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The universal three-body dynamics in ultracold binary gases confined to one-dimensional motion is studied. The
three-body binding energies and the (2 + 1)-scattering lengths are calculated for two identical particles of mass
m and a different particle of mass m1, whose interaction is described in the low-energy limit by zero-range po-
tentials. The critical values of the mass ratio m/m; at which three-body states occur and the (2+ 1)-scattering
length vanishes are determined for both zero and infinite interaction strength \; of the identical particles. A
number of exact results are listed and asymptotic dependences for both m/mi — oo and A\ — —oo are
derived. Combining the numerical and analytic results, we deduce a schematic diagram showing the number of
three-body bound states and the sign of the (2 + 1)-scattering length in the plane of the mass ratio and the
interaction-strength ratio. The results provide a description of the homogeneous and mixed phases of atoms

and molecules in dilute binary quantum gases.
PACS: 31.15.ac, 03.65.Ge, 34.50.-s

1. INTRODUCTION

Dynamics of few particles confined in low dimen-
sions is of interest in connection with numerous inves-
tigations ranging from atoms in ultracold gases [1-7]
to nanostructures [8-10]. Experiments with ultracold
gases in the one-dimensional (1D) and quasi-1D traps
have recently been performed [1,11-13], motivated by
the rapidly growing interest in the investigation of mix-
tures of ultracold gases [14-20]. Different aspects of the
three-body dynamics in one dimension have been an-
alyzed in a number of recent papers, e.g., the bound-
state spectrum of two-component compound in [21],
low-energy three-body recombination in [22], applica-
tion of the integral equations in [23], and variants of
the hyperradial expansion in [24-26].

We emphasize that the exact solutions are known
for an arbitrary number of identical particles with con-
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tact interaction in one dimension [27, 28]; in particular,
it was found that the ground-state energy En of N at-
tracting particles scales as Ex/En=2 = N(N? — 1)/6.
There is a vast literature in which the exact solution is
used to analyze different properties of few- and many-
body systems; several examples of this approach can
be found in Refs. [29-32].

The main parameters characterizing the multicom-
ponent ultracold gases, i.e., the masses and interac-
tion strengths, can be easily tuned within wide ranges
in the modern experiments, which deal with different
compounds of ultracold atoms and adjust the two-bo-
dy scattering lengths to arbitrary values by using the
Feshbach-resonance and confinement-resonance tech-
nique [33]. Under properly chosen scales, all the prop-
erties of the system depend on two dimensionless pa-
rameters, i.e., the mass ratio and the interaction-
strength ratio, the most important characteristics be-
ing the bound-state energies and the (2 + 1)-scatte-
ring lengths. In particular, knowledge of these cha-
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racteristics is essential for describing the concentra-
tion dependence and phase transitions in dilute two-
component mixtures of ultracold gases.

In this paper, the two-component three-body sys-
tem consisting of a particle of mass m; and two identi-
cal particles of mass m interacting via a contact (J-
function) inter-particle potential is studied. In the
low-energy limit, the contact potential is a good ap-
proximation for any short-range interaction and its use
provides a universal, i. e., independent of the potential
form, description of the dynamics [23, 26, 34-37]. More
specifically, it is assumed that one particle interacts
with the other two via an attractive contact interac-
tion of strength A < 0, and the sign of the interaction
strength A; for the identical particles is arbitrary. This
choice of the parameters is conditioned by the inten-
tion to consider a sufficiently rich three-body dynamics
(three-body bound states exist only if A < 0).

Most of the numerical and analytic results can be
obtained by solving a system of hyperradial equations
(HREs) [38]. It is important that all the terms in
HREs are derived analytically; the derivation method
and the analytic expressions are similar to those ob-
tained in a number of problems with zero-range inter-
actions [26, 36, 37]. To describe the dependence on the
mass ratio and interaction-strength ratio for the three-
body binding energies and the (24 1)-scattering length,
the two limit cases \y = 0 and A\ — oo are consid-
ered and the precise critical values of m/m; for which
the three-body bound states occur and the (2 4+ 1)-
scattering length vanishes are determined. Combining
the numerical calculations, exact analytic results, qual-
itative considerations, and the deduced asymptotic de-
pendences, we produce a schematic phase diagram that
shows the number of the three-body bound states and
the sign of the (2 + 1)-scattering lengths in the plane
of the parameters m/my and A /|\|. This sign is im-
portant in studying the stability of mixtures containing
both atoms and diatomic molecules.

