in good agreement with semi
las-si
al estimate (23). Simultaneously, we obtain Æ = 0:73if �1 ! 1 and Æ = 0:22 if �1 = 0 for the parameterthat determines the next-to-leading-order term of thelarge-n expansion.The asymptoti
 dependen
e of the e�e
tive poten-tial ��2(�)=�2 obtained from Eq. (22) allows �ndingthe leading-order mass-ratio dependen
e of the odd-parity (P = 1) s
attering length:A = mm1r1 + m12m �ln mm1 + 2
� ; (25)424
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Fig. 2. Mass-ratio dependen
e of the (2+1)-s
atteringlength A for odd-parity states (P = 1) of a system 
on-taining two identi
al nonintera
ting bosons (�1 = 0).The numeri
al 
al
ulation (solid lines) is 
omparedwith the large-mass-ratio asymptoti
 behavior given byEq. (25) (dash-dotted lines). The dependen
e 
orre-sponding to large A > 15 is shown in the insetwhere 
 � 0:5772 is the Euler 
onstant. The 
on-vergen
e of the 
al
ulated dependen
e A(m=m1) toasymptoti
 dependen
e (25) is shown in Fig. 2 in the
ase of two identi
al nonintera
ting bosons (�1 = 0).3.4. Mass-ratio and intera
tion-strength ratiodependen
esColle
ting the numeri
al and the exa
t analyti
 re-sults, the asymptoti
 expressions, and qualitative argu-ments, we obtain a s
hemati
 phase diagram that de-pi
ts the number of three-body bound states and thesign of the (2 + 1)-s
attering lengths in the m=m1 ��1=j�j plane (Fig. 3).The plane of parameters is divided into two partsby a dotted line, �1=j�j = �p2=(1 +m=m1), withthe low-energy three-body properties being essentiallydi�erent in the upper and lower parts, where therespe
tive two-body threshold is determined by thebound-state energy of two di�erent and identi
al par-ti
les. The lines representing the 
ondition jAj = 1or jA1j = 1 (arising for the three-body bound state)separate areas with di�erent numbers of bound states,and the 
ondition A = 0 or A1 = 0 splits ea
h area intotwo parts of di�erent signs of the s
attering lengths.It 
an be proved rigorously that in the upper partof the diagram (above the dotted line), the num-ber n of three-body bound states in
reases and the(2+1)-s
attering length A de
reases as the intera
tionstrength �1 de
reases, while in the lower part (below

0 2 4 6 8pm=m1��=2��=4
�=4�=2

n = 1n = 2
n = 1 n = 4n = 3n = 2+ � � � �+ + +++�

ar
tg(�1=j�j)
0

n=0

Fig. 3. S
hemati
 phase diagram for the even-paritystates of two identi
al bosons and a di�erent third par-ti
le. The dotted line marks the border between twoareas where the lowest two-body threshold is set bythe energy of two di�erent and two identi
al parti
les.The number of three-body bound states is marked byn in the 
orresponding areas separated by solid lines.The sign of the (2 + 1)-s
attering lengths A and A1is marked by � and the 
orresponding areas are sepa-rated by dashed lines. The 
rosses show the 
al
ulated
riti
al values of the mass ratio (listed in the Table).En
ir
led are the points at whi
h the exa
t analyti
solution is knownthe dotted line), n in
reases and A1 de
reases as themass ratio m=m1 de
reases. The proof is based on therepresentation in whi
h the lowest two-body thresholdis respe
tively independent of �1 and m1 in the formerand latter 
ase. The required 
on
lusion follows fromthe monotoni
 dependen
e of the Hamiltonian on �1and m1. A s
hemati
 phase diagram demonstrated inFig. 3 is drawn by using a stri
ter assumption on thepositive slope of the lines that show where the three-body bound states arise (jAj ! 1) and where the(2+ 1)-s
attering lengths vanish (A = 0 and A1 = 0 inthe upper and lower parts of the �1=j�j �m=m1 plane,respe
tively). Tentatively, this assumption seems to
orre
tly re�e
t the general trend; nevertheless, we notethat the slope of the isolines of 
onstant s
atteringlength is not positive in general. In parti
ular, A isnot a monotoni
 fun
tion of the mass ratio for �1 = 0,as shown in Fig. 2; this implies a nonmonotoni
 depen-den
e of the 
onstant-A isolines in the vi
inity of thepoint (m=m1 = 0, �1=j�j = 0).For a su�
iently large repulsion �1 and a small massratio m=m1, the three-body bound states do not exist.The limit m=m1 ! 0 (a 1D analogue of the helium425
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onta
t intera
tions between parti
les) wasdis
ussed in [42℄, where the binding energy as a fun
-tion of the repulsion strength between light parti
leswas 
al
ulated and the 
riti
al value of the repulsionstrength for whi
h the three parti
les be
ome unboundwas determined. Re
ently, a very pre
ise 
riti
al value�1=j�j � 2:66735 was found in [21℄. The boundary ofthe n = 0 area (shown in the upper left 
orner in Fig. 3)extends from the point (m=m1 = 0, �1=j�j � 2:66735)to the point (m=m1 = 1, �1 !1), as was 
onje
turedin [21℄ and proved in Se
. 3.1 by using the exa
t solu-tion at the se
ond of these points. Taking this result,the above-dis
ussed monotoni
 dependen
e on �1, andthe exa
t solution for three identi
al parti
les into a
-
ount, we 
ome to an interesting 
on
lusion that thereis exa
tly one bound state (n = 1) of three equal-massparti
les, irrespe
tive of the intera
tion strength �1.There is exa
tly one bound state (n = 1) also for asu�
iently large attra
tion between identi
al parti
les,whereas a se
ond bound state appears for m > m1 andj�1j < 1 (as shown in Fig. 3). Therefore, the s
atteringlength A1 
hanges from the positive value given by (21)at �1 ! �1 to the negative one as �1 in
reases. Thestrip areas 
orresponding to n > 1 are lo
ated at highervalues of the mass ratio with the large-n asymptoti
 de-penden
e n /pm=m1. In ea
h parameter area 
orre-sponding to n bound states, the s
attering lengths takeall the real values, tending to in�nity at the boundarywith the n�1 area and to minus in�nity at the bound-ary with the n+ 1 area.4. CONCLUSIONThe three-body dynami
s of ultra
old binary gases
on�ned to 1D motion is studied. In the low-energylimit, the des
ription is universal, i. e., independent ofthe details of the short-range two-body intera
tions,whi
h 
an be taken as a sum of 
onta
t Æ-fun
tionpotentials. Thus, the three-body energies and the(2 + 1)-s
attering lengths are expressed as universalfun
tions of two parameters, the mass ratio m=m1 andthe intera
tion-strength ratio �1=j�j. The mass-ratiodependen
es of the binding energies and the s
atteringlength are numeri
ally 
al
ulated for even and odd par-ity and the a

