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NONLINEAR INTERACTION OF A TWO-LEVEL ATOMWITH COUNTER-PROPAGATING RADIATION BEAMSOF DIFFERENT FREQUENCIESG. F. Mkrthian *Department of Quantum Eletronis, Yerevan State University0025, Yerevan, ArmeniaReeived April 23, 2008The theoretial and numerial results on the nonlinear dynamis of an atom in the �elds of two ounter-propagating radiation beams of di�erent frequenies are presented. Both resonant and nonresonant interationregimes are investigated. The atom enter-of-mass energy dependene on the �eld amplitudes manifests thenonlinear threshold e�et of an atom re�etion in the interferene �eld. This phenomenon leads to the atomaeleration or deeleration depending on its initial state. This aeleration/deeleration is of a shok haraterbeause of the impat with the moving potential barrier; it ours at ultrashort distanes of the order of radiation�eld wavelengths. Furthermore, the role of initial onditions is disussed and analyzed numerially.PACS: 37.10.Vz, 37.10.De, 37.10.Gh1. INTRODUCTIONLaser manipulation of atom enter-of-mass motionhas been extensively studied both theoretially and ex-perimentally with the appearane of lasers [1, 2℄. Sinethe �rst theoretial works [3�7℄, a ontinuous experi-mental progress in storing and ontrolling of ultraoldatoms has led to a variety of spetaular results in thelast deades (see, e.g., [8�13℄ for a review and the ref-erenes therein). The growing interest in this subjetan be largely attributed to the problems of quantuminformatis, a variety of atomi and laser spetrosopiissues, espeially at very low temperatures (it is worthnoting the unique experiments with the trapping ofseparate atoms or Bose ondensation of superooledatomi gas in optial-dipole or magneti traps).Nevertheless, the spetrum of probable mehanismsfor laser aeleration of atoms with respet to hargedpartiles is very restrited, and the main reason is theneutrality of atom for diret eletromagneti intera-tion. It is lear that in this ase, aeleration of atomsby laser �elds is possible due to the interation of the in-dued dipole moment of an atom with laser radiation.In the sope of the latter, there are two aelerationmehanisms, i.e., two types of radiative fores, dissi-*E-mail: mkrthian�ysu.am

pative and dispersive, ating on an atom interatingwith laser �elds [3�7℄. The atom is then represented asa lassial objet � a omplex partile with internaldegrees of freedom.The �rst-type fore, also alled the radiation pres-sure fore, results from the transfer of momentum fromthe light beam to the atom at the resonant satteringand is proportional to the sattering rate �. The or-responding aeleration/deeleration of an atom withmass m is � ~k�=m, where ~k is the momentum ofthe absorbed photon. With suh a fore, an atom atrest an be aelerated up to thermal veloities, or thethermal atomi beam an be stopped at the distaneof the order of one meter during a few milliseonds.The seond-type, dispersive fore, also alled thedipole or gradient fore, arises from the dispersive in-teration of the indued atomi dipole moment withthe intensity gradient of the laser beam:F � rI (r) ;where I (r) is the intensity envelope of the inident laserbeam. Beause of its onservative harater, this forean serve as an optial trap for neutral atoms [8�10℄. Asa great ahievement, the optial dipole traps of atomshave been suessfully realized [14�16℄.Interesting e�ets an also be obtained in the �eldof two ounter-propagating light beams. As a signi�-867 2*



