О СООТНОШЕНИИ НЕОПРЕДЕЛЕННОСТЕЙ ЭНЕРГИЯ-ВРЕМЯ «ПРИЛЕТА» ФОТОНА

С. Н. Молотков*

Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская обл., Россия

Академия криптографии Российской Федерации, Факультет вычислительной математики и кибернетики, Московский государственный университет им. М. В. Ломоносова 119899, Москва, Россия

Поступила в редакцию 27 июня 2008 г.

Получена нижняя граница соотношения неопределенностей энергия-время «прилета» для фотона.

PACS: 03.70.+k, 03.50.De, 03.65.Pm

Вопрос об измерении времени в квантовой механике имеет давнюю историю (см., например, [1-7]). В отличие от наблюдаемых — энергии, импульса, координаты и т.д., — которым в квантовой механике сопоставляются эрмитовы операторы, время является не динамической переменной, а параметром. Однако данное обстоятельство не служит препятствием для измерения параметра времени. Существует даже бесконечное множество процедур измерения времени. Результатом любой процедуры измерения времени в квантовой механике является появление распределения вероятностей на множестве времен регистрации событий. Нас будет интересовать измерение времени, обладающее естественным свойством ковариантости. Пусть регистрируются квантовые состояния $\rho(t_0)$, приготовленное в момент времени t_0 , и $\rho(t_1)$, отличающееся от $\rho(t_0)$ только моментом приготовления. Состояния связаны сдвигом во времени:

$$\rho(t_1) = \hat{U}(t_1 - t_0)\rho(t_0)\hat{U}^{-1}(t_1 - t_0), \qquad (1)$$

где $\hat{U}(t)$ — оператор эволюции (сдвига во времени).

Нас интересует момент наступления некоторого события, например, регистрации фотона быстрым

(широкополосным) фотодетектором¹⁾. В этом случае пространством результатов является время регистрации. Связь распределения вероятностей над пространством результатов (времен регистрации) и состоянием квантовой системы дается положительной операторнозначной мерой [9, 10]. Каждому подмножеству пространства результатов $\Delta_t \in (-\infty, \infty)$ сопоставляется положительный оператор $\mathcal{M}(\Delta_t)$, такой что

$$\mathcal{M}(\cup \Delta_{it}) = \sum_{i} \mathcal{M}(\Delta_{it}), \quad \Delta_{it} \cap \Delta_{jt} = \emptyset.$$
 (2)

Условие нормировки — равенство единице полной вероятности наступления событий во всем пространстве результатов — дает

$$\mathcal{M}(\Delta_{(-\infty,\infty)}) = I. \tag{3}$$

Условие ковариантности означает, что сдвиг начала отсчета во времени в процедуре приготовления квантового состояния должен приводить к соответствующему сдвигу в распределении вероятностей. Иначе говоря,

^{*}E-mail: molotkov@issp.ac.ru

³ ЖЭТФ, вып.1

¹⁾ Приготовление состояний в моменты t_0 либо t_1 может происходить последовательным приготовлением узкого по времени состояния (соответственно с широким спектром) в моменты t_0 и t_1 с последующим пропусканием через частотный фильтр (спектрометр) с подходящей спектральной формой аналогично тому, как это описано в работе [8].

$$\hat{U}(t_1 - t_0)\mathcal{M}(\Delta_t)\hat{U}^{-1}(t_1 - t_0) = \mathcal{M}(\Delta_{t - (t_1 - t_0)}).$$
(4)

Пусть вероятность регистрации результата в интервале времени (t, t + dt) равна $\Pr\{dt\}$. Форма распределения вероятностей зависит только от состояния $\rho(t_0)$, а сами распределения для состояний $\rho(t_0)$ и $\rho(t_1)$ различаются только сдвигом во времени на величину $t_1 - t_0$. Для распределения вероятностей можно определить среднее значение \overline{t} и дисперсию времени регистрации: $\sigma_t^2 = (\overline{\Delta t})^2 = (\overline{t} - \overline{t})^2$. При этом выбором начала отсчета времени всегда можно сделать так, что $\overline{t} = 0$ для состояния $\rho(t_0)$. В дальнейшем, не нарушая общности, будем считать, что $\overline{t} = 0$. Для среднеквадратичного отклонения времен регистрации имеем

$$\overline{(\Delta t)^2} = \int_{-\infty}^{\infty} (t - \overline{t})^2 \Pr\{dt\}.$$
(5)