This paper is organized as follows. In Sec. 2, the
problem is formulated, the relevant notation is intro-
duced, and the method of “surface” functions is de-
scribed; the analytic solutions, numerical results, and
asymptotic dependences are presented and discussed in
Sec. 3; conclusions are given in Sec. 4.

2. GENERAL OUTLINE AND THE METHOD

The Hamiltonian of three particles confined in one
dimension and interacting through the pairwise contact
potentials with strengths ); is given by
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where z; and m; are the coordinate and mass of the
ith particle, z;, = z; — 2y, and {ijk} is a permutation
of {123}. To study the aforementioned two-component
three-body systems, we assume that particle 1 interacts
with two identical particles 2 and 3 through attractive
potentials and set my = mg =m and Ay = A3 = A <0
for simplicity. The corresponding solutions are classi-
fied by their parity and are symmetric or antisymmetric
under the permutation of identical particles, depend-
ing on whether these particles are bosons or fermions.
The even (odd) parity solutions are denoted by P = 0
(P=1).

In what follows, the dependences of the three-body
bound-state energies and the (2 + 1)-scattering lengths
on two dimensionless parameters m/m and \; /|| are
investigated. Hereafter, we set h = || m = 1,
and therefore mA?/h?> and h%/m|)| are the units
of energy and length. Furthermore, we let A and
Ay denote the respective scattering lengths for the
collision of the third particle with the bound pair
of different and identical particles. The scattering
length is considered at the lowest two-body thresh-
old, which corresponds to determination of A if
A/IA > —v/2/(1+m/my) and A; otherwise. With
the chosen units, FEjj, —-1/2(1 + m/my) and
Ej, = —\}/4 are two-body thresholds, i.e., the re-
spective bound-state energies of two different and two
identical particles.

The binding energy and the scattering length are
monotonic functions of the interaction strength, and
therefore much attention is given to calculations in two
limit cases of zero (A = 0) and infinite (\; — o) in-
teraction between identical bosons. It is interesting to
recall here that due to the one-to-one correspondence
of the solutions [39], all the results derived for systems
in which the identical particles are bosons and A\; — oo
are applicable to systems in which the identical parti-
cles are fermions and the s-wave interaction between
them is zero (A1 = 0) by definition.

The numerical and analytic results are mostly
obtained by solving a system of HREs [38] where
the various terms are derived analytically [26, 36, 37].
The HREs are written using the center-of-mass
coordinates p and «, which are expressed via the
scaled Jacobi variables as psina = x5, — x3 and

pcosa = (2z1 —x9 —x3)ctgw given the kine-
matic rotation angle w = arctgy/1+ 2m/my, with
By, = —cos?w. The total wave function is expanded

as in papers [24-26, 37],
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v = % 5 hn(p)Bala ) (2)

with respect to a set of functions ®,,(a, p) satisfying
the equation

at fixed p, supplemented by the condition

9%, (a, p)
da

82

Oa?

n 52) B(ap) = 0 (3)

a=w-+0

+2pcosw Pp(w,p) =0, (4)

a=w—0

which represents the contact interaction between differ-
ent particles [26,35,37,40]. Taking the symmetry re-
quirements into account, we can consider the variable
a in the range 0 < a < 7/2 and impose the boundary
conditions

[(1 - P) aai” + Pcbn] - =0, (5)
[(1 -T) 681” + T«bn} . =0, (6)

where P =0 (P = 1) for even (odd) parity and 7' = 0
(T'=1) for Ay =0 (A — o0). These boundary condi-
tions are imposed if two identical particles are bosons,
but the case T' = 1 is equally applicable if two identical
particles are noninteracting (A; = 0) fermions.