G. F. Mkrthian ÆÝÒÔ, òîì 134, âûï. 5 (11), 2008ant appliation of radiation pressure fores, Dopplerooling of neutral atoms [17℄ and trapped ions [18℄have been realized. The latter results from a Doppler-indued imbalane between two opposite radiationpressure fores aused by the laser beams of the samefrequeny. This allows damping the atomi veloity ina few miroseonds, ahieving what is alled an �optialmolasses� [19℄.We do not attempt to review the extensive liter-ature on the laser manipulation of atoms by the o-unter-propagating light beams, apart from mentioningworks [20, 21℄, whih onsider the aeleration of atomsin a moving periodi potential trap. This relies on the�onveyor belt� provided by a frequeny-hirped optiallattie formed by two ounter-propagating laser beams.Another regime of atom aeleration has been reportedin [22℄ for the far-o�-resonant waves. It has been foundin [22℄ that in the �eld of two ounter-propagating lightbeams of di�erent frequenies, a ritial intensity of ra-diation �eld exists, above whih the atom �re�etion�from the slowed interferene wave ours. The om-bined wave �eld beomes a moving potential barrierwith respet to the atom, resulting in the atom ael-eration or deeleration depending on its initial veloity.This is a shok aeleration/deeleration, whih is in-dependent of the interation length.In this paper, the results obtained in Ref. [22℄ aredeveloped further. The theoretial and numerial re-sults on the nonlinear dynamis of an atom in the �eldsof ounter-propagating radiation beams of the di�erentfrequenies are presented. Both resonant and far-o�-re-sonant regimes of interation are investigated and therole of initial onditions is disussed and analyzed bynumerial simulations.The organization of the paper is as follows. InSe. 2, we derive the basi equations of motion andbrie�y review distint regimes of interation. In Se. 3,we present some numerial alulations and omparethem with analyti results. Finally, onlusions aregiven in Se. 4.2. BASIC MODEL AND THEORYWe study the dynamis of interation of a two-le-vel atom with the two quasi-monohromati ounter-propagating plane waves of di�erent frequenies inthe given-�eld approximation (the magnitudes of thewave �elds are assumed so strong that the radia-tion/absorption proesses annot hange the given val-ues). In the atual ases of strong wave pulses, thisapproximation is satis�ed with great auray.

The Hamiltonian of the two-level atom in the �eldof two quasi-monohromati ounter-propagating planeeletromagneti waves an be represented in the formbH = bp22m + "1j1ih1j+ "2j2ih2j+ bV ; (1)wherebV = �d12 (E1 os'1 (t; r) ++ E2 os'2 (t; r)) j1ih2j+H:: (2)is the interation Hamiltonian.The operator jsihsj (s = 1; 2) projets onto the statejsi with an energy "s. The operators j1ih2j and j2ih1jdesribe the transitions in the atomi system that aredriven by the ounter-propagating waves with the ar-rier frequenies !1 and !2 (let !1 > !2), wave numbersk1 and k2, and slowly varying amplitudes E1 and E2.The orresponding phases are'1;2 (t; r) = !1;2t� k1;2 � r:The �elds of both pulses are assumed to be linearly po-larized along the same diretion; d12 is the projetionof the atomi transition dipole moment on the polariza-tion diretion of the waves (we assume d12 to be real).Here, r and bp are the operators of the position andmomentum of the atom enter-of-mass (m).In the proess of emitting and absorbing photons,atoms hange not only their internal states but alsotheir external translational states, due to photon re-oil. If the atomi momentum hange is large om-pared to the photon momenta ~k1;2, the atom enter-of-mass motion an be desribed lassially. In this ase,the position and momentum of the atom enter-of-massobey the Hamilton anonial equations of motiondrdt = pm; dpdt = �rVeff (r; t); (3)with the e�etive potentialVeff (r; t) = Sp�b�bV � : (4)Here, b� is the density matrix orresponding to the in-ternal degrees of freedom of the atomi system. Thedensity matrix b� an be written in the formb� = �11j1ih1j+�22j2ih2j+ ��12ei!0tj1ih2j+H::� ; (5)where !0 = ("2 � "1) =~ is the frequeny of the atomitransition. The dynamis of the density matrix b� inthe interation piture are determined by the von Neu-mann equation i~�b��t = hbV ; b�i : (6)868