Измерение энергии²⁾ на состоянии $\rho(t_0)$ дает распределение вероятностей по энергии. Пусть вероятность регистрации энергии в интервале ($\varepsilon, \varepsilon + d\varepsilon$) равна $\Pr\{d\varepsilon\}$. Для данного распределения также может быть вычислено среднее значение энергии $\overline{\varepsilon}$ и дисперсия: $\sigma_{\varepsilon}^2 = \overline{(\Delta \varepsilon)^2} = \overline{(\varepsilon - \overline{\varepsilon})^2}$. Отметим, что сдвигом начала отсчета среднее значение энергии нельзя сделать равным нулю, поскольку энергия (спектр гамильтониана) ограничена снизу. Далее будем считать, что энергия $\varepsilon \in [0, \infty)$.

Для дисперсии энергии получаем

$$\overline{(\Delta\varepsilon)^2} = \int_0^\infty (\varepsilon - \overline{\varepsilon})^2 \Pr\{d\varepsilon\}.$$
 (6)

Далее нас будет интересовать нижняя граница по всевозможным входным состояниям ρ соотношения неопределенностей энергия-время «прилета» для фотона:

$$\Omega = \min_{\{\rho\}} \left\{ \overline{(\Delta \varepsilon)^2} \,\overline{(\Delta t)^2} \right\}. \tag{7}$$

Ниже будем рассматривать одночастичные состояния безмассового свободного квантованного поля (фотонов). Такие состояния порождаются действием на вакуумный вектор полевых операторов (обобщенных функций с операторными значениями) [11]:

$$\psi^{\dagger}(\hat{x}) = \frac{1}{\sqrt{2\pi}} \int d\hat{k} \,\delta(\hat{k}^2) \theta(k_0) e^{i\hat{k}\cdot\hat{x}} a^{\dagger}(\hat{k}), \qquad (8)$$

$$\hat{k} = (k, k_0), \quad \hat{x} = (x, t),$$

 $\hat{k} = dk \, dk_0, \quad \hat{k}\hat{x} = kx - k_0 t.$

Операторы рождения и уничтожения удовлетворяют коммутационным соотношениям

$$[a(\hat{k}), a^{\dagger}(\hat{k}')] = k_0 \delta(k - k').$$
(9)

Физические состояния поля $|\psi\rangle \in \mathcal{H}$, принадлежащие гильбертову пространству состояний, определяются как результат сглаживания операторных обобщенных функций с основными функциями $\psi(\hat{x}) \in \Omega(\hat{x}) \ (\psi^{\dagger}(\hat{x})|0\rangle \in \Omega^{*}(\hat{x})$ — обобщенные собственные векторы, непрерывные линейные функционалы над $\Omega(\hat{x}), \ \Omega(\hat{x}) \subset \mathcal{H} \subset \Omega^{*}(\hat{x})$ — оснащенное гильбертово пространство [11, 12]).

Далее имеем

$$\begin{split} \psi \rangle &= \int d\hat{x} \, \psi(\hat{x}) \psi^{\dagger}(\hat{x}) |0\rangle = \\ &= \int d\hat{k} \, \psi(\hat{k}) \delta(\hat{k}^{2}) \theta(k_{0}) a^{\dagger}(\hat{k}) |0\rangle = \\ &= \int_{-\infty}^{\infty} \frac{dk}{k_{0}} \psi(k, k_{0} = |k|) |\hat{k}\rangle, \quad (10) \\ &|\hat{k}\rangle = a^{\dagger}(\hat{k}) |0\rangle, \quad \langle \hat{k} | \hat{k}' \rangle = k_{0} \delta(k - k'), \\ &\qquad \psi(\hat{k}) = \int d\hat{x} \, \psi(\hat{x}) e^{-i\hat{k}\hat{x}}. \end{split}$$

Здесь dk/k_0 — лоренц-инвариантный объем интегрирования. Вклад в физическое состояние $|\psi\rangle$ дают значения амплитуды $\psi(k, k_0 = |k|)$ на массовой поверхности.

