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SOLUTIONS OF INDEPENDENT DGLAP EVOLUTION EQUATIONSFOR THE GLUON DISTRIBUTION AND SINGLET STRUCTUREFUNCTIONS IN THE NEXT-TO-LEADING ORDER AT LOW xG. R. Boroun *Physis Department, Razi University67149, Kermanshah, IranReeived Deember 18, 2007We present a set of independent formulas to extrat the gluon distribution and the singlet struture funtionfrom its derivatives with respet to lnQ2 in the next-to-leading order of the perturbation theory at low x basedon a hard Pomeron exhange. In this approah, both singlet quarks and gluons have the same high-energybehavior at small x. This approah requires the QCD input parameterizations for independent DGLAP evolu-tions, whih we alulated numerially and ompared with the MRST, GRV, and DL models. The Pomeron hasa hard nature. Its evolution gives a good �t to the experimental data. The obtained values are in the range10�4 � x � 10�2 at Q2 = 20 GeV2.PACS: 12.38.-t, 12.39.-x, 11.55.Jy1. INTRODUCTIONThe Dokshitzer�Gribov�Lipatov�Altarelli�Parisi(DGLAP) [1℄ evolution equations are fundamentaltools to study the Q2- and x-evolutions of struturefuntions, where x is the Bjorken saling parameterand Q2 is the squared four-momentum transferredin a deep inelasti sattering proess [2℄. The mea-surements of the F2(x;Q2) struture funtion by deepinelasti sattering proesses in the small-x region haveopened a new era in parton density measurementsinside hadrons. The struture funtion re�ets themomentum distributions of the partons in the nuleon.It is also important to know the gluon distributioninside a hadron at low x beause gluons are expetedto be dominant in this region. The steep inreaseof F2(x;Q2) towards low x observed at the had-ron�eletron ring aelerator (HERA) also indiates asimilar inrease in the gluon distribution towards lowx in perturbative quantum hromodynamis. In theusual proedure, the deep inelasti sattering data areanalyzed by the next-to-leading order QCD �ts basedon the numerial solution of the DGLAP evolution*E-mail: boroun�razi.a.ir

equations and it is found that the DGLAP analysisan well desribe the data in the perturbative regionQ2 � 1 GeV2 [3℄. As an alternative to the numer-ial solution, one an study the behavior of quarksand gluons via analyti solutions of the evolutionequations. Although exat analyti solutions of theDGLAP equations annot be obtained in the entirerange of x and Q2, suh solutions are possible underertain onditions [4; 5℄ and are then quite suessfulas far as the HERA small-x data are onerned.Small-x behavior of struture funtions for �xed Q2re�ets the high-energy behavior of the virtual Comp-ton sattering total ross setion with inreasing thetotal enter-of-mass energy squared W 2 beauseW 2 = Q2� 1x � 1� :The appropriate framework for the theoretial desrip-tion of this behavior is the Regge-pole exhange pi-ture [6℄. It an be asserted with on�dene that theRegge theory is one of the most suessful approahesto the desription of high-energy sattering of hadrons.This high-energy behavior an be desribed by twoontributions: an e�etive Pomeron with its intereptslightly above unity (�1:08) and the leading mesonRegge trajetories with the interept �R(0) � 0:5 [7℄.805