urate 
riti
al values of the mass ratio atwhi
h the bound states arise and the s
attering lengthvanishes are determined. It is rigorously proved thatm=m1 = 1 is the exa
t boundary above whi
h at leastone bound state exists (as 
onje
tured in [21℄); the re-lated 
on
lusion is the existen
e of exa
tly one boundstate for three equal-mass parti
les independently ofthe intera
tion strength between the identi
al parti-
les. Asymptoti
 dependen
es of the bound-state num-

ber and the s
attering length A in the limitm=m1 !1and of the binding energy and the s
attering length A1in the limit �1 ! �1 are determined. Based on thenumeri
al 
al
ulations, analyti
 results, and qualita-tive 
onsiderations, a s
hemati
 diagram is drawn thatshows the number of the three-body bound states andthe sign of the (2 + 1)-s
attering length as a fun
tionof the mass ratio and the intera
tion-strength ratio.The obtained qualitative and quantitative results onthe three-body properties provide a �rm base for thedes
ription of the equation of state and phase separa-tion in dilute binary mixtures of ultra
old gases. In par-ti
ular, the sign of the (2+1)-s
attering lengths essen-tially 
ontrols the transition between the homogeneousand mixed phases of atoms and diatomi
 mole
ules.The 
ondition E3=Eth > 2 de�nes the parameter areawhere the produ
tion of the triatomi
 mole
ules is en-ergeti
ally favorable in a gas of diatomi
 mole
ules.The analysis of the phase diagram in Fig. 3 impliesthat there remain interesting problems deserving fur-ther elu
idation. These in
lude the problem of the non-monotoni
 dependen
e of the 
onstant-A isolines in the�1=j�j �m=m1 plane, the behavior of the lines separat-ing the positive and negative s
attering lengths withinthe n = 1 area, and the des
ription of the beak formedby the lines separating the n = 1 and n = 2 areasin the vi
inity of the exa
t solution for three identi
alparti
les (�1 = � and m = m1).One should dis
uss the 
onne
tion of the present re-sults with those that take the �nite intera
tion radiusRe and (quasi)-1D geometry into a

ount. Finding the
orre
tions due to a �nite intera
tion radius is not atrivial task, but one expe
ts that the 
orre
tions shouldbe small for all 
al
ulated values if Re=a and Re=a1are small, where a and a1 are the two-body s
atteringlengths. On the other hand, for su�
iently tight trans-verse 
on�nement, one expe
ts that the main ingredientis the relation between the 3D and quasi-1D two-bodys
attering lengths established in [33℄. Moreover, therole of the transverse 
on�nement does not simply re-du
e to renormalization of the s
attering lengths; thefull-s
ale three-body 
al
ulations are needed to deter-mine the energy spe
trum and the s
attering data inthe (quasi)-1D geometry.It is worthwhile to mention that more few-bodyproblems are of interest in binary mixtures. In parti
u-lar, the low-energy three-body re
ombination plays animportant role in the kineti
 pro
esses, and the elasti
and inelasti
 
ross se
tions for 
ollisions of either di-atomi
 mole
ules or atoms on triatomi
 mole
ules areneeded to des
ribe the properties of mole
ular 
om-pounds.426
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