Будем рассматривать состояния (пакеты), распространяющиеся в одном направлении. Для состояний безмассового поля энергия и импульс с точностью до коэффициента совпадают: $\varepsilon = k_0 = |k| = k$. Для таких состояний вклад в функцию (10) дают лишь векторы с k > 0, и амплитуда $\psi(k, k)$ отлична от нуля при k > 0.

Измерение энергии дается разложением единицы в одночастичном подпространстве состояний:

$$I = \int_{-\infty}^{\infty} \frac{dk}{k_0} |\hat{k}\rangle \langle \hat{k}| = \int_{-\infty}^{\infty} \mathcal{M}(d\varepsilon),$$

$$\mathcal{M}(d\varepsilon) = |\varepsilon\rangle \langle \varepsilon | d\varepsilon, \quad |\varepsilon\rangle = \frac{|\hat{k}\rangle}{\sqrt{k_0}}.$$
(11)

Для гамильтониана \hat{H} свободного безмассового поля имеет место спектральное представление

$$\hat{H} = \int_{0}^{\infty} \varepsilon \mathcal{M}(d\varepsilon), \qquad (12)$$

Такое измерение реализуется при помощи спектрометра и детектора.

где $\mathcal{M}(d\varepsilon)$ — спектральное семейство ортогональных проекторов.

Связь между распределением вероятностей и спектральным семейством проекторов дается следующим соотношением:

$$\Pr\{d\varepsilon\} = \operatorname{Tr}\{\mathcal{M}(d\varepsilon)|\psi\rangle\langle\psi|\} = |\psi(k,k)|^2 \frac{dk}{k} = |f(\varepsilon)|^2 d\varepsilon, \quad f(\varepsilon) = \frac{\psi(k,k)}{\sqrt{k}}.$$
 (13)

Здесь $\Pr\{d\varepsilon\}$ — вероятность получить значение энергии в интервале ($\varepsilon, \varepsilon + d\varepsilon$) при измерении состояния $\rho = |\psi\rangle\langle\psi|$. Среднее значение энергии и среднеквадратичное отклонение в состоянии ρ равны

$$\overline{\varepsilon} = \int_{0}^{\infty} \varepsilon \Pr\{d\varepsilon\} = \int_{0}^{\infty} \varepsilon |f(\varepsilon)|^{2} d\varepsilon,$$

$$\overline{(\Delta\varepsilon)^{2}} = \int_{0}^{\infty} (\varepsilon - \overline{\varepsilon})^{2} \Pr\{d\varepsilon\}, \quad \overline{\varepsilon^{2}} = \int_{0}^{\infty} \varepsilon^{2} \Pr\{d\varepsilon\}.$$
(14)

Рассмотрим теперь измерение положения частицы, которое для состояний, распространяющихся в одном направлении (k > 0), может быть представлено в виде разложения единицы:

$$I = \int_{-\infty}^{\infty} \frac{d\tau}{2\pi} \left(\int_{0}^{\infty} \frac{dk}{\sqrt{k}} e^{-ik\tau} |\hat{k}\rangle \right) \left(\int_{0}^{\infty} \frac{dk'}{\sqrt{k'}} \langle \hat{k'} | e^{ik'\tau} \right) =$$
$$= \int_{-\infty}^{\infty} \frac{d\tau}{2\pi} \left(\int_{0}^{\infty} d\varepsilon e^{-i\varepsilon\tau} |\varepsilon\rangle \right) \left(\int_{0}^{\infty} d\varepsilon' \langle \varepsilon' | e^{i\varepsilon'\tau} \right) =$$
$$= \int_{-\infty}^{\infty} \mathcal{M}(d\tau), \quad (15)$$

где $\tau = x - t$.