G. R. Boroun ÆÝÒÔ, òîì 133, âûï. 4, 2008The Regge pole model gives the following param-eterization of the deep inelasti sattering struturefuntion F2(x;Q2) at small x:F2(x;Q2) =Xi e�i(Q2)x1��i(0): (1)Here, the singlet part of F2 is ontrolled at small x bya Pomeron exhange and the nonsinglet partFNS2 = F p2 � Fn2by the A2 Reggeon [3℄.At small x, the dominant role is played by gluons,and the basi dynami quantity is the unintegratedgluon distribution f(x;Q2t ), where x denotes the mo-mentum fration of a parent hadron arried by a gluonand Qt is its transverse momentum. The unintegrateddistribution f(x;Q2t ) is related to the more familiarsale-dependent gluon distribution xg(x;Q2) as [4℄xg(x;Q2) = Q2Z dQ2tQ2t f(x;Q2t ): (2)In the leading ln(1=x) approximation, the unintegrateddistribution f(x;Q2t ) satis�es the Balitsky�Fadin�Ku-raev�Lipatov (BFKL) equation [8℄f(x;Q2t ) = f0(x;Q2t ) + �s �� 1Zx dx0x0 Z d2q�q2 � Q2t(q +Qt)2 �� f(x0; (q+Qt)2)� f(x0; Q2t )�(Q2t � q2)� ; (3)where �s = 3�s� : (4)This equation gives a sum over the ladder diagramswith a gluon exhange aompanied by virtual orre-tions that are responsible for the gluon reggeization.In the �xed-oupling ase, this equation an be solvedanalytially and the leading behavior of its solution atsmall x is given byf(x;Q2t ) � (Q2t )1=2 x��BFKLsln� 1x� �� exp0�� ln2 �Q2t=Q2�2�00 ln(1=x) 1A ; (5)

where �BFKL = 4 ln(2)�s; �00 = �s28�(3)with the Riemann zeta funtion �(3) � 1:202. Theparameter Q is of a nonperturbative origin.The quantity 1 + �BFKL is equal to the intereptof the so-alled BFKL Pomeron. Its potentially largemagnitude (�1.5) should be ontrasted with the in-terept �soft � 1:08 of the e�etive soft Pomeron,whih has been determined from the phenomenolog-ial analysis of the high-energy behavior of hadroniand photoprodution total ross setions. When themodel in [7℄ is used in deep inelasti sattering (speif-ially, in studying the proton struture funtions), aseond, �hard�, Pomeron (in ontrast to the �rst onealled �soft� beause of its interept near 1) must beadded, with a larger interept �hp � 1:4 [9; 10℄.The hypothesis of the Pomeron with the data of thetotal ross setion shows that a better desription isahieved in alternative models with the Pomeron hav-ing the interept 1, but with a harder j singularity (adouble pole) [11℄. This model has two Pomeron om-ponents, eah of them with the interept �P = 1; oneis a double pole and the other is a simple pole [12℄.It is tempting, however, to explore the possibil-ity of obtaining approximate analyti solutions of theDGLAP equations themselves in the restrited domainof low x at least. Approximate solutions of the DGLAPequations have been reported [13�15℄ with onsider-able phenomenologial suess. In suh an approxi-mate sheme, one uses a Taylor expansion valid at lowx and reframes the DGLAP equations as partial di�er-ential equations in the variables x and Q2, whih anbe solved by standard methods.In this paper, we suggest approximate analyti inde-pendent solutions of the next-to-leading order DGLAPequations for the gluon distribution and the singletstruture funtion. Therefore, we onentrate on thePomeron in our alulations, although good �ts to theresults learly show that the gluon distribution and thesinglet struture funtion need a model with a hardPomeron. We ompare our results with those from theGluk�Reya�Vogt (GRV) model [16℄, Martin�Roberts�Stirling�Thone (MRST) model [17℄ and Donnahie�Landsho� (DL) �t [10℄ of parton distributions.This paper is organized as follows. In Se. 2, solu-tions of the DGLAP equations by the Taylor expansionare presented. Setion 3 is devoted to the results anddisussions.806