The solution of Eq. (3) satisfying boundary condi-
tions (5) and (6) can be written as

D, (a,p) = By X

r cos {fn (w—g) —7} cos <§na—%> ,
a<w,
X (7)
cos <§nw—%> cos {fn (a—g) —%] ,
L a>w

where the normalization constant is given by

Bﬁ:—{2c052 {gn (w—ﬁ) } X

2
T
X cos> {fnw — Tﬂ-} cosw}

Pr

2
~hde
A (8)

To meet condition (4), the eigenvalues &, (p) must sat-
isfy the equation

2p cosw cos[Epw—(En+P) /2] cos(§w—T7/2)+

+&ysinf(é, + P —T)7 /2] = 0. (9)
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We note that the case P = 1 and T = 0 is formally
equivalent to the case P 0 and T = 1 under the
replacement of w with 7/2 — w.

The expansion of the total wave function (2) leads
to an infinite set of coupled HREs for the radial func-

tions fn(p),

|

d2

dp?

-y

m=1

&lp) —1/4 _
02 +E:| fn(p)

[Pmm) - Q) ~ 7 Qmnl0)] %

X fm(p) = 0.

Using the method described in Refs. [26, 36, 37], we can
derive analytic expressions for all the terms in Eq. (10),

VEnEm

(10)

Qnm(p) = (B | ) = : (11)
Em — En
an(p)5<¢fn‘q>;n>:
oo [ate  1(ch
" lem—en 2 \e, el /)|’
lel 1 (el ?
e 1(5) s

where ¢,, = €2 and the prime denotes derivative with
respect to p.

The obvious boundary condition for HREs (10),
fo(p) = 0 as p — 0 and p — oo, was used in solv-
ing the eigenvalue problem. To calculate the scattering
length A, we should impose the asymptotic boundary
condition for the first-channel function

fi(p) ~ psinw — A. (13)
All other boundary conditions remain the same as for
the eigenvalue problem. Condition (13) follows from
the asymptotic form of the threshold-energy wave func-
tion as p — oo, which tends to the two-body bound-
state wave function times a function describing the rel-
ative motion of the third particle and the bound pair.
The linear dependence of the latter function at large
distance between the third particle and the bound pair
leads to asymptotic expression (13) for the first-channel
function in expansion (2). On the other hand, expres-
sion (13) is consistent with the asymptotic solution of
the first-channel equation in (10), in which the long-
range terms Py (p) and —1/4p> cancel each other at
large p.
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3. RESULTS

3.1. Exact solutions

There are several examples where an analytic solu-
tion of the Schrédinger equation for the systems under
consideration can be obtained. First, for a system con-
taining one heavy and two light particles (in the limit
m/my — 0), using the separation of variables, the so-
lutions can be straightforwardly written for both zero
and infinite interaction strength between the light par-
ticles. In particular, for A\; = 0, there is a single bound
state with the binding energy E3 = —1 and the (un-
normalized) wave function is

Uy = exp (—|z12| = |z13]) , (14)
and the scattering wave function at the threshold en-
ergy By, = —1/2is

Ve = (‘$12| - 1) eXp(—|x13|) +

+ (lz1s] — D exp(=[z12]),  (15)

which gives the (2 4+ 1)-scattering length A = 1. On
the other hand, for A\y — oo, the three-body system
is not bound, and the scattering wave function at the
threshold energy Ei, = —1/2 is

Use = |z exp(—|eis]) — 21z exp(=|z2])|.  (16)
which gives A = 0.

Furthermore, as mentioned in the Introduction, the
exact solution is known for an arbitrary number N of
identical particles with contact interactions in one di-
mension [27,28], and if the interaction is attractive,
then there is a single bound state, whose energy equals
Ey = —N(N? —1)/24. In particular, for three identi-
cal particles (m = m; and Ay = A), there is only one
bound state with the energy F3 = —1, and the (unnor-
malized) wave function is

1
\Ilb:exp —5 Z‘SUZ” ,

i<j

(17)

and the exact scattering wave function at the two-body
threshold Ey, = Ej, = —1/4 is

1
‘Ijsc = Zexp <_§|xl]> -

i<j
1
—4dexp —ZZW\ . (18)
1<J
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which implies that the (2 4 1)-scattering length is in-
finite, |A| — o0, i.e., there is a virtual state at the
two-body threshold [24].