В данном случае спектральное семейство $\mathcal{M}(d\tau)$ является положительной операторнозначной мерой, а не ортогональными проекторами. При помощи данного семейства можно ввести положительный максимально симметричный оператор времени (см. подробности в работе [8])

$$\hat{\mathcal{T}} = \int_{-\infty}^{\infty} \tau \mathcal{M}(d\tau).$$
(16)

Измерение координаты x является по сути измерением времени срабатывания t. Более точно, пространством результатов реально является не x или

t по отдельности, а их разность τ . Разложение единицы (15) является формальным описанием прибора, которое может быть интерпретировано следующим образом. Если считать пространством результатов x, то измерение следует понимать как распределенный по х прибор, который выдает случайный результат в одной точке (x, x + dx) в момент t. Если фиксировать x, то измерение описывает локальный по х прибор, работающий в ждущем режиме, который выдает результат в случайный момент времени (t, t + dt). То обстоятельство, что операторнозначная мера $\mathcal{M}(d\tau)$ в (15) зависит лишь от разности $\tau = x - t$, выражает тот факт, что если результат с какой-то вероятностью может быть получен в точке x в момент времени t, то с той же вероятностью он может быть получен в другой точке x', но в момент времени t' = x' - x + t.

Связь распределения вероятности для получения результата в интервале времени $(\tau, \tau + d\tau)$ и операторными мерами (11), (12) дается соотношением

$$\Pr\{d\tau\} = \operatorname{Tr}\{\mathcal{M}(d\tau)|\psi\rangle\langle\psi|\} = |f(\tau)|^2 d\tau,$$
$$f(\tau) = \int_0^\infty \frac{dk}{\sqrt{k}} \psi(k,k) e^{-ik\tau} = \int_0^\infty d\varepsilon f(\varepsilon) e^{-i\varepsilon\tau}.$$
 (17)

Обратим внимание на то, что $f(\tau)$ по сути совпадает с волновой функцией Ландау-Пайерлса в координатно-временном представлении [13].

Естественным граничным условием для функции $f(\varepsilon)$ является условие $f(\varepsilon = 0) = 0$. Соответственно, $f(\varepsilon = \infty) = 0$. Первое условие означает отсутствие фотонов с нулевой (частотой) энергией.

Среднеквадратичное отклонение времени регистрации с учетом граничного условия при $\varepsilon = 0$ может быть записано в виде

$$\overline{(\Delta\tau)^2} = \int_{-\infty}^{\infty} \tau^2 |f(\tau)|^2 d\tau = \int_{0}^{\infty} \int_{0}^{\infty} d\varepsilon \, d\varepsilon' f(\varepsilon) f^*(\varepsilon') \times \\ \times \int_{-\infty}^{\infty} \tau^2 e^{i(\varepsilon - \varepsilon')\tau} d\tau = \int_{0}^{\infty} \left| \frac{df(\varepsilon)}{d\varepsilon} \right|^2 d\varepsilon.$$
(18)

Дальнейшая задача сводится к нахождению состояния $|\psi\rangle$ ($f(\varepsilon)$), на котором достигается минимум следующего функционала с дополнительным условием нормировки состояния:

$$\Omega(f) = \left(\int_{0}^{\infty} \left|\frac{df(\varepsilon)}{d\varepsilon}\right|^{2} d\varepsilon\right) \times \\ \times \left(\int_{0}^{\infty} (\varepsilon^{2} - \overline{\varepsilon}^{2}) |f(\varepsilon)|^{2} d\varepsilon\right),$$
(19)
$$\langle \psi |\psi \rangle = \int_{0}^{\infty} |f(\varepsilon)|^{2} d\varepsilon = 1.$$

Вариация функционала

$$\delta\Omega(f)/\delta f = 0 \tag{20}$$

приводит к дифференциальному уравнению второго порядка для $f(\varepsilon)$:

$$\frac{d^2 f(\xi)}{d\xi^2} + \left(\nu + \frac{1}{2} - \frac{\xi^2}{4}\right) f(\xi) = 0,$$

$$\xi = \left(\frac{4a}{b - c^2}\right)^{1/4} (\varepsilon - c),$$

$$\nu + \frac{1}{2} = \sqrt{a(b - c^2)},$$
(21)

где

$$a = \int_{0}^{\infty} \left| \frac{df(\varepsilon)}{d\varepsilon} \right|^{2} d\varepsilon, \quad b = \int_{0}^{\infty} \varepsilon^{2} |f(\varepsilon)|^{2} d\varepsilon,$$

$$c = \int_{0}^{\infty} \varepsilon |f(\varepsilon)|^{2} d\varepsilon, \quad \int_{0}^{\infty} |f(\varepsilon)|^{2} d\varepsilon = 1,$$
(22)

