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QUANTUM CONDUCTANCE OF ACHIRAL GRAPHENE RIBBONSAND CARBON TUBESL. I. Malysheva *, A. I. Onipko **Bogolyubov Institute for Theoretial Physis03680, Kiev, UkraineReeived July 6, 2008Expliit expressions of the band spetrum near the neutrality point are derived for armhair and zigzag grapheneribbons and arbon tubes. Several spetral features, whih were previously observed only in numerial alu-lations, are given an adequate analyti desription in terms of elementary funtions. The obtained dispersionrelations are used for a omparison of ondutane ladders of graphene-based wires; these relations are alsobene�ial for many other appliations.PACS: 73.22.-f 1. INTRODUCTIONFor eletrons and holes, graphene ribbons andarbon tubes are one-dimensional wires made ofone-atom-thik material. In omparison with thetwo-dimensional eletron gas ounterparts in semi-ondutor heterostrutures, the transport of hargearriers in graphene [1℄ (in partiular, quantumondutane [2℄) demonstrates a number of unusualproperties. This paper gives a preise analyti de-sription of the ondutane of four basi graphenewires and spei� features of eah member of the wirefamily represented in Fig. 1, ahiral graphene ribbonsand arbon tubes. Formally, this problem an beonsidered already �solved� by �nding two equationsthat desribe the spetrum of a graphene sheet withtwo armhair- and two zigzag-shaped edges [3℄ (in theenter of Fig. 1). But spetrum peuliarities near theFermi energy [2�8℄ are far from being obvious fromthe general equations. Here, we show that (i) theband spetrum of a metalli armhair (zigzag) ribbon(tube) is not the same as for zigzag (armhair) ribbon(tube); this di�erene is given an aurate quantitativedesription; (ii) in moving away from the Fermi energy,the bottoms (tops) of ondution (valene) bands inzigzag (armhair) ribbons (tubes) are shifted towardslarger wave vetors; and (iii) there exist three types*E-mail: malysh�bitp.kiev.ua**E-mail: aleon�ifm.liu.se

of spetra (ondutane ladders) with equal, irregular,and alternating band spaing (ladder step width).By expressing eah of these features in elementaryfuntions, the understanding ahieved in previousstudies is onsiderably improved.2. BAND STRUCTUREFigure 1 illustrates the parent honeyomb N � Nlattie and its daughter wire-like strutures, armhairand zigzag graphene ribbons and arbon tubes, hene-forth abbreviated as GR and CT. The lattie label in-diates that in the armhair diretion, graphene on-tains N hexagons in polyparaphenylene-like hains,whereas in the zigzag diretion, it has N hexagonsforming polyaene-like hains. Hydrogen atoms alongthe edges are not shown and not taken into aount inthe nearest-neighbor tight-binding Hamiltonian [9, 10℄.The �-eletron spetrum of this model is given by [3℄E� == �vuut1+4 os2 aky2 �4 �����os aky2 os p3akx2 �����; (1)where the hopping integral is used as an energy unit, ais the minimal translation distane of the honeyomblattie, and one of the two dimensions, N or N , is sup-posed to be in�nite, implying the ontinuity of kx (forarmhair GR and zigzag CT) or ky (for zigzag GR and139
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NFig. 1. Parent graphene N � N lattie (enter) and its daughter strutures, from lower-left lokwise: armhair ribbon(N = 1); (N ; 0) tube (N = 1, 1st = (N + 1)th polyaene hain); (N;N) tube (N = 1, 1st = (N + 1)th polypara-phenylene hain); and zigzag ribbon (N =1). In all ases, the same k-oordinates are used. The ross at (0; 2�=3a) andthe irle at (0; 4�=3a) indiate zero-energy points: � for an armhair GR, � and Æ for a zigzag metalli CT; the �lled irleat (2�=p3a; 2�=3a) indiates the seond speial point for the armhair CT. For the zigzag GR, zero-energy point annotbe shown on the real kxky planearmhair CT). The omplementary disrete quantumnumbers are respetively determined by open ends andperiodi boundary onditions for ribbons and tubes.Thus, for graphene ribbons, the k spae is (0��; 0��);for armhair and zigzag arbon tubes, the required ex-tensions of this spae are respetively (0 � 2�; 0 � �)and (0� �; 0� 2�).The spetra of armhair GR (aGR), armhair CT(aCT), and zigzag CT (zCT) are ompletely deter-mined by Eq. (1) and by the boundary onditions di-tating values of the disrete quantum number. An ad-ditional equation, Eq. (6), omes into play in the dis-ussion of zigzag graphene ribbons (zGR).We onsider related GR and CT pairs separately.The fous is on the energies not far away from thepoint of neutrality, whih oinides with zero energy,the Fermi energy. In this energy region, the spetrumis desribed by the minus branh of Eq. (1) (the minus