Further exact results can be obtained by using the
above correspondence of the three-body solutions for
the infinite interaction strength (A; — 00) between two
identical bosons and for two noninteracting fermions
(A — 0). For example, for three equal-mass particles
(m = my), the exact wave function at the two-body
threshold (Ey, = —1/4) is given by

‘Ijsc =
exp (-57) + e (F) -
= —2exp <——3) ;@13 >0, (19)
13 T12
218 - 12 <0.
‘eXp( 2 ) eXp( 2 )‘ 713 <0

As follows from (19), the (2 + 1)-scattering length is in-
finite; as a matter of fact, this implies a rigorous proof
of the conjecture in [21] that m = m, is the exact criti-
cal value for the emergence of a three-body bound state
in the case of infinite repulsion (A\; — 00) between two
identical bosons.

It is worthwhile to recall the exact solution for three
equal-mass particles (m = m;) if the interaction be-
tween two of them is turned off (A\; = 0) [41]. A tran-
scendental equation was derived for the ground-state
energy, whose approximate solution gives the ratio of
three-body and two-body energies E5/E;j, ~ 2.08754.

3.2. Numerical calculations

For even-parity states (P = 0) and the two limit
values of the interaction strength between identical
bosons, Ay = 0 and \; — oo, HREs (10) are solved
to determine the mass-ratio dependence of three-body
binding energies and the (2 + 1)-scattering length A.
The calculations show a sufficiently fast convergence as
the number of channels increases; 15-channel results are
presented in Fig. 1. The precise critical values of the
mass ratio value at which the three-body bound states
arise (|A| — o0) and the (2+1)-scattering length A = 0
are presented in the Table and are marked by crosses
in Figs. 1 and 3. The condition that the ground-state
energy is twice the threshold energy is important be-
cause it determines whether production of the triatomic
molecules is possible in a gas of diatomic molecules.
The mass ratio value at which E3/Ey, = 2 is deter-
mined to be m/m; &~ 49.8335 as \; — oo; for the
excited states, the condition E5/E}, = 2 is satisfied for
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Fig. 1. Mass-ratio dependences for the even-parity states; shown are the ratio of the three-body bound-state energies to the

two-body threshold energy (a) and the (24 1)-scattering length A (b). Presented are the calculations for a system containing

two identical bosons with zero (solid lines) and infinite (dash-dotted lines) interaction strength ;. The dash-dotted lines

also represent the results for a system containing two identical noninteracting (A1 = 0) fermions. Encircled are the points
at which the exact analytic solution is known

Table. The even-parity critical values of the mass ratio m/m1 at which the (2 + 1)-scattering length becomes zero
(marked by A = 0) and the nth three-body bound state arises (marked by |A| — oc). Calculations are done for two
values of the interaction strength between the identical particles, A\ =0 and A\; —

A =0 Al = 00

n m/my(A =0) m/my(JA| = o) m/my(A =0) m/mq(JA] = o)
1 - - 0* 1*

2 0.971 2.86954 5.2107 7.3791

3 9.365 11.9510 16.1197 19.0289

4 22.951 26.218 32.298 35.879

) 41.762 45.673 53.709 57.923

6 65.791 70.317 80.339 85.159

7 95.032 100.151 112.179 117.583

8 129.477 135.170 149.222 155.193

9 169.120 175.374 191.463 197.989

10 213.964 220.765 238.904 245.973

* Exact.
m/my &~ 130.4516 if \y = 0 and m/my =~ 266.1805 if = Nevertheless, the calculations for Ay = 0 show that

Al — 0.

As is shown in Fig. 1, the binding energies increase
with increasing the mass ratio, whereas the scattering
length A has a general trend to decrease with increasing
the mass ratio on each interval between two consecutive
critical mass ratios at which the bound states appear.
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A(m/m;) becomes a nonmonotonic function at small
m/my. More precisely, the scattering length takes a
maximum value A ~ 1.124 at m/my ~ 0.246. We note
again that the mass-ratio dependence of the energy and
scattering length (plotted in Fig. 1) and the critical val-
ues of the mass ratio (presented in the Table) are the
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same both for the three-body system containing two
identical bosons as \; — oo and for the three-body sys-
tem containing two identical noninteracting (A; = 0)
fermions.