а граничные условия имеют вид $f(\varepsilon = 0) = 0,$ $f(\varepsilon = \infty) = 0.$

Задача нахождения минимума функционала (19) решалась для классических сигналов в элегантной, но малоизвестной работе Майера и Леонтовича [14] еще в 1934 г. (см. также [15]). Численно значение функционала в минимуме было найдено в работе [16]: $\sqrt{\Omega_{min}} = 0.2951...$ Для классических сигналов функция $f(\omega)$ должна быть четной функцией частоты, поскольку классический сигнал

$$f(t) = \int_{-\infty}^{\infty} f(\omega) e^{-i\omega t} d\omega$$

должен описываться вещественной функцией. Это возможно, если $f(\omega)$ является четной функцией частоты. В качестве граничного условия при $\omega = 0$ в работе [16] использовалось условие

$$\left.\frac{df\left(\omega\right)}{d\omega}\right|_{\omega=0} = 0$$

В этом случае для дифференциального уравнения второго порядка $f(\omega=0) \neq 0.$

Решением уравнения (21) являются функции Вебера (параболического цилиндра) [17]:

$$f(\varepsilon) = D_{\mu - \frac{1}{2}} \left(\sqrt{\frac{2a}{\mu}} \left(\varepsilon - \sqrt{\frac{2\mu^2}{a}} \right) \right), \qquad (23)$$
$$\mu = \sqrt{a(b - c^2)} = \sqrt{\Omega}.$$

Нули функции Вебера могут находиться только в интервале $|\xi| < 2\sqrt{\mu}$ [17], с учетом граничного условия — обращения в нуль при нулевой энергии ($\varepsilon = 0$, $\xi = 2\sqrt{\mu}$) — приходим к трансцендентному уравнению, которое определяет минимумы функционала:

$$D_{\mu_n - 1/2}(-2\sqrt{\mu_n}) = 0, \quad \sqrt{\Omega_n} = \mu_n,$$
 (24)

где n — номер минимума. Основной минимум имеет место при n = 0.

Функция Вебера имеет n+1 нулей при $\varepsilon \in [0, \infty)$, включая нуль при $\varepsilon = 0$. Константа a_n определяется из условия нормировки. Значение минимума функционала равно $\sqrt{\Omega_0} = 0.6715...$ Остальные минимумы даются соотношением $\sqrt{\Omega_n} = 0.6715...+n$. Рассчитанные численно функции $D_{\mu_n-1/2}(\xi-2\sqrt{\mu_n})$ для нескольких первых значений n приведены на рис. 1. На рис. 2 показаны функции во временном представлении.

Заметим, что аналогично можно минимизировать соотношение неопределенностей координата-импульс. В этом случае задача минимизации приводит к аналогичному уравнению с целыми значениями индекса $\nu = n - 1/2$, а функции Вебера совпадают с волновыми функциями гармонического осциллятора. Как известно, волновая функция гармонического осциллятора, отвечающая основному состоянию n = 0 является гауссовой функцией координаты и минимизирует соотношение неопределенностей координата-импульс. Волновые функции возбужденных состояний отвечают более высоким локальным минимумам. Граничные условия для волновой функции для соотношения неопределенностей координата-импульс сводятся лишь к обращению в нуль при $x = \pm \infty$, в отличие от соотношения неопределенностей энергия-время. Состояние с нулевой производной в нуле ближе к гауссовому состоянию, поэтому значение минимума функционала (0.2951) оказывается ближе к минимуму соотношения неопределенностей для координаты-импульса, равному 0.25.