ÆÝÒÔ, òîì 133, âûï. 4, 2008 Solutions of independent DGLAP evolution equations : : :2. SOLUTION OF THE DGLAP EQUATIONSBY THE TAYLOR EXPANSIONThe HERA data should determine the small-x be-havior of gluon and singlet quark distributions. Wespei�ally onsider the singlet ontribution to the pro-ton struture funtion:F ep2 (x;Q2) = 518�(x;Q2) + 318FNS2 (x;Q2);�(x;Q2) � x NfXi=1(qi(x;Q2) + qi(x;Q2)); (6)where Nf is the number of ative �avors. At smallx, the nonsinglet ontribution FNS2 (x;Q2) is negligi-ble and an be ignored. At small x and large Q2, thesinglet quark distribution �(x;Q2) is essentially deter-mined by the generi instability of the gluon distribu-tion xg(x;Q2). To see how this works, we onsiderthe singlet Altarelli�Parisi equations [1℄, whih desribeperturbative evolution of xg(x;Q2) and �(x;Q2).The DGLAP evolution equations for the singletquark struture funtion and the gluon distributionhave the formsdG(x;Q2)d lnQ2 = �s2� �� 1�xZ0 dz �PLO+NLOgg (1� z)G� x1� z ;Q2� ++ PLO+NLOgq (1� z)�� x1� z ;Q2�� ; (7)d�(x;Q2)d lnQ2 = �s2� �� 1�xZ0 dz �PLO+NLOqq (1� z)�� x1� z ;Q2� ++ 2nfPLO+NLOqg (1� z)G� x1� z ;Q2�� ; (8)where the splitting funtions are the leading-order (LO)and next-to-leading order (NLO) Altarelli�Parisi split-ting kernels [1; 18℄. In the next-to-leading order, therunning oupling onstant �s=2� is given by�s2� = 2�0t �1� �1 ln t�20t � ; (9)where �0 = 13(33� 2Nf ); �1 = 102� 383 Nf :

The variable t is de�ned ast = ln�Q2�2�and � is the QCD ut-o� parameter.To �nd an analyti solution, we note that the split-ting kernels have the following forms as z ! 0 [19℄:PLO+NLOgg (z) = 2CAz + �s2� �� 12CFNfTR � 46CANfTR9z ;PLO+NLOgq (z) = 2CFz + �s2� �� 9CFCA � 40CFNfTRz ;PLO+NLOqq (z) = �s2� 40CFNfTR9z ;PLO+NLOqg (z) = �s2� 40CANfTR9z :
(10)

For the SU(N) gauge group, we haveCA = N; CF = N2�12N ; TF = NfTR; ; TR = 12 ;where CF and CA are the olor Casimir operators.We introdue the standard parameterizations ofgluon and singlet distribution funtions as�(x;Q2) = ASx�ÆS (1� x)�S �� �1 + �Spx+ Sx� � e�(x;Q2)x�ÆS ;G(x;Q2) = Agx�Æg (1� x)�g �� �1 + �gpx+ gx� � eG(x;Q2)x�Æg ; (11)where the usual assumption is that Æi(=S;g) = 0. How-ever, the small-x behavior ould well be more singu-lar. We note that the behavior of Eqs. (11) with a Q2-independent value for Æi(=S;g) obeys the DGLAP equa-tions when x�Æi(=S;g) � 1 [4℄. Aording to the Reggetheory, the high-energy (low-x) behavior of both glu-ons and sea quarks is ontrolled by the same singularityfator in the omplex angular momentum plane [6℄, andwe therefore expet ÆS = Æg = Æ, where Æ is taken asa onstant fator throughout the alulation. For thestruture funtions, we takeef(x;Q2) = xÆf(x;Q2)to be �nite at x = 0 with Æ satisfying 0 � Æ �� 1=2 [20℄, i.e.,eG(x) = xÆG(x); e�(x) = xÆ�(x):807



G. R. Boroun ÆÝÒÔ, òîì 133, âûï. 4, 2008Expanding eG(x=1� z) and e�(x=1� z) about x = 0, weobtain eG� x1� z� = eG(0) + x1� z eG0(0);e�� x1� z� = e�(0) + x1� z e�0(0): (12)The assumptions in these equations are the onvergeneand the possibility to neglet O(x2) terms.Inserting Eqs. (10) and (11) in Eqs. (7) and (8), weobtain the DGLAP equations for the gluon and singletevolutions at small x:dGd lnQ2 = �s2� 1�xZ0 dz� �1� z + �s2� 9(1� z)���� x1� z��Æ � � eG(0) + x1� z eG0(0)�+ �s2� �� 1�xZ0 dz� �1� z + �s2� �9(1� z)�� x1� z��Æ �� �e�(0) + x1� z e�0(0)� (13)and d�d lnQ2 = �s2� 1�xZ0 dz��s2� �9(1� z)���� x1� z��Æ � �e�(0) + x1� z e�0(0)�+ �s2� �� 1�xZ0 dz(2nf )��s2� �9(1� z)�� x1� z��Æ �� � eG(0) + x1� z eG0(0)� ; (14)where� = 2CA;  = 12CFNfTR � 46CANfTR;� = 2CF ; � = 9CFCA � 40CFNfTR;� = 40CFNfTR; � = 40CANfTR:Solving these equations and taking all the aboveonsiderations into aount, we �nddGd lnQ2 == UI " ÆÆ�1jÆ � 1jÆG�x ÆjÆ � 1j�� 1Æ eG� ÆjÆ � 1j�#++UII " ÆÆ�1jÆ�1jÆ��x ÆjÆ�1j��1Æ e�� ÆjÆ�1j�# ; (15)