It is interesting to note that the calculated bind-
ing energy FE3/E: =~ 2.087719 for three equal-mass
particles (m = m;y) if two identical ones do not in-
teract with each other (A; = 0) is very close to the
result E3/Ey, ~ 2.08754 obtained in [41] from an an-
alytic transcendental equation (see Sec. 3.1). A small
discrepancy most probably stems from the approxima-
tions made in numerical solution of the transcendental
equation in [41]. The (24 1)-scattering length turns out
to be small and negative, A ~ —0.09567, for m = m;
and Ay = 0 and takes a zero value at a slightly smaller
mass ratio m/m; ~ 0.971 (see Table).

Analogously, the odd-parity (P = 1) solutions for
the three-body system containing two identical nonin-
teracting bosons (A = 0) were obtained. As follows
from Eq. (9), the eigenvalues &, (p) entering HREs (10)
are nonnegative, which implies that there are no three-
body bound states. The calculated dependence of the
scattering length A is shown in Fig. 2; A increases
monotonically with increasing the mass ratio following
the asymptotic dependence discussed in Sec. 3.3.

3.3. Asymptotic dependences

3.3.1. Large attractive interaction of two
identical particles

In the limit of large attractive interaction between
the identical particles, A\ — —o0, the even-parity wave
function takes, with a good accuracy, the factored form
U = ¢g(zaz)uly), y = (221 — 9 — x3) ctgw, where
do(x) = /| A1]/2exp(—|A1z|/2) is the wave function of
the tightly bound pair of identical particles with the
energy E;, = —\7/4, and u(y) describes the relative
motion of a different particle 1 with respect to this
pair. Within this approximation, u(y) is a solution of
the equation

d> 2m A7
|:d—y2+2|/\1 exp (— 1+m—1)\1y|> +Z+E:| X
xu(y) =0, (20)

which gives the A;-independent leading-order terms in
the asymptotic expansion of the three-body binding en-
ergy ¢ &~ 4/(1 4+ 2m/my) and the (2 4+ 1)-scattering
length

(21)
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3.3.2. One light and two heavy particles

For a large mass ratio m/m;, we can use the adia-
batic and semiclassical approximations, which provide
a universal description of the energy spectrum [40]. To
describe the three-body properties in the limit of large
m/my — o0 (w — 7/2 — /m1/2m), we consider the
first eigenvalue & (p) = ik(p), whose large-p asymptotic
dependence is approximately given by

K
1+ (_1)P6—n(ﬁ—2w) ?

pCosSw = (22)
as follows from Eq. (9) for the system containing two
identical bosons for both A\ = 0 and \; oo and,
equivalently, for the system containing two identical
noninteracting fermions.

The number n of the three-body even-parity
(P 0) bound states can be determined for large
m/my using the one-channel approximation in (10)
and the effective potential —k?(p)/p? obtained from
Eq. (22). In the framework of the semiclassical
approximation, taking the large-p asymptotic de-
pendence (22) into account, we obtain the relation
m/my ~ C(n + 6)? in the limit of large n and m/m;.
The constant C' can be found as

~
~

-2

1
2 1+ (1—1Int)t
C=— V2t + 12—t ~
2 / + 2t(1 4 t)2
0
r 2.59, (23)
where the integral is expressed by setting t =

term of the

exp[—k(m — 2w)] in the leading
semiclassical estimate,

o0 9 1/2
CoS W / dp { [(1 + e”(p)(”*%)] - 1} =mn. (24)
0

Fitting the calculated mass-ratio dependence of the
critical values at which the bound states appear to the
n-dependence C'(n + §)> (up to n = 20, see the Ta-
ble for 10 lowest values), we obtain C' = 2.60 for both
A1 = oo and A\; =0, in good agreement with semiclas-
sical estimate (23). Simultaneously, we obtain § = 0.73
if \; = o0 and § = 0.22 if \; = 0 for the parameter
that determines the next-to-leading-order term of the
large-n expansion.

