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It is shown that two new instabilities of hybrid type can occur in a rotating magnetized plasma with anisotropic
pressure, i.e., the rotational firehose instability and the rotational mirror instability. In the case of 3 > (1,
where 3 and 1 are the ratios of the parallel and perpendicular plasma pressure to the magnetic field pressure,
the pressure anisotropy tends to suppress both new instabilities; in the case 51 > ), it leads to their strength-
ening. In the last case, the perturbations considered can be unstable even if the Velikhov instability criterion is

not satisfied.

PACS: 52.35.Bj, 94.30.cq

1. INTRODUCTION

The magnetorotational instability (MRI) [1] seems
to be important for the physics of accretion disks [2].
It is necessary to consider instabilities there because,
according to [3], the viscosity in the disks should be
anomalous, i. e., caused by turbulence, which should in
turn be a result of an instability.

In accordance with recent ideas, the accretion disks
can contain collisionless plasma. The pressure of such
a plasma can be anisotropic. According to [4-8], this
can lead to a family of pressure-anisotropy-driven in-
stabilities (a detailed bibliography of these instabilities
can be found in review [9]). Therefore, it seems rea-
sonable to develop a theory of the MRI in a plasma
with anisotropic pressure, thereby generalizing the re-
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sults in [4-8] to the case of rotating plasma. This is the
goal of the present paper.

The pressure-anisotropy-driven instabilities dis-
cussed in [4-8] can be studied using both the kinetics
and the Chew—Goldberger-Low (CGL) approach
[10] (the so-called CGL approximation). The CGL
approach has been reviewed in [11]. We expose results
found in both these approaches.

In Sec. 2, based on the kinetic approach in [12],
we derive a dispersion relation describing the MRI in
a collisionless plasma with anisotropic pressure. We
note that steps in the same direction have been made
in [13,14]. In Sec. 3, the dispersion relation for MRI
is derived using the CGL approach. In Sec. 4, permit-
tivity of a rotating plasma with anisotropic pressure is
discussed. The goal of Sec. 5 is to present the theory
of pressure-anisotropy-driven instabilities in a nonro-
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tating plasma. We arrive at the two known versions of
the firehose instability, one of which is related to the
Alfvén oscillation branch and the second to the magne-
toacoustic branches, and to the known mirror instabil-
ity, which is related to the magnetoacoustic oscillation
branches. The main goal of the paper, i. e., the study of
the MRI in the case of anisotropic pressure, is realized
in Secs. 6 and 7. We predict two new instabilities of
hybrid type: rotational firehose Sec. 6 and rotational
mirror (Sec. 7). Discussions are given in Sec. 8.

2. KINETIC DISPERSION RELATION

For the description of plasma dynamics, we start
from the equation of motion in the form [12, 15]

dv 1

1
= VB2 -
Par P-m 12V

(B-V)B (2.1)
where d/dt = /0t +V -V, and p, V, p, and B are
respectively the total mass density, velocity, pressure
tensor, and the total magnetic field, given by

p=po+dp, V=Vy+iV,

p=1Ipo+dp, and B =By + B,

I is the unit tensor and § denotes the perturbed parts.

We consider cylindrical geometry characterized by
the coordinates (R, @,z). The equilibrium magnetic
field By is assumed to be directed along the z axis,
By = (0,0, Bp). Plasma rotates in the azimuthal direc-
tion ¢ with an angular frequency 2, and hence the equi-
librium plasma velocity Vy is given by Vo = (0, RQ, 0).

The perturbed velocity 6V and the perturbed mag-
netic field dB are represented as

5V = (0Vg,6V,,6V.), 6B = (6Br,0B,,0B.).

We assume that the perturbations are independent of
the azimuthal coordinate ¢. Then dependence of each
perturbed value F' (r,t) can be taken in the form

F = F (R)exp (—iwt + ikrR + ik.z), (2.2)

where w is the wave frequency, and kg and k., are the
perpendicular and parallel projections of the wave vec-
tor.

