РЕЛЯТИВИСТСКОЕ ОБОБЩЕНИЕ ТЕОРИИ ИОНИЗАЦИИ КЕЛДЫША

Б. М. Карнаков^{*}, В. Д. Мур

Московский инженерно-физический институт (государственный университет) 115409 Москва, Россия

В. С. Попов

Институт теоретической и экспериментальной физики 117218, Москва, Россия

Поступила в редакцию 17 ноября 2006 г.

Развита релятивистская теория туннелирования. Рассмотрены ионизация атомов и ионов постоянным скрещенным полем и ультракоротким лазерным импульсом, зависимость вероятности ионизации от параметра адиабатичности и от формы полевого импульса, предельный переход к нерелятивистской теории Келдыша и импульсный спектр фотоэлектронов. В расчетах используется метод мнимого времени.

PACS: 03.65.Pm, 32.80.Rm

1. ВВЕДЕНИЕ

Благодаря исключительным успехам лазерной физики и технологии достигнутые в настоящее время¹⁾ рекордные интенсивности излучения $I \sim 10^{22} \ \mathrm{Bt/cm^2}$ могут быть значительно повышены [2]. Получение лазерных импульсов с $I \sim 10^{25} \text{--} 10^{26} \ \mathrm{Bt/cm^2}$ в фемтосекундном диапазоне позволит экспериментально исследовать такие эффекты, как рассеяние фотонов на фотонах [3–5], рождение электрон-позитронных пар из вакуума [6-18], нелинейный эффект Комптона [19-21], нелинейные коллективные взаимодействия фотонов в плазме [3-5] и т.п. Столь интенсивные поля способны «ободрать» (частично или полностью) электронную оболочку атома и образовать многозарядные ионы с $Z\gtrsim$ 30–40, для которых энергия связи 1s-уровня сравнима с энергией покоя mc^2 . В этом случае подбарьерное движение электрона в процессе туннелирования нельзя уже считать нерелятивистским и требуется соответствующая модификация теории ионизации Келдыша [22-27].

Достижение интенсивностей $I \gtrsim 10^{22} \text{ Bt/cm}^2$ возможно с ультракороткими лазерными импульсами [4,28], длительность которых сравнима с оптическим периодом, а форма далека от идеальной синусоиды. Ввиду сильной нелинейности процесса релятивистской фотоионизации, его вероятность w_R нельзя представить в виде суммы вкладов от отдельных гармоник поля. Удобный способ расчета величины w_R в этом случае дает метод мнимого времени (MMB), который мы используем в дальнейшем²⁾.

В настоящей работе рассмотрены следующие вопросы. В разд. 2 кратко изложена теория ионизации релятивистского связанного состояния в постоянных скрещенных полях ($\mathcal{E} = \mathcal{H}, \mathcal{E} \perp \mathcal{H}$). Эта задача уже рассматривалась ранее [23, 34], но здесь мы представим выражения для подбарьерной траектории и других величин в более компактном виде и обсудим некоторые свойства подбарьерного движения, которые сохраняются и в случае переменных полей. В разд. 3 рассмотрен случай ионизации атомов электромагнитной волной с линейной поляризацией и произвольной формой полевого импульса.

^{*}E-mail: karnak@theor.mephi.ru

¹⁾ См. работы [1–5]. Интенсивности $I \sim 10^{22} \text{ Br/cm}^2$ отвечает напряженность электрического поля $\mathcal{E}_0 = \sqrt{8\pi I/c} \approx \approx 3 \cdot 10^{12} \text{ B/cm} \approx 500 \mathcal{E}_a$, а при $I \sim 10^{26} \text{ Br/cm}^2$ поле $\mathcal{E} \sim \sim 10^{14} \text{ B/cm} \sim 0.01 \mathcal{E}_{cr}$.

²⁾ ММВ является обобщением (на нестационарный случай) метода комплексных классических траекторий Ландау [29-31]. Основные идеи ММВ, а также приложения этого метода к задачам квантовой механики и атомной физики можно найти в [32, 33].