The asymptotic dependence of the effective poten-
tial —k2(p)/p? obtained from Eq. (22) allows finding
the leading-order mass-ratio dependence of the odd-
parity (P = 1) scattering length:

(25)
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0.37

0.2

0.1m

Fig.2. Mass-ratio dependence of the (2+1)-scattering
length A for odd-parity states (P = 1) of a system con-
taining two identical noninteracting bosons (A1 = 0).
The numerical calculation (solid lines) is compared
with the large-mass-ratio asymptotic behavior given by
Eq. (25) (dash-dotted lines). The dependence corre-
sponding to large A > 15 is shown in the inset

where v &~ 0.5772 is the Euler constant. The con-
vergence of the calculated dependence A(m/m4) to
asymptotic dependence (25) is shown in Fig. 2 in the
case of two identical noninteracting bosons (A; = 0).

3.4. Mass-ratio and interaction-strength ratio
dependences

Collecting the numerical and the exact analytic re-
sults, the asymptotic expressions, and qualitative argu-
ments, we obtain a schematic phase diagram that de-
picts the number of three-body bound states and the
sign of the (2 + 1)-scattering lengths in the m/m;—
A1/|A| plane (Fig. 3).

The plane of parameters is divided into two parts
by a dotted line, A\ /|\| = —+/2/(1 4+ m/my), with
the low-energy three-body properties being essentially
different in the upper and lower parts, where the
respective two-body threshold is determined by the
bound-state energy of two different and identical par-
ticles. The lines representing the condition |[A| = oo
or |A;| = oo (arising for the three-body bound state)
separate areas with different numbers of bound states,
and the condition A = 0 or A; = 0 splits each area into
two parts of different signs of the scattering lengths.

It can be proved rigorously that in the upper part
of the diagram (above the dotted line), the num-
ber n of three-body bound states increases and the
(24 1)-scattering length A decreases as the interaction
strength \; decreases, while in the lower part (below
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arctg(A/|A)

w/4

0(

WV

—7/4

—7/2 1 1 1
/0

Fig.3. Schematic phase diagram for the even-parity
states of two identical bosons and a different third par-
ticle. The dotted line marks the border between two
areas where the lowest two-body threshold is set by
the energy of two different and two identical particles.
The number of three-body bound states is marked by
n in the corresponding areas separated by solid lines.
The sign of the (2 + 1)-scattering lengths A and A,
is marked by + and the corresponding areas are sepa-
rated by dashed lines. The crosses show the calculated
critical values of the mass ratio (listed in the Table).
Encircled are the points at which the exact analytic
solution is known

the dotted line), n increases and A; decreases as the
mass ratio m/ms decreases. The proof is based on the
representation in which the lowest two-body threshold
is respectively independent of Ay and m; in the former
and latter case. The required conclusion follows from
the monotonic dependence of the Hamiltonian on A;
and my. A schematic phase diagram demonstrated in
Fig. 3 is drawn by using a stricter assumption on the
positive slope of the lines that show where the three-
body bound states arise (JA|] — o0) and where the
(2 4 1)-scattering lengths vanish (4 = 0 and 4; =0 in
the upper and lower parts of the A;/|\|—m/m; plane,
respectively). Tentatively, this assumption seems to
correctly reflect the general trend; nevertheless, we note
that the slope of the isolines of constant scattering
length is not positive in general. In particular, A is
not a monotonic function of the mass ratio for Ay = 0,
as shown in Fig. 2; this implies a nonmonotonic depen-
dence of the constant-A isolines in the vicinity of the
point (m/my =0, A\ /|A\| = 0).