ÆÝÒÔ, òîì 134, âûï. 5 (11), 2008 Nonlinear interation of a two-level atom : : :The resulting equations for the density matrix elementsared�11dt = �i�21e�i!0t ���
12 ei'1(t;r) + 
22 ei'2(t;r)�+ ::; (7a)d�22dt = i�21e�i!0t ���
12 ei'1(t;r) + 
22 ei'2(t;r)�+ ::; (7b)d�12dt = ie�i!0t ���
12 ei'1(t;r) + 
22 ei'2(t;r)� (�11 � �22) ; (7)d�21dt = �iei!0t ���
12 e�i'1(t;r) + 
22 e�i'2(t;r)� (�11 � �22) : (7d)Using Eqs. (2), (4), and (5), we an obtain the followingexpression for the e�etive potential of interation:Veff (r; t) == �~
12 e�i'1(t;r)+~
22 e�i'2(t;r)� ei!0t�12+:: (8)Here, 
1;2 = E1;2d12=~ are the Rabi frequenies.To be more preise, we should add the terms de-sribing spontaneous transitions and other relaxationproesses in the set of equations (7). Sine we have nottaken the relaxation proesses into aount, our onsid-eration is orret only for the times T < �min, where�min is the minimum of all relaxation times. Therefore,full dynamis in the absene of any losses are governedby Eqs. (3), (7), and (8). These equations are a non-linear set of equations with the atomi internal (b�) andtranslational (r, p) variables de�ned self-onsistently.However, in some ases, it is possible to deouple thetranslational variables and to identify the nonlinear dy-namis of an atom enter-of-mass motion.The ase of large resonane detunings was onsid-ered in Ref. [22℄. We brie�y repeat the simple re-sults for the sake of self-onsisteny. For large reso-nane detunings (or not very strong wave �elds), whenj�1;2j � j
1;2j (�1;2 = !1;2 � !0 are the resonanedetunings for atomi internal transitions), and if theatom is initially in the ground state, the exited state

population remains small and an be negleted. Then,setting �11 � 1 and �22 � 0 in Eq. (7), we obtain�12 � e�i!0t� 
12�1 ei'1(t;r) + 
22�2 ei'2(t;r)� ; (9)and, orrespondingly, e�etive potential (8) is reduedtoVeff (r; t) = ~
1
22 � 1�1 + 1�2 ��� os�Æ!�t� zvph�� : (10)In Eq. (10), only the time dependent terms aredropped, Æ! = !1 � !2 > 0, and it is assumed thatthe waves propagate along the z axis. As we see, theatomi translational motion is governed by the slowedinterferene wave. This wave propagates with the phaseveloity vph = =n <  ( is the speed of light in va-uum). The quantityn = !1 + !2!1 � !2 > 1 (11)is the �e�etive refrative index� for a slowed inter-ferene wave. Hene, the resonant interation of anatom with two traveling vauum waves a�ets the atomenter-of-mass translational motion in the slowed wave�eld, whih is of a nonlinear-threshold nature over theinterferene wave intensity, as we show in that follows.Next, we onsider the nonlinear dynamis of trans-lational motion of the atom enter-of-mass in the�eld of the slowed traveling wave (10), at the near-resonant transitions between the atomi internal quan-tum states: j�1;2j � j
1;2j. In this ase, the internaland translational variables are also separated, whih al-lows integrating the redued equations of motion. Thisis lear if the resonane ondition for two waves!0 = !2 + !12 (12)holds, whih requires inverse symmetri detun-ings �1 = ��2. For simpliity, we also assume
1 = 
2 � 
. The set of equations (7) an then berewritten asd�12dt = i
os�Æ!2 �t� zvph���� exp��i Æ!z2 � (�11 � �22) ; (13a)d�11dt = i
os�Æ!2 �t� zvph���� �exp�i Æ!z2 � �12 � ::� ; (13b)869



G. F. Mkrthian ÆÝÒÔ, òîì 134, âûï. 5 (11), 2008�22 = 1� �11; �21 = ��12; (13)and e�etive potential (8) is redued toVeff (r; t) = ~
os�Æ!2 �t� zvph���� �exp��i Æ!z2 � �21 + ::� : (14)If vph � , whih is satis�ed with great auray for theonsidered setup, the slow osillations of the exponen-tial funtion exp [�iÆ!z=2℄ an be ignored in Eqs. (13)and (14). This is justi�ed if the onditionjzj � 2Æ! � n !0 (15)is satis�ed, whih pratially does not limit the inter-ation length for atual pulses beause of very largevalues of the e�etive refrative index n � 1 (this isequivalent to the ondition vph � ).Then, these equations an be solved exatly subjetto ertain initial onditions. The general solution forthe density matrix elements is�11 = 12 + Im [�12 (0)℄sin#0 os# (t) ; (16)Im [�12 (t)℄ = Im [�12 (0)℄sin#0 sin# (t) ; (17)Re [�12 (t)℄ = onst; (18)where# (t) = 2 tZ0 
 (t0) os�Æ!2 �t0 � z (t0)vph �� dt0 + #0 (19)and tg #0 = Im [�12 (0)℄�11 (0)� 1=2 : (20)This solution represents Rabi osillations with a mod-ulated Rabi frequeny. For the e�etive potential, weobtainVeff (r; t) = 2~
Re [�12 (0)℄�� os�Æ!2 �t� zvph�� : (21)As an be seen from Eqs. (10) and (21) in thesetwo distint ases, translational motion of an atom is