According to Refs. [12,15],

D|—PL
B2

B 1

1
szvpl—}— {§VlB2+[VXB]XB}+

- pl)} . (23)

where p; = pio+dpL and p| = pjo + dp) are the per-
pendicular and parallel pressures. The projections of
Egs. (2.1) are given by

k.2 2
— iwdVi <aA + = A) — 200V, —
w

042 2
wy k
— A B = 2.4
By h0PR=0 (24
—iw5V¢<aA +]”A> T ikp2PL 4
w Po
002
K 1wy
~ 4 —AkSB, = 2.
+(5VR2Q+ B, k.0Bgy =0, (2.5)

where k% = k% + k2 and vy is the Alfvén velocity,

B?
2 0
. 2.
va 47 pg (2:6)

The parameter k is introduced by

20 20
2 _ 20 AR

B dR (2.7)

We set
adN =1 ki?‘ <1 + w> . (2.8)

where
(BL, B)) =8=(por. poy)/Bj. (2.9)

2.1. Kinetic approach

The perturbed perpendicular pressure dp,; is ex-
pressed in terms of the perturbed distribution function
df as [9, 12]

2
Spy = M/%éfdv, (2.10)

where v, are the perpendicular particle velocities, v
is the velocity space volume, and M is the ion mass.
According to [9], the function §f is given by

TL w TL (SBZ

| I S
< TH + W — szH TH > fO B(] '
where T and T are the equilibrium perpendicular

and parallel temperatures. For df given by (2.11),
Eq. (2.10) for ép, takes the form

e (o))}
w X

k2| vp k| v

5.

0

2
Mo

of = 2T,

(2.11)

dp1L =2pio {1 [1+

T

x —2 (2.12)
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where vy = /2T)/M is the ion parallel thermal ve-
locity and

W (x) = exp(—2?) 1+—/exp (t*)d (2.13)

is the plasma dispersion function [16]. According
to [16], the function W (x) has the following asymptotic
forms:

i
w = , 1, 2.14
@)= a>1, (2.14)
W)=1, z<1. (2.15)
Tt then follows from Eq. (2.12) that
0pL =2pio X
1, w>>|kz\vTH,
X (2.16)
iv/mw
1——=—(1+ ) , w <L k| vy,
T, < . kx| vr
Using (2.12), we rewrite Eq. (2.5) as
k%02
. AN A
— iwdVy <aM + 2 >+
k2 vy kP
— 4+ == —0By = 2.1
+6VRQQ + B, szs o =0, (2.17)
where
X k2 2
QAN = AN — g WZA (1+cfN),  (218)
k2 k%
=1+ 5560 = By) + 7561 x
T i/mw w
1-— 1 W . (2.19
g { T [ " Tealory <va>” 219

To describe the behavior of the perturbed magnetic
field, we use the freezing condition

B
9B _ g «[VxB| =0 (2.20)
ot
Then we find
—iwdBR — ik.BodVgr = 0, (2.21)
WOBy — — L §Bg— ik BodVy = 0. (2.22)
1w o) dn R R 1Rz Dp0Vy = U. .

In addition, using the Maxwell equation V - B =0, we
arrive at

0B, = —kR(SBR/kz. (2.23)

By means of Eqs. (2.20)-(2.22), we express
(0VRr,0Vy) in terms of (0Bgr,0By). Equations (2.4)
and (2.17) then become

2i92
aNsB, — Z—(SBR =0, (2.24)
2i92 1 d0?

Using Eqgs. (2.24) and (2.25), we obtain the dispersion
relation

B (2.26)
Qa1 Q22
where
a1l = aﬁNa (2:27)
12 = —Qa1 = —QiQ/w, (2.28)
AN 1 d0? (2.29)
a2 =AM w2 dlnR’ ’

Dispersion relation (2.26) can be represented in the
form

asDF™ — 202 +

+ B2 (1 LB 5 B') d‘ig; =0, (2.30)
where
DFin =t Akin, (2.31)
ARin _ [1 _ kz’z% <1 gt _Blﬂ y
w 2
[1 A WYY 49—2. (2.32)

The quantity A describing the Velikhov effect [1] is
given by

dQ?/dIn R
A=—|14—7F5—7]. 2.
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3. DISPERSION RELATION DERIVED BY
MEANS OF THE CGL APPROACH

3.1. The essence of the CGL approach

There is a problem to express the perturbed plasma
pressure in terms of the perturbed magnetic field. In
the scope of the one-fluid magnetohydrodynamic ap-
proach, this problem is solved using the adiabaticity

condition (cf. [12])
d (p
i () -0

where T is the adiabatic exponent.