For a sufficiently large repulsion A; and a small mass
ratio m/my, the three-body bound states do not exist.
The limit m/m; — 0 (a 1D analogue of the helium
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atom with contact interactions between particles) was
discussed in [42], where the binding energy as a func-
tion of the repulsion strength between light particles
was calculated and the critical value of the repulsion
strength for which the three particles become unbound
was determined. Recently, a very precise critical value
A1/|A| = 2.66735 was found in [21]. The boundary of
the n = 0 area (shown in the upper left corner in Fig. 3)
extends from the point (m/my = 0, A /|\| ~ 2.66735)
to the point (m/my; = 1, \y — 00), as was conjectured
in [21] and proved in Sec. 3.1 by using the exact solu-
tion at the second of these points. Taking this result,
the above-discussed monotonic dependence on A{, and
the exact solution for three identical particles into ac-
count, we come to an interesting conclusion that there
is exactly one bound state (n = 1) of three equal-mass
particles, irrespective of the interaction strength Ap.
There is exactly one bound state (n = 1) also for a
sufficiently large attraction between identical particles,
whereas a second bound state appears for m > m; and
|A1] < 1 (as shown in Fig. 3). Therefore, the scattering
length A; changes from the positive value given by (21)
at Ay = —oco to the negative one as \; increases. The
strip areas corresponding to n > 1 are located at higher
values of the mass ratio with the large-n asymptotic de-
pendence n « \/m/m;. In each parameter area corre-
sponding to n bound states, the scattering lengths take
all the real values, tending to infinity at the boundary
with the n — 1 area and to minus infinity at the bound-
ary with the n + 1 area.

4. CONCLUSION

The three-body dynamics of ultracold binary gases
confined to 1D motion is studied. In the low-energy
limit, the description is universal, i.e., independent of
the details of the short-range two-body interactions,
which can be taken as a sum of contact J-function
potentials. Thus, the three-body energies and the
(2 + 1)-scattering lengths are expressed as universal
functions of two parameters, the mass ratio m/m; and
the interaction-strength ratio A1 /|A|. The mass-ratio
dependences of the binding energies and the scattering
length are numerically calculated for even and odd par-
ity and the accurate critical values of the mass ratio at
which the bound states arise and the scattering length
vanishes are determined. It is rigorously proved that
m/my = 1 is the exact boundary above which at least
one bound state exists (as conjectured in [21]); the re-
lated conclusion is the existence of exactly one bound
state for three equal-mass particles independently of
the interaction strength between the identical parti-
cles. Asymptotic dependences of the bound-state num-
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ber and the scattering length A in the limit m/m; — oo
and of the binding energy and the scattering length Ay
in the limit \y — —oc are determined. Based on the
numerical calculations, analytic results, and qualita-
tive considerations, a schematic diagram is drawn that
shows the number of the three-body bound states and
the sign of the (2 + 1)-scattering length as a function
of the mass ratio and the interaction-strength ratio.

The obtained qualitative and quantitative results on
the three-body properties provide a firm base for the
description of the equation of state and phase separa-
tion in dilute binary mixtures of ultracold gases. In par-
ticular, the sign of the (2 + 1)-scattering lengths essen-
tially controls the transition between the homogeneous
and mixed phases of atoms and diatomic molecules.
The condition E3/FEy, > 2 defines the parameter area
where the production of the triatomic molecules is en-
ergetically favorable in a gas of diatomic molecules.

The analysis of the phase diagram in Fig. 3 implies
that there remain interesting problems deserving fur-
ther elucidation. These include the problem of the non-
monotonic dependence of the constant-A isolines in the
A1/|A|—m/my plane, the behavior of the lines separat-
ing the positive and negative scattering lengths within
the n = 1 area, and the description of the beak formed
by the lines separating the n = 1 and n = 2 areas
in the vicinity of the exact solution for three identical
particles (A\; = A and m = my).

One should discuss the connection of the present re-
sults with those that take the finite interaction radius
R, and (quasi)-1D geometry into account. Finding the
corrections due to a finite interaction radius is not a
trivial task, but one expects that the corrections should
be small for all calculated values if R./a and R./a;
are small, where a and a; are the two-body scattering
lengths. On the other hand, for sufficiently tight trans-
verse confinement, one expects that the main ingredient
is the relation between the 3D and quasi-1D two-body
scattering lengths established in [33]. Moreover, the
role of the transverse confinement does not simply re-
duce to renormalization of the scattering lengths; the
full-scale three-body calculations are needed to deter-
mine the energy spectrum and the scattering data in
the (quasi)-1D geometry.

It is worthwhile to mention that more few-body
problems are of interest in binary mixtures. In particu-
lar, the low-energy three-body recombination plays an
important role in the kinetic processes, and the elastic
and inelastic cross sections for collisions of either di-
atomic molecules or atoms on triatomic molecules are
needed to describe the properties of molecular com-
pounds.
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