governed by the slowed interferene wave. For the near-resonant interation, in ontrast to the far-o�-resonantase, the amplitude of the e�etive interation poten-tial depends on the initial internal atomi state. For anonvanishing interation, the atom must be prepared ina superposition state, and to maximize the interationpotential, the equal superposition of the states j1i andj2imust be ahieved. For the same wave intensities, theamplitude of e�etive interation potential (21) is thenat least one order of magnitude larger than the ampli-tude expeted in the nonresonant interation regime.We now turn to the solution of the equation of mo-tion for the enter-of-mass motion of an atom. Equa-tions (3) imply the onservation of transversal momen-tum of the atom: px;y = onst. Then, with the depen-dene of the e�etive potential on time and oordinatetaken into aount in both resonant and nonresonantases for the monohromati waves in Eqs. (3), we an�nd the integral of motionE � vphpz = onst = E0 � vphp0z; (22)where E0 and p0z are the initial energy and the lon-gitudinal momentum of the atom. For the quasi-monohromati waves with slowly varying envelopes,Eq. (22) represents an adiabati integral, when thewaves are turned on and o� adiabatially.Using Eq. (22), we an obtain the veloity of theatom in the �eldvz = vph 241�s�1� v0zvph�2 � Veff (z; t)Eph 35 ; (23)vx = v0x; vy = v0y; (24)where v0 = (v0x; v0y; v0z) is the initial veloity of theatom and Eph = mv2ph=2 is the kineti energy of a par-tile orresponding to the veloity vph.As an be seen from Eq. (23), when the maximalvalue of the interation potential Veff (z; t)max = jV0j islarger than the value (whih is alled ritial in whatfollows) Vr = Eph�1� v0zvph�2 ; (25)expression (23) for the atom veloity may beome om-plex. This omplexity is bypassed in the omplex planeby ontinuously passing from one Riemann sheet to an-other, at whih the root hanges its sign. Hene, theatom veloity remains real everywhere and the multi-valuedness of expression (23) also disappears. Indeed,870



ÆÝÒÔ, òîì 134, âûï. 5 (11), 2008 Nonlinear interation of a two-level atom : : :if jV0j < Vr, we should take the root with the sign��� in the Eq. (23) if v0z � vph and with the sign �+�if v0z � vph, to satisfy the initial ondition vz = v0zat Veff (z; t = �1) = 0: Then, after the interation(Veff (z; t = +1) = 0), the energy of the atom re-mains unhanged. However, when jV0j > Vr, the valueVeff (z(t0); t0) = Vr (where z(t0) is the atom oordi-nate at the instant t = t0) beomes a turning point,and we should hange the sign of the root for t > t0ompared with the instants t � t0.We now onsider the behavior of the atom in the�eld in this situation. As we see, the atom annot pen-etrate the region of the �eld Veff (z; t) > Vr, whereexpression (23) beomes omplex. The slowed inter-ferene wave then beomes a potential barrier for theatom and the re�etion of the atom from suh a mov-ing barrier ours. To explain the physis of this phe-nomenon, it is neessary to larify the meaning of theritial �eld.This is an essentially nonlinear phenomenon ofthreshold nature, and the ritial intensity of the in-terferene wave is the threshold value for this proess.Namely, Eq. (23) shows that the ritial value Vr isthe value of the potential at whih the longitudinalveloity of the atom in the �eld vz(t) beomes equalto the phase veloity of the slowed interferene wave:vz(t) = vph, irrespetive of the atom initial veloityv0z : The last formula is the ondition of resonanewith the Doppler-shifted waves frequenies, at whihthe oherent sattering, that is, the indued satteringof ounter-propagating waves on an atom ours:!1�1� vz(t) � = !2�1 + vz(t) � : (26)Under this ondition, the nonlinear resonane oursbeause the resonant veloity of the atom vz(t) = vphis aquired in the �eld at the value Veff = Vr (due tothe wave intensity e�et).We note that the existene of a ritial intensity inoherent wave �elds is the feature of indued oherentproesses, suh as Cherenkov and Compton proesses(as well as in an undulator), where nonlinear resonantphenomena have been revealed [23℄. Then, at the riti-al point, the resonant absorption of photons from onewave and re-emission into the other wave ours, re-sulting in a break of the synhronism vz(t) = vph be-tween the atom and the slowed interferene wave (ei-ther vz(t) > vph or vz(t) < vph), and the atom aban-dons it: the re�etion of the atom from the movingbarrier ours.We note that this is atually a re�etion in theframe of referene moving with the veloity V = vph,