and d�d lnQ2 == VI " ÆÆ�1jÆ � 1jÆ��x ÆjÆ � 1j�� 1Æ e�� ÆjÆ � 1j�#++VII " ÆÆ�1jÆ�1jÆG�x ÆjÆ�1j��1Æ eG� ÆjÆ�1j�# ; (16)whereUI = �s2�� + ��s2��2 9 ; UII = �s2�� + ��s2��2 �9 ;VI = ��s2��2 �9 ; VII = ��s2��2 (2nf ) �9 :The funtion ef(Æ=jÆ�1j) (f = G;�) is a small onstantat x = 0. At small x, this onstant an be negleted inEqs. (15) and (16) due to the singular behavior of thegluon distribution. We therefore havedGd lnQ2 = � [UIG(�x) + UII�(�x)℄; (17)and d�d lnQ2 = � [VI�(�x) + VIIG(�x)℄; (18)where � = ÆÆ�1jÆ � 1jÆ ; � = ÆjÆ � 1j :These equations are a set of formulas to extrat thegluon distribution funtion from the singlet struturefuntion and its derivative d�=d lnQ2 and also the sin-glet struture funtion from the gluon distribution andits derivative dG=d lnQ2 at small x in the next-to-leading order of the perturbation theory.A set of formulas to extrat the gluon distributionfuntion from the deep inelasti struture funtion F2and its derivative dF2=d lnQ2 at small x in the leadingand next-to-leading orders of the perturbation theorywas given in [4℄. For the spei� value Æ = 0:5 and thenumber of �avors Nf = 4, the authors of [4℄ extratedthe gluon distribution with the help of this equation:xg(x;Q2) = 10592e 1� 11 + 26:93� �dF2(x;Q2)d lnQ2 ++ 163 ��10760 �2 ln 2�F2(x;Q2)+O(�2; x1�Æ)� ; (19)where e = fXi e2i808
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Fig. 1. Our gluon predition in Eq. (21) using the stru-ture funtion F2 and dF2=d lnQ2 determined in [21℄ fora range of x values at Q2 = 20 GeV2 (solid irles).The error bars show total errors to the H1 data. Weompare our results with the KP model [4℄ (N), theEKL model [24℄ (H), and the MRST �t [17; 22℄ (solidline)is the sum of squares of quark harges and�(Q2) = �s(Q2)4� :A di�erent method for determining the gluon distribu-tion at small values of x was proposed in [24℄ based onthe solution of the DGLAP evolution equations in themomentum spae up to the next-next-to-leading order.In this method, the quark and gluon momentum den-sities are assumed to behave as x�!0 , where !0 is aparameter whose atual value must be extrated fromthe data. Here, the gluon momentum density for four�avors isxg(x;Q2) = 18=5PFG(!0) � dF2d lnQ2 � PFF (!0)F2� ; (20)where the evolution kernels PFG and PFF alulatedin theMS sheme are expanded up to third order in �s.Using Eq. (18), we an arrive at the gluon distri-bution funtion from the F2 proton struture funtionand its saling violation at low x asxg(x;Q2) = 185VII �12 dF2d lnQ2 � VIF2� : (21)By means of these equations, we have extrated thegluon distribution from HERA data using the slopesdF2=d lnQ2 determined in [21℄. Figure 1 shows theextrated values of the gluon distribution ompared to
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Fig. 2. Behavior of the � funtion versus Æ valuesthe Kotikov�Parente (KP) model [4℄, the Ellis�Kunszt�Levin (EKL) model [24℄, and the MRST �t [17; 22℄.This result indiates that our alulations, based on theavailable struture funtions and their derivatives [21℄,are of the same form as the one predited by QCD.In the Regge theory, the high-energy behavior of thehadron�hadron and photon�hadron total ross setionsis determined by the Pomeron interept �P = 1+Æ andis given by �tot(h)p(�) � �Æ :This behavior is also valid for a virtual photon forx � 1, leading to the well-known behavior F2 � x�Æof the strutures at �xed Q2 and x ! 