sign in the radiand). Beause of the spetrum sym-metry, we refer only to the ondution one-dimensionalbands, that is, to the E� branh with the plus sign infront of the root. The valene bands, having the sametransverse quantum numbers, are just the mirror re�e-tion of the ondution bands in the E = 0 plane. Theanalysis is performed for large N and N . This simpli-�ation an easily be avoided, but even for N;N > 10,it is su�iently good for reasonable estimates.Armhair ribbons and zigzag tubes. For bothtypes of strutures, aGR and zCT, kx is a ontinu-ous variable, 0 � p3akx � �. The wave-vetor trans-verse omponent takes the disrete values ky = �j=a,�j = �j=(N+1), j = 1; 2; : : : ;N and �j = 2�j=N ,j = 0; 1; : : : ;N�1 for ribbons and tubes, respetively.It is known (and also follows from Eq. (1)) that anaGR (zCT) is metalli if j� = 2(N + 1)=3 (j� = N=3)is an integer. In this ase, E�j=j� (kx=0) = 0. Oth-140



ÆÝÒÔ, òîì 135, âûï. 1, 2009 Quantum ondutane of ahiral graphene ribbons : : :erwise, aGR (zCT) is a semiondutor. The twofoldband degeneray of eletron states in a metalli zCT o-urs beause there are two zero-energy points, (0; �j�)and (0; 2�j�); equivalently, (kx = 0; aky = 2�=3) and(kx = 0; aky = 4�=3). In Fig. 1, these points aremarked by a ross and an open irle. For a semi-onduting aGR (zCT), the index j� of the lowest on-dution band an be equal to (2N +1)=3 or (2N +3)=3[(N � 1)=3 or (N + 1)=3℄.The next onlusion that follows from the analysisof Eq. (1) is that near the ross point for aGR and theross and open-irle points for zCT, the band spe-trum an be represented asE�j����aGR(zCT ) == 8>>>>><>>>>>: s�2�1� 16��aGR(zCT )�2 +X2;s���� 13�2 +X2; (2)where �zCT = 2�aGR = p3�=N , X == p3akx=2�aGR(zCT ), and � = 0; 1; : : :� N .The validity of these dispersion relations is ensured bythe ondition Nakx � � 6= 0.The upper and lower rows in Eq. (2) respetivelyrefer to the metalli and semionduting aGR (zCT).Disregarding the term linear in � in the upper rowyields the previously suggested expression for the bandspetrum of (N ; 0) zigzag arbon tubes [5℄ and arm-hair graphene ribbons [6℄. However, as an be easilyheked by diret alulations of dispersion urves fromexat equation (1), this term onsiderably improves thequality of the approximate desription.Armhair tubes and zigzag ribbons. The spe-tra of these strutures are to be onsidered separatelybeause the band spetrum of the zigzag GR (zGR) isdetermined by two equations. An analyti desriptionof the zGR spetrum was repeatedly attempted beforebut never sueeded.Armhair tubes. For armhair tubes, akx = ��=p3plays the role of the transverse quantum number,�� = 2��=N , � = 0; 1; : : : ; N�1, whereas 0 � aky � �is a ontinuous variable [3℄. Equation (1) an then berewritten asE�� =s1 + 4 os2 aky2 � 4 ����os aky2 os ��N ����: (3)With an exeption of the � = 0 band, all other bandsare twofold degenerate. Close to the zero energy, that