Далее приведены конкретные примеры таких полей и обсуждается зависимость вероятности ионизации w_R от формы импульса и от параметра адиабатичности (разд. 4), а также предельный переход к нерелятивистской теории ионизации Келдыша (разд. 5). В разд. 6 кратко рассмотрен вопрос об импульсном спектре фотоэлектронов. Численным оценкам и обсуждению полученных результатов посвящен заключительный разд. 7, где содержатся также некоторые замечания об истории вопроса.

Далее, как правило, $\hbar = c = m = 1, m$ и -e— масса и заряд электрона, критическое поле³⁾ $\mathcal{E}_{cr} = m^2 c^3 / e\hbar = 1.32 \cdot 10^{16} \text{ B/см}$ и $\mathcal{E}_a = \alpha^3 \mathcal{E}_{cr}$ — атомное поле, $\alpha = e^2 / \hbar c = 1/137$, $\lambda_C = \hbar / mc$, $E_0 = m\epsilon$ энергия уровня (включая энергию покоя электрона). Мы считаем в дальнейшем $0 < \epsilon < 1$, что в релятивистской кулоновской задаче отвечает заряду ядра Z < 137 (для основного уровня). В этом случае можно пользоваться приближением точечного заряда ядра⁴⁾.

Данная работа является продолжением работы [39]. Часть излагаемых ниже результатов анонсирована в работах [40-42].

2. ИОНИЗАЦИЯ В ПОСТОЯННОМ СКРЕЩЕННОМ ПОЛЕ И МЕТОД МНИМОГО ВРЕМЕНИ

Выбирая калибровку

$$\mathbf{A} = \{\mathcal{H}y, 0, 0\}, \quad A_0 = -\mathcal{E}y, \quad \mathcal{E} = \mathcal{H}, \tag{2.1}$$

находим экстремальную⁵⁾ подбарьерную траекторию электрона в параметрической форме:

$$x = ia \left(\xi^{2}u - \frac{1}{3}u^{3}\right),$$

$$y = a(3\xi^{2} - u^{2}), \quad z = p_{z} = 0,$$

$$t = ia \left[(2 + \xi^{2})u - \frac{1}{3}u^{3}\right] = x + 2iau,$$
(2.2)

где

$$a = \frac{m}{2e\mathcal{E}\sqrt{1+\xi^2}},$$

а выражения для импульса и кинетической энергии имеют вид

$$p_x = m \frac{\xi^2 - u^2}{2\sqrt{1 + \xi^2}}, \quad p_y = \frac{imu}{\sqrt{1 + \xi^2}}, \quad p_z = 0,$$

$$E_{kin} = \sqrt{\mathbf{p}^2 + m^2} = m \frac{2 + \xi^2 - u^2}{2\sqrt{1 + \xi^2}}$$
(2.3)

(заметим, что $e\mathcal{E} \equiv \mathcal{E}/\mathcal{E}_{cr}$). Отсюда непосредственно видно, что

$$J = \frac{E_{kin} - p_x}{m} = \frac{1}{\sqrt{1 + \xi^2}}$$
(2.4)

является интегралом движения [43]. Здесь длина измеряется в единицах \hbar/mc , энергия — в единицах mc^2 , u — вещественный параметр, $0 < u < u_0 =$ $= \sqrt{3} \xi$, а введенная в работах [34, 44, 45] вспомогательная переменная ξ выражается через приведенную энергию $\epsilon = E_0/mc^2$ начального состояния:

$$\xi = \left[1 - \frac{1}{2}\epsilon \left(\sqrt{\epsilon^2 + 8} - \epsilon\right)\right]^{1/2} = \left\{ \begin{array}{l} \sqrt{\frac{2}{3}(1 - \epsilon)}, & \epsilon \to 1, \\ 1 - \frac{\epsilon}{\sqrt{2}} + O(\epsilon^3) \dots, & \epsilon \to 0, \end{array} \right.$$
(2.5)

причем

$$\epsilon = \frac{1-\xi^2}{\sqrt{1+\xi^2}}, \quad 0 < \xi < \sqrt{3}.$$
 (2.5')

³⁾ Это название следует работе [7]. В литературе \mathcal{E}_{cr} часто называют швингеровским полем, а процесс рождения электрон-позитронных пар из вакуума интенсивным внешним полем — эффектом Швингера, что не вполне справедливо, поскольку Заутер [6] и Гейзенберг и Эйлер [7] рассмотрели его задолго до появления работы Швингера [8]. Мы благодарны рецензенту нашей статьи за это замечание.