0. The powerÆ is found to be either Æ = 0 or Æ = 0:5. The �rstvalue orresponds to the soft Pomeron and the seondvalue to the hard (Lipatov) Pomeron interept. Theform x�Æg for the gluon parameterization at small xis suggested by Regge behavior, but whereas the on-ventional Regge exhange is that of the soft Pomeron,with Æg � 0:0, one may also allow a hard Pomeronwith Æg � 0:5. The form x�ÆS in the sea-quark pa-rameterization omes from similar onsiderations be-ause the proess g ! qq dominates the evolution ofsea quarks at small x. Hene, the �ts to early HERAdata have the onstraint ÆS = Æg = Æ, and the value ofÆ should be lose to 0:5 in quite a broad range of smallx [4; 9; 10; 25℄. Figure 2 illustrates the behavior of the� funtion in the kinemati region. The derivative ofthe � funtion is zero at Æ = 0:5. For the spei� valueÆ = 0:5, we obtaindGd lnQ2 = 2[UIG(x) + UII�(x)℄; (22)809



G. R. Boroun ÆÝÒÔ, òîì 133, âûï. 4, 2008and d�d lnQ2 = 2[VI�(x) + VIIG(x)℄: (23)We now disuss how the presented results give theindependent evolution equations for the gluon and sin-glet struture funtions at small x. By solving theseequations, we �ndG(x;Q2) = 12VII �12 dd lnQ2 � 1UII � dG(x;Q2)d lnQ2 ++ 12UII d2G(x;Q2)d ln2Q2 � dd lnQ2 � UIUII �G(x;Q2) �� UIUII dG(x;Q2)d lnQ2 ��� VIVII � 12UII dG(x;Q2)d lnQ2 � UIUIIG(x;Q2)� ; (24)and�(x;Q2) = 12UII �12 dd lnQ2 � 1VII � d�(x;Q2)d lnQ2 ++ 12VII d2�(x;Q2)d ln2Q2 � dd lnQ2 � VIVII ��(x;Q2) �� VIVII d�(x;Q2)d lnQ2 ��� UIUII � 12VII d�(x;Q2)d lnQ2 � VIVII �(x;Q2)� : (25)Inserting the e�etive power-law behavior orrespond-ing to Eq. (11) in these equations gives12VII 12UII d2 eG(Q2)d ln2Q2 + � 12VII 12 dd lnQ2 � 1UII � �� 12VII UIUII � VIVII 12UII � d eG(Q2)d lnQ2 + � VIVII UIUII �� 12VII dd lnQ2 � UIUII �� 1� eG(Q2) = 0; (26)and 12UII 12VII d2e�(Q2)d ln2Q2 + � 12UII 12 dd lnQ2 � 1VII � �� 12UII VIVII � UIUII 12VII � de�(Q2)d lnQ2 + � VIVII UIUII �� 12UII dd lnQ2 � VIVII �� 1��(Q2) = 0: (27)These equations show that the struture funtionsef(Q2) are funtions of Q2. The lnQ2 dependene of

ef(Q2) is observed to be nonlinear [21℄. It an be welldesribed by a quadrati expressionefi(Q2) = ai + bi lnQ2 + i(lnQ2)2; i = g;�; (28)where the funtion ef(Q2) is determined by the evolu-tion equation resulting from Eqs. (26) and (27) with thestarting parameterizations of partonsQ2 = Q20 given bythe input distributions [10; 16; 17℄ of the gluon and thesinglet and its derivatives, respetively. Therefore, thee�etive power-law behavior of the gluon distributionand the singlet struture funtion orresponds toG(x;Q2) = (ag + bg lnQ2 + g(lnQ2)2)x�0:5; (29)and�(x;Q2) = (a� + b� lnQ2 + �(lnQ2)2)x�0:5: (30)3. RESULTS AND DISCUSSIONIn this paper, we obtained a new independent evolu-tion desriptions for the gluon distribution and singletstruture funtion based on Regge-like behavior of dis-tribution funtions via Eqs. (24) and (25). In theseequations, we need the input funtions F2(x;Q20) andG(x;Q20) and the derivatives of F2(x;Q20) and G(x;Q20)with respet to lnQ2 at eah onstant x value from theQCD parton distributions in the literature [10; 16; 17℄.We ompared our results of the gluon distribution andsinglet struture funtion in the next-to-leading orderwith the MRST model [17℄ and GRV model [16℄ pa-rameterizations and the DL �t [10℄. We have takenthe parameterizations �t to the H1 data in [21℄ withx < 0:1 and 2 GeV2 � Q2 � 150 GeV2. Here, we usedthe QCD ut-o� parameter �4MS = 0:323 GeV [17℄ for�s(Mz2) = 0:119.In Figs. 3�5, we show the predition of Eqs. (26)and (29) for the gluon distribution funtion. In thesealulations, we need G(x;Q20) and its derivative withrespet to lnQ2 at Q2 = Q20. In Fig. 3, we ompareour results for the gluon distribution funtion with theDL �t [10℄, Martin�Roberts�Stirling (MRSD0�) �t [23℄,and MRST �t [17℄. We have taken the DL parametriform for the starting distribution at Q20 = 5 GeV2 givenbyxg(x;Q2) = 0:95(Q2)1+�0(1 +Q2=0:5)�1��0=2x��0 ;where �0 is equal to 0:437 aording to a hard Pomeronexhange. As an be seen, the values of the gluon distri-bution inrease as x dereases but its rate of inrementis muh higher than the MRSD0� and MRST �ts. But810