But there is no mechanism to equalize the perpen-
dicular and parallel pressures, p; and py, in a colli-
sionless plasma. The authors of Ref. [10] therefore sug-
gested using two conditions (see also [11])

i (35) =0

2
a <p|B ) o,
dt \ n?3

where n is a plasma number density, instead of a sin-

gle adiabatic condition (3.1). These conditions are the

essence of the CGL approach.

According to [10, 11], Egs. (3.2) and (3.3) are sim-
ilar to the one-fluid magnetohydrodynamic equation
(3.1) describing the behavior of a plasma in a strong
magnetic field. At the same time, Eqs. (3.2) and (3.3)
are heuristic, and therefore the validity of the results
obtained by means of the CGL approach should be ver-
ified for any particular problem using the kinetic ap-
proach.

According to [10, 11], Egs. (3.2) and (3.3) can be
interpreted as follows. The quantities p;, and B re-
main unchanged when plasma is compressed in the di-
rection of the magnetic field. The quantities p; and n
are found to be related by an adiabatic law with I' = 3
in accordance with an energy increase for the longitudi-
nal degree of freedom. When the plasma is compressed
in the direction perpendicular to the magnetic field, p
remains unchanged. It follows from the freezing con-
dition that B o« n. Consequently, Eq. (3.2) can be
interpreted as an adiabaticity relation with I' = 2 indi-
cating that the energy of two perpendicular degrees of
freedom is increased.

Equations (3.2) and (3.3) can be represented
as [10, 11]

(3.1)

(3.2)

(3.3)

d
DL oy v.v-LPLp.

= ZB-(B-V)V =0,

(3.4)

432

(3.5)

3.2. Calculation of the perturbed pressure

Using Eq. (3.4) and the continuity equation, we

find [5]
5n 0B,
dpL =pio + )

s (3.6)

where dn is the perturbed plasma number density. To
find dn, we use the perturbed continuity and parallel
motion equations of the form [5]

0 9 85‘/:07

0 1 0 Dllo —Plo _
8t6v t VnoBo M’noBO 0z <5p BO 6BZ =0

(3.8)

To calculate this value we use the parallel adiabatic
condition in (3.5), which yields [5]

30n 206D,
op|| = Do <—0 ~ B, ) : (3.9)
We then find
w (611 - ”—0532> — nok»0V, = 0, (3.10)
By

kr Pllo — PLo
— Sp —
MTLO BO

It follows from Eqs. (3.10), (3.11), and (3.6) that

wdV. 6BZ> =0. (3.11)

on = 1-— 33— = , 3.12
agGL Mw? T” BO ( )
k. T, 0B.
oV, = ———— —, 3.13
Mwa§9t By ( )
Dljo 6k2T,\ 0B.
op| = 1-— 3.14
pH agGL < M w? BO ’ ( )
0B.
opL = 6 — — 3.15
pL = pm( T|> B (3.15)
where
3k2T,
CGL |
g = TR (3.16)
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3.3. Dispersion relation

As a result, we have dispersion relation (2.26) with
ai1, aia, and as given by (2.27) and (2.28), and the
following modification of Eq. (2.29) for ass:

1 d0?
CGIL
= - — . 1
2= oM T2 R (3.17)
Here (cf. (2.32))
CGL CGL [ ~CGL k2v124
Qy o = ag <dM —Z—Qﬂj_>—
BL\? K2kl
— | = — 4 3.18
(2 HA (3.18)
where
k20 B1L—p
~CGL A Il
=1- 1+ —. 3.19
Qpy 2 < + 5 ) (3.19)

The CGL dispersion relation considered can be rep-
resented in the form

as DT 4 agGL %
2,2, 7272, 4 ﬂl_ﬁl\ _
X | —RrW Rk vy (A+1) 1+T =0, (320)

where DL is given by [5]