⁴⁾ При Z > 137 в уравнении Дирака с кулоновским потенциалом $V(r) = -Z\alpha/r$ возникает известное из квантовой механики «падение на центр» [31]. Поэтому при Z > 137 необходимо учитывать конечные размеры ядра [35], что обрезает потенциал на малых расстояниях и делает задачу физически осмысленной. За подробностями мы отсылаем к работам [36-38].

⁵⁾ А именно, ту траекторию (удовлетворяющую классическим уравнениям движения, но с мнимым «временем», $t \to it$), которая минимизирует мнимую часть функции действия и определяет наиболее вероятный путь туннелирования электрона, см. подробнее в [32, 33]. Знания экстремальной траектории достаточно для вычисления экспоненциального и кулоновского факторов в вероятности туннелирования. Для нахождения предэкспоненты необходимо рассмотреть пучок «классических» траекторий, близких к экстремальной, и вычислить квадратичную поправку к действию [33].

В начальный момент подбарьерного движения «время» — чисто мнимое: $t = t_0$,

$$t_0 = i \sqrt{\frac{3\xi^2}{1+\xi^2}} \frac{\mathcal{E}_{cr}}{\mathcal{E}}$$
(2.6)

и $\mathbf{r}(t_0) = 0$ (что соответствует электрону, связанному в атоме). Выходу частицы из-под барьера отвечает t = u = 0, когда (далее полагаем m = 1)

$$\mathbf{r}(0) = \{0, b, 0\}, \quad b = \frac{3 \xi^2}{2\sqrt{1+\xi^2}} \frac{\mathcal{E}_{cr}}{\mathcal{E}},$$
$$\mathbf{p}(0) = \{p_0, 0, 0\}, \quad p_0 = \frac{\xi^2}{2\sqrt{1+\xi^2}}, \quad (2.7)$$
$$E_{kin} = \frac{1+\xi^2/2}{\sqrt{1+\xi^2}}.$$

Таким образом, за все время подбарьерного движения частица смещается только вдоль электрического поля (на ширину барьера *b*), а вылетает она из-под барьера с импульсом **p**₀, перпендикулярным полям $\boldsymbol{\mathcal{E}}$ и $\boldsymbol{\mathcal{H}}$. В нерелятивистском пределе $\epsilon = 1 - \alpha^2 \kappa^2/2$,

$$b = \frac{\kappa^2}{2\mathcal{E}_0} \left(1 + \frac{5}{18} \alpha^2 \kappa^2 \right) a_B, \quad p_0 = \frac{1}{6} \alpha \kappa^2 \frac{\hbar}{a_B},$$

где κ — характерный импульс связанного состояния, $a_B = \hbar^2/me^2$ — радиус Бора. Поскольку $p_0 a_B/\hbar \ll 1$, в этом случае импульс частицы после выхода из-под барьера направлен по электрическому полю.

Вычисление функции действия вдоль указанной траектории определяет, с экспоненциальной точностью, скорость ионизации атомного уровня в постоянном скрещенном поле, т.е. вероятность туннелирования в единицу времени [23, 34]:

$$w_R \propto \exp\left(-\frac{2\sqrt{3}\,\xi^3}{1+\xi^2}\,\frac{\mathcal{E}_{cr}}{\mathcal{E}}\right) \equiv \exp\left(-\frac{2}{3F}\right),$$
 (2.8)

где $F = \mathcal{E}/\mathcal{E}_{ch}$, \mathcal{E}_{cr} — критическое поле [7], а \mathcal{E}_{ch} — характерное для данной задачи электрическое поле,

$$\mathcal{E}_{ch} = \frac{3^{3/2}\xi^3}{1+\xi^2} \mathcal{E}_{cr} = = \begin{cases} Z^3 \mathcal{E}_a, & Z \ll 137, \\ \mathcal{E}_{cr}, & \epsilon = 0.4853 \ (Z \approx 120), \end{cases}$$
(2.9)