is, for jqj � 1, q = aky � 2�=3, and ��=N � 1 or�(N � �)=N � 1, Eq. (3) is well approximated byE�� (q) = 12r3q2 + (2��aCT )2 �1�p3q=2�; (4)showing that the spetrum onsists of a set of pseudo-paraboli bands with bottomsEb�� = ��aCT �1� 18(��aCT )2� ; ��aCT � 1; (5)at q = qaCT� = �2�2=p3N2; here, �aCT = �=N . Thelast quantity would be the band spaing if the termlinear in q in the radiand in (4) were disregarded, e.g.,as in Ref. [5℄. Also worth noting is that for N = p3N ,�aCT = �zCT = 2�aGR.Hene, the spetrum of an aCT ontains a nonde-generate band �=0 with a linear dispersion, followedby a manifold of degenerate � and N � � bands with apseudo-paraboli dispersion. This is similar to the aseof a metalli zCT. But an important distintion is thatin an aCT, there are two propagating states that havedi�erent wave vetors, q < qaCT� and q > qaCT� (bothvalues of ky are positive), but orrespond to the sameenergy. Another di�erene from a metalli zCT is thatthe obtained orretion to the band spaing,Eb��+1�Eb�� = �aCT �1�(�aCT )28 [3�(�+1)+1℄� ;is not linear but quadrati in �=N . This orretion issmall and an therefore be disregarded.Zigzag ribbons. Cutting an armhair arbon tubealong the zigzag diretion and �healing� damages ofthree-oordinated p2 bonding by hydrogen atomsgives a zigzag graphene ribbon (zGR). An essentialfeature of zigzag ribbons is that disrete values of0 � akx = ��� =p3 � � are ky-dependent. These valuesan be found by solving the equation [3℄sin��Nsin��(N + 1=2) = �2 os aky2 ; (6)where the minus (plus) sign in the right-hand side or-responds to the plus (minus) branh in dispersion re-lation (1). By ombining Eqs. (1) and (6), ky an beeliminated. As a result, we obtainE� = � sin(��=2)sin��(N + 1=2) : (7)We reall that only a half of the spetrum with posi-tive energies is presented. This equation substantially141



L. I. Malysheva, A. I. Onipko ÆÝÒÔ, òîì 135, âûï. 1, 2009simpli�es �nding the band struture of a zGR. In par-tiular, the extrema of E�, as funtions of ��, are givenby solutions of the equationsin(��N)sin��(N + 1) = NN + 1 : (8)For any value of ky , the minus branh in Eq. (6)has N solutions. One of these solutions is imaginary,��0 = iÆ, if ky falls into the interval 2�=3+(p3N)�1 << aky � �. The energies of suh states are within anarrow interval, E�0 (q) < (2N + 1)�1, and orrespondto states loalized near the zigzag edges. In this ase,and under the restrition NÆ � 1, exat equation (7)is well approximated byE�0 (q) = sh (� ln [2 sin(�=6� q=2)℄)sh (� ln [2 sin(�=6� q=2)℄ (2N + 1)) : (9)The inequality NÆ � 1 imposes severe restri-tions on the allowed magnitude of ky. However,the above equation desribes the dispersion ofedge states within a half of the atual interval,�=6 < q � �=3. It an be shown that for small valuesof q, [p3(N + 1=2)℄�1 � q < q < 2q, the edge-statedispersion is governed by E�0 = p3q exp ��p3Nq�.For the rest of the interval 2�=3��, exat equations (6)and (7) must be used. Di�erenes between the exatsolution of the problem and the approximate desrip-tion based on the Dira equation [6℄ are disussed inRef. [8℄.For q < q, the dispersion of the lowest energy bandin the zGR spetrum is similar to that of the �=0 bandin aCT (see Fig. 2). To obtain an analyti expressionfor this part and for higher bands, we must use realsolutions of Eq. (8), ��� � (�+1=2)�=N , � = 0; 1; : : : ,� � N . A rather umbersome proedure of �ndingthese solutions and using them in Eq. (6) yieldsE�� (q) == 12vuut3q2 + [(2� + 1)�zGR℄2 1� p3q2 !: (10)For � = 0 and q > 0, this equation is to be replaed byEq. (9).From Eq. (10), the bottoms of the � > 0 bands aredetermined byEb�� = �� + 12����zGR 1� 18 ��� + 12��zGR�2! : (11)
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Fig. 3. Condutane ladders for zigzag metalli (left), semionduting (middle), and armhair (right) arbon tubes withdi�erent irumferenes; energy sale (from bottom up): p3�=999 � 1, 999=498, 999=99, 999=51 on the left panel andsimilarly on the middle and right panels. Markers indiating band opening (band bottom for eletrons and band top forholes) are alulated from exat dispersion relation (1). For eah ladder, the straight line G(E)=G0 = g� + jEj representsan approximate dependene on energy in the limit as N !1 (zCT), N !1 (aCT). This provides a visual estimate of theauray of relativisti approximation (12), showing that graphene wires do have irregular (left), alternating (middle), andequidistant (right) spetra. Condutane ladders for graphene ribbons have pratially the same appearane, exept thatthe step height is two times smaller
m�� =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
�(� + 1=2)p3N ; zGR;�j�jN �1 + ��4p3N � ; aGRm;�j� � 1=3jN ; aGRs;2�j�jp3N ; aCT;2�j�jN �1 + ��2p3N � ; zCTm;2�j� � 1=3jN ; zCTs;