DOl = N CCT (3.21)
with
k20> BL—8
ACGL _ CGL || _ A (1 Iy
Qg w2 + D)
k2v% B\ k2kRoY
“e o\ T) T 62
We also note that as w? — 0, the function DEEL
given by (3.21) reduces to
DSSL, = k20 |3K207 <1 ] 2_ B') +
3.9 BL o
+ Ek%vﬁ (ﬂl + BH) - Tkévi , (3.23)

where o = T /M.
4. PERMITTIVITY OF ROTATING PLASMA

WITH ANISOTROPIC PRESSURE

According to Ref. [12], dispersion relation (2.26) can
be represented in the form

11 — c2k§/w2 €192 -0 (4 1)
€921 €99 — c2k2/w2 ’
13 ZKBT®, Beim. 2

where ¢;; (i,k = 1,2) are the components of the per-
mittivity tensor related to the coefficients a;; by
Eik =
2 2.2/, 2
c a1 + kv Jw «
ot keva/ PP BN )
sy Qoo + ko5 Jw

It was explained in Ref. [12] that the permittivity
tensor has the structure

2
Uh

0

ein = el + iy, (4.3)
where 552) and 55,:) are the “nonrotational” and “rota-
tional” parts of ;. The rotational part is an invariant
independent of detailed plasma properties. It is given
by

o c 0 —2i/w
5z('k) =5 ) 5 /2 . (4.4)
v \ 21w —(1/w?)dQ?/dInR

In contrast to this, the tensor 552) essentially depends
on plasma properties. In the kinetic description, it is

given by

AN
0 0)ki 3 0
551@) = 551@) "= ( " (0)kin ) )

4.5
0 €99 (4.5)

where, in accordance with (2.8), e} is equal to

’ <aAN+ kgvi) _

AN _ €
v w2

€11
2

= 5—2 [1 _ ke (8L — 5|)} . (4.6)

2 22
);

and, in accordance with (2.18

2

i &
e@kin _ & (1 N

VA

In accordance with the above explanations, the
CGL approach leads to the same expression for sgq)
as the kinetic approach, i.e.,

(4.7)

AN 72,2
ey kPvy
w2

el = g(Okin, (4.8)
In contrast to this, we have
0)CGL 0)kin
ey Ot # ey (4.9)

in the scope of this approach. Turning to Eqs. (3.18)
and (3.19), we find

2

(0)cGL _ €
€59 =z X
A
]{22’02 ﬂL_B k2 1)2
CGL A Il RYA
X{aS 1- 2 <1+ 5 )— 2 ﬂlj| —
B\ K2kRvY
- =] == 3. (4.1
< 2 w? (4.10)
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5. PRESSURE-ANISOTROPY-DRIVEN
INSTABILITIES IN NONROTATING
PLASMA

5.1. Basic equations

In the absence of plasma rotation, i.e.,
Eq. (4.1) splits into two dispersion relations:

at Q =0,

2 21.2
AN _ U ki
[ — 0_2 <611 - o2 > = 0, (51)
2 21,2
AN _ V% k2
Q= 0_2 <622 - 7) =0 (52)

respectively describing the Alfvén oscillation branches
and the magnetoacoustic branches. As we have noted,
the value of a4" is the same in the kinetic and the
CGL approaches. It is given by Eq. (2.8). In contrast
to this, the value of a4}V in the kinetic approach differs
from that in the CGL approach:

in k2
agim =1 - T2A (14 4N, (5.3)
AN(CGL) _
OéM =
k20> 2 k3 Bi
=1- A L+ %2 (B 6H) R OC‘L (5.4)

Physically, the identity of a4 in the kinetic and CGL
approaches means that the properties of perturbations

predicted by both these approaches are the same. In
contrast to this, the difference between af/lN(km) and
results in different regularities for magne-

AN(CGL)
Oy
toacoustic perturbations.

5.2. Alfvén firehose instability

In explicit form, Eq. (5.1) becomes

2:k§vi<1+L;B'>.

It follows that this equation describes an instability for

By > BL+2.

(5.5)

(5.6)
Then
w2 = _727 (57)

where v is the growth rate of perturbations satisfying
the condition

k202

V=4 (B -8 -2).