whih is the rest frame of the slowed interferene wave.In this frame, the atom with the veloity v00z swoops onthe motionless barrier and, as is seen from Eq. ( 23),an elasti re�etion of the atom ours: v0z = � v00z .Thus, if the maximal value of the interation potentialjV0j > Vr, then the atom veloity after the interationis given by vzf = 2vph � v0z : (27)As we see from Eq. (27), if the slowed interferenewave pulse initially overtakes the atom (v0z < vph ),then vzf > v0z and the atom is aelerated. But ifthe atom initially overtakes the wave (v0z > vph), thenvzf < v0z and the deeleration of the atom ours. Forthe resonant atoms (v0z = vph), Vr = 0 and onse-quently the atom veloity does not hange (vzf = v0z).For the kineti energy hange of the atom enter ofmass, we have �E = 4Eph�1� v0zvph� : (28)It follows from this formula that the aeleration of theatom depends neither on the �eld magnitude (one it isabove the threshold �eld) nor on the interation length.Formulas (27) and (28) show that aeleration or deel-eration of the atom is de�ned by the key parameters ofthis proess � the atom initial veloity and the phaseveloity of the slowed interferene wave vph.3. NUMERICAL TREATMENTIn this setion, we present some numerial simula-tions that illustrate the nonlinear piture of interationof the atom with the two ounter-propagating waves.The time evolution of the system of equations (3), (7)is found with a Runge�Kutta method. The alula-tions were made for a quasi-monohromati wave �eldsproviding the adiabati turn on/o� of the interation.This is ahieved by desribing the envelopes with theGaussian funtions
1;2(t) = 
0 exp ��(t� 3�)2=2�2� ;where � and
0 haraterize the pulse duration and am-plitudes. We onsider the resonant interation regimeassuming the atom initially to be in an equal super-position of the states j1i and j2i (�12 (0) = 1=2). Forall alulations, we took 
0=Æ! = 103. We note thatthe qualitative piture of an atom enter-of-mass mo-tion pratially is independent of this ratio. The pulseduration has been hosen as Æ!� = 20 (the pulse dura-tion should be larger than the period of the interferene871
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tion ours at the distanes smaller than the radiationwavelength, on�rming the shok harater of aeler-ation. This is also on�rmed in the laboratory frame,whih is well seen from Fig. 4, whih displays the roleof initial onditions, showing the �nal energy versusthe initial position z0 of the atom. We see that theaeleration is negligibly small below the nonlinear res-onane threshold (Fig. 4a). The net gain is de�ned bythe initial phase, whih is in aordane with the per-turbation theory. When the amplitude of the slowedinterferene wave is above the ritial point (Fig. 4b),the �nal energy for re�eted partiles is almost onstant(Ef = 4Eph).We make some estimations. Best suited systems forthe near-resonant interation regime are the Rydbergatoms, i.e., the highly exited states of hydrogen or al-kali metal atoms [24℄. Here, we are mainly interestedin irular Rydberg states. These are the states withthe highest allowed angular momentum l = n0 � 1 fora given prinipal quantum number n0 (with jm0j = l,where m0 is the magneti quantum number). For thesestates, only one resonant dipole transition is allowed:n0 $ n0 + 1;and therefore suh states losely approximate a two-level system with an extremely long lifetime and arewidely used in the mirowave avity quantum eletro-dynamis experiments [25℄. Hene, with our notation,we set j1i � jn0; l = n0 � 1;m0 = n0 � 1iand j2i � jn0 + 1; l = n0;m0 = n0 � 1i:For a Rydberg atom state with a large n0 and�n0 = 1,the transition frequeny is!0 � "0~n30 = 1n30 at:u:;where "0 is the atomi unit of energy (27:2 eV). Here,we have taken into aount that the quantum defetthat orrets for the deviation of the binding potentialfrom a purely hydrogeni situation is small for highorbital moments l. The transition dipole moment be-tween neighboring Rydberg states [26℄ is estimated asd12 = p2ea0 22n0+2nn0+30 (n0 + 1)n0+2(2n0 + 1)2n0+3 � n20p2 at:u:;where a0 is the Bohr radius (e is the elementaryharge). The rate of spontaneous emission is given by873