(13)
where �m� and �s� extensions in labeling indiate metal-li and semionduting aGR (zCT) and � = 0;�1; : : :for all strutures exept zGR, where � = 0; 1; : : : andthe ase � = 0, k > 2�=3 is exeptional.Equation (12) has the form of a one-dimensionalrelativisti energy�momentum relation in its onven-tional representation with the speed of light equal tounity. This is not more than a formal analogy. In

this onnetion, it is worth mentioning that alternantmaromoleules suh as polyaetilene, polyaene, andso on, also have a one-dimensional relativisti-like spe-trum of � eletrons near the Fermi energy.As follows from Eqs. (12) and (13), the spetraof ahiral graphene ribbons and arbon tubes anbe lassi�ed into three groups: (i) metalli spetrawith equally spaed bands, as for the aCT and zGR;(ii) metalli spetra with a regularly irregular bandspaing, as for the zCT and aGR; and (iii) semion-duting spetra with the band spaing alternating be-tween �=3N and 2�=3N (between 2�=3N and 4�=3N ),as for semionduting armhair ribbons (zigzag tubes).3. CONDUCTANCEIn the framework of the Landauer approah [11, 12℄,the zero-bias, zero-temperature ondutane of an idealwire is equal toG(E) = G0X� g�T�(E); (14)143



L. I. Malysheva, A. I. Onipko ÆÝÒÔ, òîì 135, âûï. 1, 2009where G0 = 2e2=h is the ondutane quantum, g� isthe degeneray of band states (spin degeneray 2 is in-luded into G0), and the transmission oe�ient T� iszero or unity, depending on whether the �th band isopen for harge arriers or not.For the band struture spei�ed in Eq. (12),T�(E) = �(E � m�� ) for ondution bands andT�(E) = �(jE�m�� j) for valene bands, where �(x) isthe Heaviside step funtion. Thus, the quantum on-dutane as a funtion of energy has the form of a lad-der, symmetrially asending with an inrease in E foreletrons, and with a derease in the energy for holes.The height of the �th ladder step is determined by theband-state degeneray g�=0 = 1 (2) for zGR (aCT),otherwise, g� = 2 (4) for GR (CT). Three types of theband spetrum identi�ed above an be translated intothree orresponding types of ondutane ladders withregular (aCT and zGR), irregular (zCTm and aGRm),and alternating (zCTs and aGRs) width of steps.Needless to say, the appearane of G(E) illustratedin Fig. 3 depends on the energy sale determined by theribbon width (tube irumferene). It an vary froma ladder-shaped urve, asending with an inrease injEj, to a straight line G = G0(g� + jEj). This lastdependene shows that metalli and semiondutinggraphene-based wires are indistinguishable as lassiondutors. Furthermore, if the irregularity of the stepwidth is resolved, the di�erene between ondutaneladders of metalli zCT (aGR) and aCT (zGR) is notquestioned, but they look identially in a larger energysale. This an be seen in Fig. 3, whih illustrates on-dutane in di�erent energy sales.The above onsideration onerns four basigraphene wires as ideal harge ondutors. It providesa useful referene for alulations of eletron and holeoherent transmission in various types of graphene on-tats.
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