Relations (5.6) and (5.8) describe the Alfvén firehose
instability.

(5.8)
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5.3. Magnetoacoustic oscillation branches
5.3.1. Dispersion relations

The kinetic approach yields the following dispersion
relation for magnetoacoustic oscillation branches [4]:

k202 ;2
- {1+2—,;2(5¢—5|)+
k%’ { Ti(l VW W)H:O 5.9
/BJ_ TH + |kz|'UT” * ( * )

In the CGL approach, in contrast to (5.9), we find
DEEL =, (5.10)

where the function D¢CF is given by Eqs. (3.21) and
(3.22). In explicit form, Eq. (5.10) becomes

3k2T), k%02 k2
(1—Mw2>{1 5 1+2k2 (BL—8) +
2 21.2 ,,4
kRBJ_ Bu\" kil _ (5.11)
2 wt

5.3.2. Magnetoacoustic firehose instability
predicted by the kinetic approach

Using Eq. (5.9) and the asymptotic form (2.14) for

w > |k.| vy, we arrive at the dispersion relation

k2% 1+
w? 2k2

2
z

1— =0.

(81— 8y) (5.12)

2
+ Z—?ﬂl
Perturbations with k, > kg described by this disper-
sion relation are unstable for condition (5.6). Their
growth rate is given by Eq. (5.7). This is the magne-
toacoustic firehose instability predicted by the kinetic
approach.

5.3.3. Magnetoacoustic firehose instability
predicted by the CGL approach

Dispersion relation (5.11) can be represented in the
form [5]

4 2k2 2 1 k% 3
Wi Wik (14 5B+ 5 kﬁu
BL—=B B k%

14 2= "I PL PR
T T e

k—%‘ (B + 5|)}

+ SRk

l\Dlw

(5.13)

It hence follows that for k., > kg, the perturbations
are unstable for condition (5.6) and their growth rate
is given by (5.8). These perturbations correspond to
the magnetoacoustic firehose instability.
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5.3.4. Kinetic firehose and mirror instabilities

With the asymptotic form (2.15), it follows from

Eq. (5.9) that
kQUA k2
1= { sz (BL=B1) +
k%% iv/mw
1—— (1 = .14
/61{ T ( +IszT|W>” 0. (514)
and hence [4]
[ \kz\s T Vs
— — oA .1
W ﬁBJ_ k2 T UTH (5 5)
where
]{52
Vs _
A k2 +

B Ty T,
+7 < _T_J_> +_Rﬂl <1_?|> (516)

and the superscript “VS” refers to the authors of
Ref. [4]. We see that perturbations considered are un-
stable for the condition

AVS <. (5.17)

According to Eq. (5.5), perturbations with k, > kg
are unstable for condition (5.6) with the growth rate
v = Imw [4] given by

CNILA

R

Relations (5.6) and (5.18) characterize the kinetic fire-
hose instability.

In the opposite limit case, kr > k., instability con-
dition (5.17) reduces to [4]

(B —BL—2). (5.18)

B1 > ﬂH. (5.19)
The growth rate is then given by [4]
vr) kg
=— - . 5.20
V= r Tl A (BL—1)) (5.20)

Equations (5.19) and (5.20) characterize the kinetic
mirror instability.

5.3.5. Mirror instability predicted by the CGL
approach

According to Eq. (5.14), near the stability bound-
ary, the perturbations with kg > k., are described by
the dispersion relation [5]

1481 — m/ﬁﬂu

w2—3
B 1+6L

~kpviB)

(5.21)

Then we find that the perturbations are unstable for [5]
65y

B> 3 (1+p81). (5.22)
i
Their growth rate is given by

1+ﬂ1_

Relations (5.21) and (5.23) characterize the mirror in-
stability predicted by the CGL approach. Comparing
(5.21) and (5.22) with (5.18) and (5.19), we see that
the predictions of the kinetic and CGL approaches re-
garding the mirror instability are essentially different.