Данные результаты подходят для классического сигнала, например, распространяющейся классиче-

Рис. 1. Зависимости волновых функций $D_{\mu_n - 1/2}(\xi - 2\sqrt{\mu_n})$ для нескольких первых значений n, граничные условия: f(0) = 0 (a), $\left. \frac{df(\varepsilon)}{d\varepsilon} \right|_{\varepsilon=0} = 0$ (b)

Рис.2. Зависимости квадрата модуля волновых функций $|D_{\mu_n-1/2}(\tau)|^2$, где $D_{\mu_n-1/2}(\tau) = \int_0^\infty D_{\mu_n-1/2}(\xi - 2\sqrt{\mu_n}) \times e^{-i\xi\tau} d\xi$, для нескольких первых значений n, граничные условия: f(0) = 0 (a), $\left. \frac{df(\varepsilon)}{d\varepsilon} \right|_{\varepsilon=0} = 0$ (б)

ской электромагнитной волны. В этом случае функция $f(\tau)$, где $\tau = x - t$, подчиняется волновому уравнению

$$\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}\right)f(\tau) = 0$$

Естественным условием для спектральной плотности $f(\omega)$ является условие $f(\omega = 0) = 0$. Условие же

$$\frac{d}{d\omega}f(\omega)|_{\omega=0} = 0,$$

хотя формально и возможно, по-видимому, является не физическим, поскольку оно дает $f(\omega = 0) \neq 0$, что означает присутствие постоянной составляющей сигнала на нулевой фурье-гармонике.

Специфика соотношения неопределенностей энергия-время связано с тем, что энергия задана на полуоси $[0, \infty)$. С этим же обстоятельством тесно связан факт «нелокализуемости» безмассового поля (фотонов). Из-за того что амплитуда состояний задается значениями на массовой поверхности (определены значения $\psi(k, k_0)$ как функции двух переменных не при произвольных k и k_0 , а только при $k_0 = k$), она оказывается всегда отличной от нуля во всем пространстве (вне области сколь угодно большого, но конечного размера, т.е. любого компакта [18,19]). Факт нелокализуемости состояний в квантовой теории поля известен давно (см. физическое обсуждение данного вопроса, например, в работе [20]). В данном случае нелокализуемость может быть явно продемонстрирована как следствие теоремы Винера-Пэли [21]. Для нормированной функции $\psi(\varepsilon)$,

$$\int_{0}^{\infty} d\varepsilon |\psi(\varepsilon)|^2 = 1,$$

равной нулю на полуоси $\varepsilon \leq 0$, но не равной нулю тождественно, допустимая степень убывания в пространстве ее фурье-образа $\psi(\tau)$ ($\tau = x - t$) на бесконечности диктуется сходимостью интеграла

$$\int_{-\infty}^{\infty} \frac{\ln |\psi(\tau)|}{1+\tau^2} d\tau < \infty.$$

Отсюда следует, что амплитуда $\psi(\tau)$ не может убывать даже экспоненциально (не говоря о том, чтобы быть равной нулю вне компакта), поскольку в этом случае, если $|\psi(\tau)| \propto \exp(-\alpha |\tau|)$, то интеграл расходится. Однако амплитуда может убывать сколь угодно близко к экспоненте с любым показателем $\alpha > 0$,

$$|\psi(\tau)| \propto \exp\left(-\alpha |\tau| / \ln(\ln \ldots |\tau|)\right).$$

Подобной степени локализации фотонного поля можно добиться и в трехмерном случае [22], хотя долгое время после работы Ньютона и Вигнера [23] считалось, что наиболее быстрое убывание в пространстве может быть лишь степенным со степенью 7/2.

Таким образом, имеют место следующие нижние границы для соотношения неопределенностей энергия-время «прилета»:

$$\sqrt{(\Delta\varepsilon)^2 (\Delta t)^2}|_{f(0)=0} = 0.6715...,$$

$$\sqrt{(\Delta\varepsilon)^2 (\Delta t)^2}|_{\frac{df(\varepsilon)}{d\varepsilon}|_{\varepsilon=0}=0} = 0.2951...$$
(25)

Для свободно распространяющегося безмассового поля (фотонов) должно иметь место первое соотношение в формуле (25), поскольку при нулевой энергии f(0) = 0, условие же с нулевой производной, по-видимому, не является физическим.

Основным аргументом в пользу граничного условия f(0) = 0 является следующее соображение. Вектор состояния $f(\varepsilon)$ есть вероятность того, что фотон обладает импульсом ($k = \omega$, где положено c = 1), лежащим в интервале dk. Ненулевое значение вероятности при $k = \omega = 0$ означало бы, что имеется статическая компонента поля во всем пространстве. Кроме того, поскольку квадрат модуля амплитуды $|f(\omega)|^2$ пропорционален плотности энергии (сумме квадратов электрического и магнитного полей), ненулевое значение $f(\omega)$ при $k = \omega = 0$ означало бы также присутствие статического электрического и магнитного полей во всем пространстве³).