G. F. Mkrthian ÆÝÒÔ, òîì 134, âûï. 5 (11), 2008� = �0n50 ;where �0 = 2�43a0 � 1010 s�1is the harateristi rate and � is the �ne-struture on-stant. Then, the pulse duration of the waves is assumedto be � � 1=10�, whih gives Æ! � 2 � 102� in aor-dane with the ondition Æ!� = 20. For the e�etiverefrative index, we then obtainn � 2!0Æ! = 10�2 "0~�0n20 � 4 � 104n20:For an atom initially at rest (with an atomi weightA), the ritial �eld and, onsequently, Rabi frequenyis given byVr = ~
min = m 22n2 � 1: 2 � 10�2 An40 at:u:This value should be muh smaller than the frequenydi�erene between the main resonant and nonresonanttransitions (n0 $ n0 � 1, n0 + 1 $ n0 + 2), whih isof the order of 3=n40 at:u: This ondition is satis�ed forthe hydrogen atom as well as for the light alkali atoms(lithium, sodium), and the model of supposed two-levelatom is su�iently well justi�ed. We note that the re-quired �elds for this e�et should beE & 2 � 10�2 An60 at:u:;whih are muh smaller than the atomi �eldsE0 = 116n40 at:u:for the Rydberg atoms in the state with a large n0.In partiular, for the prinipal quantum numbern0 = 40 and !0=2� � 103 GHz (with the orrespond-ing e�etive refrative index given by n � 6:4 � 107),an atom initially at rest an be aelerated up to theveloities 103 m=s. The required �elds for this e�etare E & 2:5 � 10�2A V/m, whih orresponds to waveintensities I � 4 � 10�5 W/m2, for lithium atoms withA = 7. In the inverse regime of deeleration, suh anatomi beam an be stopped with the same �elds.4. CONCLUSIONWe have presented a theoretial treatment of non-linear dynamis of the two-level atom interating with

ounter-propagating radiation �elds of di�erent fre-quenies. We have shown that in this indued oher-ent proess, a ritial intensity of the wave �elds ex-ists above whih a nonlinear phenomenon of a neutralatom re�etion from the slowed interferene wave o-urs. This results in the atom aeleration or deel-eration depending on its initial veloity. We have ex-amined various limits of atomi dynamis dependingon the resonane detuning. For the near-resonant in-teration, in ontrast to the far-o�-resonant ase, theamplitude of the slowed interferene wave depends onthe initial internal atomi state. The role of initial on-ditions has been disussed and analyzed by numerialalulations. The numerial simulations are in goodagreement with the analyti results.In the onsidered sheme, aeleration/deelerationdepends neither on the �eld magnitude (one it is abovethe threshold �eld) nor on the interation length, andit may serve as a promising way for e�ient manip-ulation of ultraold atoms. The threshold haraterof suh an aeleration may be used for separation ofatoms by veloities.The author aknowledges helpful disussions withProf. H. K. Avetissian. This work was supported by theInternational Siene and Tehnology Center (ISTC)Projet No. A-1307.REFERENCES1. V. G. Minogin and V. S. Letokhov, Laser Light Pres-sure on Atoms, Gordon and Breah, New York (1987).2. A. P. Kazantsev, G. J. Surdutovih, and V. P. Yakov-lev, Mehanial Ation of Light on Atoms, World Si-enti�, Singapore (1990).3. A. G. Askar'yan, Zh. Eksp. Teor. Fiz. 41, 616 (1962).4. V. S. Letokhov, Pis'ma v Zh. Eksp. Teor. Fiz. 7, 272(1968).5. A. P. Kazantsev, Zh. Eksp. Teor. Fiz. 63, 1628 (1973);ibid. 66, 1599 (1974).6. R. J. Cook, Phys. Rev. A 20, 224 (1979); ibid. 22, 1078(1980).7. J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606(1980).8. S. Chu, Rev. Mod. Phys. 70, 686 (1998).9. C. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998).10. W. D. Phillips, Rev. Mod. Phys. 70, 721(1998).874
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