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Fig. 3. The gluon distribution given by Eqs. (26) and(29) versus x at �xed Q2 = 20 GeV2 (solid irles),ompared with the DL �t [10℄ (solid line), the MRSD0��t [23℄ (dotted line), and the MRST �t [17℄ (dashedline). The starting parameterization of the gluon den-sity at Q20 = 5 GeV2 is given by the DL modelwe do observe that there is some violation at small x.This is beause the hard Pomeron exhange de�ned bythe DL model is expeted to hold in the small-x limit.One an see that the saling with the DL �t is nearlypreserved in this ase.To better illustrate our alulations at small x, weplot G(x) versus the x variable (see Fig. 4). It an belearly seen that our results inrease as x dereases, butat a somewhat smaller rate. In this �gure, we take thenext-to-leading-order GRV �t [16℄ input gluon densityat Q20 = 1 GeV2 and ompare our results with the GRV�t, MRSD0� �t [23℄, and MRST �t [17℄. For a onstantQ2, there is a ross-over point for both urves, whosepreditions are numerially equal. The ross-over pointshifts to MRSD0� [23℄ as x dereases. However, we seethat this behavior is beause our alulations are de-pendent on the input onditions.In Fig. 5, we present the gluon distributionG(x) for the H1 HERA proton parameterization atQ2 = 20 GeV2 [21℄ for di�erent small-x values. Theinitial ondition for the evolution of the gluon densityis assumed to be of the formxg(x;Q20) = 1:1x(�0:247)(1�x)17:5 �1�4:83px+68:2x�for Q2 � 3:5 GeV2 at the initial sale Q20 = 4 GeV2.The gluon distribution G(x) inreases as x dereases.In the same graph, we present the G(x) values for theH1 data [21℄, MRSD0� [23℄, and MRST [17℄ global �tresults; but its rate of inrement is higher than that for
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Fig. 4. The gluon distribution given by Eqs. (26)and (29) versus x at �xed Q2 = 20 GeV2 (solid ir-les), ompared with the next-to-leading-order GRVmodel [16℄ (solid line), the MRSD0� �t [23℄ (dashedline), and the MRST �t [17℄ (dotted line). The startingparameterization of the gluon density at Q20 = 1 GeV2is given by next-to-leading-order GRV model
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Fig. 5. The gluon distribution given by Eqs. (26) and(29) versus x at �xed Q2 = 20 GeV2 (solid irles),ompared with the H1 data [21℄ (N), the MRSD0��t [23℄ (dashed line), and the MRST �t [17℄ (solid line).The starting parameterization of the gluon density atQ20 = 4 GeV2 is given by the H1 datathe MRST and smaller than for the MRSD0� data. Ourresults show that the alulations are sensitive to theinitial onditions at Q2 = Q20. For any initial ondition,the �gures show good agreement between our resultsand those parameterizations at small x. In this �gure,811