В заключение отметим, что соотношения неопределенностей (25) являются лоренц-инвариантными, т. е. одинаковыми в любых инерциальных системах отсчета, в чем несложно убедиться, если сделать преобразование Лоренца для координат x - t и соответствующее преобразование для вектора состояния (10).

Выражаю благодарность Академии криптографии РФ за поддержку. Работа выполнена при частичной финансовой поддержке РФФИ (грант № 08-02-00559). Выражаю также благодарность С. П. Кулику и С. С. Назину за полезные обсуждения.

ЛИТЕРАТУРА

- 1. W. Heisenberg, Z. Phys. 60, 56 (1927).
- Н. Бор, Избранные научные труды, т. 2, Наука, Москва (1971).
- **3**. Н. С. Крылов, В. А. Фок, ЖЭТФ **17**, 93 (1947).
- E. P. Wigner, in Aspects of Quantum Theory, ed. by A. Salam and E. P. Wigner, Cambridge Univ. Press, Mass. (1972), p. 237.
- 5. Л. И. Мандельштам, И. Е. Тамм, Изв. АН СССР, сер. физ., 9, 122 (1945).
- Y. Aharonov and D. Bohm, Phys. Rev. 122, 1649 (1961);
 Y. Aharonov and J. L. Safko, Ann. Phys. 91, 279 (1975).
- 7. В. А. Фок, ЖЭТФ **42**, 1135 (1962).
- 8. С. Н. Молотков, Письма в ЖЭТФ 80, 576 (2004).

³⁾ Интересно отметить аналогию с акустическими фононами в твердом теле, которые также имеют линейный спектр. Волновая функция акустических фононов при k = 0 должна быть равна нулю. Ненулевая амплитуда при k = 0 формально отвечает за присутствие акустических фононов с нулевой частотой («статических» фононов), что означает наличие однородной деформации решетки.

- 9. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam (1980).
- P. Busch, The Time Energy Uncertainty Relation, arXiv:quant-ph/0105049; P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum Physics, Lect. Notes Phys. 31, Springer (1995).
- Н. Н. Боголюбов, А. А. Логунов, А. И. Оксак, И. Т. Тодоров, Общие принципы квантовой теории поля, Наука, Москва (1987).
- 12. И. М. Гельфанд, Н. Я. Виленкин, Обобщенные функции, вып. 4, Некоторые применения гармонического анализа. Оснащенные гильбертовы пространства, Физматлит, Москва (1961).
- 13. Л. Д. Ландау, Р. Пайерлс, Z. Phys. 62, 188 (1930);
 Z. Phys. 69, 56 (1931); в кн. Л. Д. Ландау, Собрание трудов, Наука, Москва (1969), т. 1, с. 56.
- 14. А. Г. Майер, Е. А. Леонтович, ДАН СССР 4, 353 (1934).
- 15. А. А. Харкевич, *Спектры и анализ*, Физматлит, Москва (1962).

- 16. В. В. Додонов, В. И. Манько, Инварианты и эволюция нестационарных квантовых систем, Труды ФИАН 183 (1987).
- 17. Г. Бейтман, А. Эрдейн, Высшие трансцендентные функции: функции Бесселя, функции параболического цилиндра, ортогональные многочлены, Наука, Москва (1966).
- 18. A. M. Jaffe, Phys. Rev. 158, 1454 (1967).
- 19. G. C. Hegerfeldt, Phys. Rev. D 10, 3320 (1974);
 G. C. Hegerfeldt and S. N. M. Ruijsenaar, Phys. Rev. D 22, 377 (1980).
- 20. Д. А. Киржниц, УФН 90, 129 (1966).
- Н. Винер, Р. Пэли, Преобразование Фурье в комплексной области, Наука, Москва (1964) [N. Wiener and R. Paley, Fourier Transforms in the Complex Domain, New York (1934)].
- 22. I. Bialynicki-Birula, Phys. Rev. Lett. 80, 5247 (1998).
- 23. T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).