6. ROTATIONAL FIREHOSE INSTABILITY

6.1. General expressions for growth rate near
the stability boundary

Starting with Eq. (2.26) as kg — 0, both the ki-
netic and the CGL approaches result in the dispersion
relation

k2o BL =B
-5 252
[t (s gy e

2
According to (6.1), the plasma rotation leads to the
two following effects. First, it mixes the Alfvén firehose
mode with the magnetoacoustic one (see the term with
402 in (6.1)). Second, it modifies both these modes by
the Velikhov effect (see the term with A).

To elucidate the results of these effects, we consider
Eq. (6.1) near the stability boundary. We then have

=0. (6.1)

2
<2+ ,;2 +5L—5|> =
= — k22 <1 + w> <A + #) . (6.2)

The growth rate is given by

7’ = kv %
(B8 2] [A+ (B = Br) /2]
2+ k2/k204 4+ 8L — By ‘

(6.3)

In the case of isotropic pressure, 3, = f3, this re-
lation becomes [13]
7 = K030/ A, (6.4)

13%*
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where
Ay =2+ K2 E0Y. (6.5)

Then the modes considered are unstable only due to
the Velikhov effect.
We introduce the rotational Mach number Mg as
Mg = Q? k%05, (6.6)

For large Mr > 1 and 3,,3, > 1 with 8, # f),
Eq. (6.3) takes the form

2 _ k2o
T2
[ (@92 /din R) /0% + ()~ B1) /2]
K2[k20% + Bl — B

In the limit case of very strong rotation,

X

Mg > |8y — B, (6.8)
it follows from Eq. (6.7) that
k% (—=dQ%/dln R
o kv { / ) (BL—1y) - (6.9)

k2 K2
6.2. The case where the Velikhov instability
criterion is satisfied

We analyze the above formulas in the case when the
Velikhov instability criterion

A>0 (6.10)
is satisfied. Then the MRI is suppressed for
By > B (6.11)
In the opposite case
B> B, (6.12)
it is enhanced, with the growth rate given by
e LIV S0

6.3. The case where the Velikhov instability
criterion is not satisfied

According to Eq. (6.7), the perturbations consid-
ered can be unstable even if the Velikhov instability
criterion is not satisfied,

A <O0. (6.14)
This case includes the situation where
d9?/dIn R > 0. (6.15)

In this case, for example, it follows from (6.13) that the
perturbations are unstable for condition (6.11).
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7. ROTATIONAL MIRROR INSTABILITY

We now consider the perturbations with kr > k.
near their stability boundary. Then, in contrast to
the rotational firehose instability, the mixing between
the Alfvén and magnetoacoustic oscillation branches is
unimportant, and therefore we have the dispersion re-
lation

€99 — k%vi/oﬂ =0. (71)

Using the kinetic expression for es5 and taking
w L |k:| vy, we arrive at the following generalization
of dispersion relation (5.18):

|k T
w:m<1__|

NG (7.2)

Aﬂ)
T, p.T.)

In the case of isotropic pressure (T} = T'), this os-
cillation branch is unstable only due to the Velikhov
effect [12]:

ik, vr A
Ww=—"—. 7.3
VT B (7:3)
This corresponds to the kinetic MRI. We see that the
MRI is suppressed for

A< (ﬂH - ﬂj_) TJ_/TH. (7.4)

Such a suppression can occur for condition (6.11). In
the opposite case, i.e., for condition (6.12), the MRI
instability is enhanced and the perturbations can be
unstable even if the Velikhov instability criterion is not
satisfied, i. e., for condition (6.14). In the opposite case,
i.e., for condition (6.12), the MRI is enhanced.

8. DISCUSSIONS

The main result in the present paper consists in
pointing out two new instabilities in rotating plasma
with anisotropic pressure of the hybrid type: rotational
firehose instability and rotational mirror instability.
They are described by the respective dispersion rela-
tions (6.3) and (7.2). In both these cases, the pressure
anisotropy of the type 3 > 3, (see Eq. (6.11)) is sta-
bilizing, while that of type 3, > 3| (see Eq. (6.12)) is
destabilizing. In other words, the anisotropy leading to
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the mirror instability in a nonrotating plasma is desta-
bilizing for both types of the hybrid instabilities, while
that leading to the firehose instability is stabilizing.
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