которое близко к полю на K-оболочке водородоподобного атома с зарядом ядра Z. После перехода от \mathcal{E}_{cr} к \mathcal{E}_{ch} экспоненциальный множитель в выражении (2.8) имеет в точности тот же вид, как и в нерелятивистской теории ионизации. Формула (2.8), также как и все дальнейшие, предполагает, что $F \ll 1$ (при этом вероятность w_R экспоненциально мала). Заметим еще, что характерный радиус связанного состояния равен $^{6)}$

$$r_0 = \frac{\lambda_C}{\lambda}, \quad \lambda = \sqrt{1 - \epsilon^2} = \xi \sqrt{\frac{3 - \xi^2}{1 + \xi^2}}, \qquad (2.10)$$

откуда

$$\frac{b}{r_0} = \frac{1}{2F}\sqrt{1 - \frac{\xi^2}{3}} \gg 1.$$
 (2.11)

Таким образом, ширина барьера велика по сравнению с радиусом r_0 , что обеспечивает применимость квазиклассического приближения и MMB.

Обсудим качественные особенности экстремальной подбарьерной траектории, существенные для дальнейшего. Из соотношений (2.2) видно, что координата x, направленная перпендикулярно полям ${\boldsymbol{\mathcal E}}$ и ${\boldsymbol{\mathcal H}}$, а также компонента импульса p_y и «время» t являются мнимыми, что само по себе указывает на невозможность такого движения в классической механике⁷⁾, а y и p_x — вещественными. Поэтому $p_u(0) = x(0) = 0$, так как после выхода электрона из-под барьера ($t \ge 0$) его движение является классически разрешенным и все величины (для экстремальной траектории) остаются вещественными. В отличие от одномерной квазиклассики [31], точка выхода из-под барьера не является точкой остановки частицы. Аналогичный факт был ранее отмечен в теории ионизации атомов электромагнитной волной с эллиптической поляризацией [24, 46], см. также Приложение А в работе [44]. Это объясняется тем, что подбарьерная траектория не является одномерной из-за действия силы Лоренца. В нерелятивистском пределе ($\xi \rightarrow 0$) эта траектория становится одномерной (вдоль оси у, т. е. вдоль электрического поля), поскольку действием магнитного поля здесь можно пренебречь $(v/c \sim \alpha \ll 1)$.

Наконец, отметим, что переменная u в соотношениях (2.2) пропорциональна собственному времени τ частицы,

$$\tau = \int_{0}^{t} \sqrt{1 - v^2} dt = i \frac{\hbar}{mc^2} \frac{\mathcal{E}_{cr}}{\mathcal{E}} u, \qquad (2.12)$$

⁶⁾ Без учета кулоновского потенциала.

⁷⁾ Однако в квантовой теории эта траектория приобретает физический смысл: она определяет вероятность туннелирования электрона из начального состояния дискретного спектра в состояния континуума. Отметим, что и в случае переменного поля часть координат и импульсов в подбарьерном движении являются чисто мнимыми, ср. формулы (2.2), (2.3) с (3.10).

которое в подбарьерном движении является чисто мнимым. При этом

$$\tau_0 = \sqrt{1 + \xi^2} \ t_0 = i\sqrt{3} \ \xi \ mc/e\mathcal{E}, \tag{2.13}$$

что объясняет физический смысл вспомогательной величины ξ : она совпадает, с точностью до постоянного множителя, с полным собственным временем τ_0 подбарьерного движения. Согласно (2.13), $|\tau_0| > |t_0|$, что на первый взгляд противоречит теории относительности. Этот парадокс разъясняется тем, что в подбарьерном движении, происходящем в мнимом времени, может быть $v^2 < 0$. Так, в нашем случае

$$v^{2} = 1 - E_{kin}^{-2} = \frac{(\sigma_{+}^{2} - \sigma^{2})(\sigma_{-}^{2} - \sigma^{2})}{(\sigma_{0}^{2} - \sigma^{2})^{2}}, \qquad (2.14)$$

где

$$\sigma = \frac{\tau}{\tau_0} = \frac{u}{\sqrt{3\xi^2}}, \quad 0 < \sigma < 1, \quad \sigma_{\pm} = \frac{\sqrt{1+\xi^2} \pm 1}{\sqrt{3\xi}},$$
$$\sigma_0^2 = \frac{1}{2}(\sigma_+^2 + \sigma_-^2) = \frac{\xi^2 + 2}{3\xi^2} \ge 1.$$

Квадрат скорости $v^2 < 0$ на начальном участке подбарьерной траектории⁸⁾, что и объясняет возможность соотношения между временами τ_0 и t_0 , обратного к обычному.