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Fig. 6. The alulated values of the singlet struturefuntion F2(x;Q2) plotted as funtions of x in aor-dane with Eqs. (27) and (30) with the starting param-eterization of the struture funtion at Q20 = 5 GeV2given by the DL model (solid irles), ompared withthe next-to-leading order QCD �t to the H1 data withtotal errors [21℄ (N) and with the DL �t [10℄ (solidline) and the singlet struture funtion MRST �t (dot-ted line)we show the best �t to the MRST gluon distributionparameterization orresponding to the initial-onditionH1 data.In Fig. 6, we show the predition of Eqs. (27) and(30) for the singlet struture funtion. We obtain ourresults with the input parameterization at the initialsale Q20 = 5 GeV2 and ompare with the DL �t [10℄,MRST �t [17℄, and H1 data [21℄ with the total errors atQ2 = 20 GeV2. In this �gure, we observe a ontinuousinrease towards small x. The lnQ2 dependene of F2is observed to be nonlinear. It an be well desribed bya quadrati expression,e�(Q2) = aS + bS lnQ2 + S(lnQ2)2; (31)whih nearly oinides with the QCD �ts in the kine-mati range of this alulation. Then the e�etivepower-law behavior of the singlet struture funtionorresponds toF2(x;Q2) = fF2(Q2)x�0:5: (32)This behavior is assoiated with the exhange of anobjet known as the hard Pomeron. In [9; 10℄, this be-havior was obtained by the simplest �t to the small-xdata orresponding toF2(x;Q2) = Xi=0;1 fi(Q2)x��i ; (33)

where the i = 0 term is a hard Pomeron exhangeand i = 1 term is a soft Pomeron exhange. Theseparameters were obtained from the best �t to all thesmall-x data for F2(x;Q2) together with the data for�p. Hene, our struture funtion is dominated atsmall x by the hard Pomeron exhange. This powerfulapproah to the small-x data for F2(x;Q2) is to ex-tend the Regge phenomenology that is so suessful forhadroni proesses [7℄. The Regge theory relates high-energy behavior to singularities in the omplex angu-lar momentum plane [6℄. Therefore, for deep inelastisattering, the soft Pomeron ontributions is not suf-�ient to desribe the rapid inrease with 1=x seen inthe data at small x and large Q2. This singularity is ahard Pomeron [9,10℄.In onlusion, a set of new formulas onneting thegluon density with its derivative and the singlet stru-ture funtion with its derivative with respet to lnQ2at small x have been presented. We found that theRegge theory an be used to onstrain the initial par-ton densities at Q2 = Q20 and to obtain the distribu-tions at higher virtualities with the DGLAP evolutionequations. Careful investigation of our results shows agood agreement with the previously published partondistributions based on QCD. The gluon distributionand singlet struture funtions inrease as usual, as xdereases. The form of the obtained distribution fun-tions for the gluon distribution and the singlet stru-ture funtions are similar to the one predited from theparton parameterization. The formulas used to gener-ate the parton distributions are in agreement with theinrease observed by the H1 experiments. We observeda ontinuous inrease towards small x. The lnQ2 de-pendene of f(x;Q2) is observed to be quadratiallynonlinear (see Eq. (28)) whih nearly oinides withthe QCD �ts in the kinemati range of these alula-tions. Thus, the e�etive power-law behavior of theparton densities orresponds tof(x;Q2) = ef(Q2)x�0:5; (34)whih is assoiated with an exhange of the objetknown as the hard Pomeron at small x. The obtainedresults give strong indiations that the proposed for-mulas, being very simple, provide relatively auratevalues for the gluon distribution and struture fun-tion. REFERENCES1. Yu. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977);G. Altarelli and G. Parisi, Nul. Phys. B 126, 298812
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