Формулы (2.2), (2.3) упрощаются, если перейти от лабораторного времени t к собственному времени τ :

$$\frac{x}{b} = \frac{i}{\sqrt{3}}\xi(\sigma - \sigma^{3}), \quad \frac{y}{b} = 1 - \sigma^{2}, \\
t = \sigma \left[1 + \frac{1}{2}\xi^{2}(1 - \sigma^{2})\right]t_{0}, \\
\frac{p_{x}}{p_{0}} = 1 - 3\sigma^{2}, \quad \frac{p_{y}}{p_{0}} = \frac{2i\sqrt{3}\sigma}{\xi}, \\
E_{kin} = \frac{1}{\sqrt{1 + \xi^{2}}}\left(1 + \frac{1}{2}\xi^{2} - \frac{3}{2}\xi^{2}\sigma^{2}\right).$$
(2.15)

При $\xi < 1$ зависимость x(t) является однозначной. Если же $\xi > 1$ (т.е. энергия уровня $\epsilon < 0$), то у кривой x(t) появляется «загиб», интерпретация которого представляет определенные трудности: в рамках MMB это означало бы движение частицы вспять во времени, хотя и мнимом.

Итак, мы рассмотрели свойства подбарьерной траектории в постоянном скрещенном поле. Качественные особенности такой траектории сохраняются в случае плоской электромагнитной волны произвольной формы.

3. РЕЛЯТИВИСТСКОЕ ОБОБЩЕНИЕ ТЕОРИИ КЕЛДЫША

Плоская электромагнитная волна с линейной поляризацией задается потенциалом

$$\mathbf{A} = \left(0, -\frac{\mathcal{E}_0}{\omega}a(\theta), 0\right), \quad A^0 = 0, \qquad (3.1)$$

где \mathcal{E}_0 — амплитуда поля волны, $\mathcal{E} = \mathcal{H} = \mathcal{E}_0 a'(\theta) \equiv \equiv \mathcal{E}_0 da/d\theta$, $\theta = \omega(t - x)$ — переменная светового фронта, ось x выбрана по направлению распространения волны, электрическое поле направлено вдоль оси y, магнитное — вдоль оси z. Функция $a(\theta)$ задает форму импульса. Так, $a(\theta) = \sin \theta$ отвечает монохроматическому лазерному свету, $a(\theta) = \mathrm{th} \theta$ — солитоноподобному импульсу $\mathcal{E}(t, x) = \mathcal{E}_0/\mathrm{ch}^2 \theta$, а полю вида $\mathcal{E} = \mathcal{E}_0 (1 + \theta^2)^{-\alpha}$ соответствует функция

$$a(\theta) = \theta F(\alpha, 1/2; 3/2; -\theta^2),$$
 (3.2)

где $F(...) \equiv {}_{2}F_{1}(...)$ — гипергеометрическая функция Гаусса. В частности, при $\alpha = 3/2$ имеем $a(\theta) = \theta(1 + \theta^{2})^{-1/2}$, при $\alpha = 1$ (лоренцевский импульс) $a(\theta) = \operatorname{arctg} \theta$, и т. д.

Уравнения движения для 4-импульса электрона

$$p^{i} = (E_{kin}, \mathbf{p}) = \left(\frac{1}{\sqrt{1 - v^{2}}}, \frac{\mathbf{v}}{\sqrt{1 - v^{2}}}\right)$$

имеют вид

$$\dot{p}_x = e\mathcal{E}v_y, \quad \dot{p}_y = e\mathcal{E}(1 - v_x),
\dot{p}_z = 0, \quad \dot{E}_{k\,in} = e(\mathcal{E} \cdot \mathbf{v}) = e\mathcal{E}v_y,$$
(3.3)

где точка означает производную по лабораторному времени t. Отсюда видно, что при любой зависимости $\mathcal{E}(\theta)$ существует интеграл движения

$$J = E_{kin} - p_x = \frac{1 - v_x}{\sqrt{1 - v^2}},$$
(3.4)

причем

$$\frac{d\theta}{d\tau} = \omega \frac{1 - v_x}{\sqrt{1 - v^2}} = J\omega, \quad \theta = J\omega\tau, \quad (3.5)$$

где τ — собственное время (2.12). Второе из уравнений (3.3) теперь дает

$$\frac{dp_y}{d\theta} = \frac{e\mathcal{E}_0}{\omega}a'(\theta), \quad p_y(\theta) = \frac{e\mathcal{E}_0}{\omega}a(\theta) = -eA_y \quad (3.6)$$

(при выборе константы интегрирования учитываем, что после перехода к мнимому времени переменная θ

⁸⁾ А именно, для $\sigma_- < \sigma < 1$. При $\sigma = \sigma_-$ имеем $v^2 = 0$, но компоненты скорости в этой точке в нуль не обращаются, $v_x = -iv_y \neq 0$.

и импульс p_y становятся чисто мнимыми). Для упрощения дальнейших выкладок наложим условия⁹⁾

$$a(-\theta) = -a(\theta), \quad a'(0) = 1, \quad a'''(0) < 0, \quad (3.7)$$

которым удовлетворяют многочисленные примеры полей. Последние два условия означают, что полевой импульс имеет при $\theta = 0$ максимум, по величине равный \mathcal{E}_0 .

Далее находим

$$\frac{dy}{d\theta} = \frac{1}{J\omega} \frac{dy}{d\tau} = \frac{p_y(\theta)}{J\omega}, \quad y(\theta) = \frac{e\mathcal{E}_0}{J\omega^2} \int_{\theta_0}^{\theta} a(\theta') \, d\theta',$$

после чего имеем

$$\frac{dp_x}{d\theta} = \frac{e}{J\omega} \mathcal{E}(\theta) p_y(\theta) = \frac{e^2 \mathcal{E}_0^2}{J\omega^2} a' a,$$
$$p_x = \frac{e^2 \mathcal{E}_0^2}{2J\omega^2} a^2(\theta) + \text{const.}$$

Для определения константы проинтегрируем уравнение $dx/d\theta = (J\omega)^{-1}p_x$, учитывая, что в подбарьерном движении координата x — чисто мнимая и потому Im $x(0) = x(\theta_0) = 0$. Полагая

$$\eta = -i\theta, \quad a(i\eta) = i\tilde{a}(\eta), \quad \eta > 0, \tag{3.8}$$

где $\tilde{a}(\eta)$ — вещественная аналитическая функция, запишем окончательные формулы для подбарьерного движения:

$$p_x = \frac{e^2 \mathcal{E}_0^2}{2J\omega^2} \left\{ \frac{1}{\eta_0} \int_0^{\eta_0} \tilde{a}^2(\eta') d\eta' - \tilde{a}^2(\eta) \right\},$$

$$p_y = i \frac{e\mathcal{E}_0}{\omega} \tilde{a}(\eta), \quad p_z = 0,$$
(3.9)

$$\begin{aligned} x &= i \frac{e^2 \mathcal{E}_0^2}{2J^2 \omega^3} \times \\ &\times \left\{ \frac{\eta}{\eta_0} \int_0^{\eta_0} \tilde{a}^2(\eta') d\eta' - \int_0^{\eta} \tilde{a}^2(\eta') d\eta' \right\}, \\ y &= \frac{e \mathcal{E}_0}{J \omega^2} \int_{\eta_0}^{\eta} \tilde{a}(\eta') d\eta', \quad z \equiv 0, \\ t &= i \omega^{-1} \eta + x(\eta), \quad 0 < \eta < \eta_0. \end{aligned}$$
(3.10)

Этим полностью задана экстремальная подбарьерная траектория в поле плоской волны, удовлетворяющая классическим уравнениям движения и граничным условиям [26, 33]

$$\mathbf{r}(\eta_0) = 0, \quad \text{Im}\,x(0) = p_y(0) = 0,$$

причем $\eta = 0$ отвечает моменту выхода электрона из-под барьера¹⁰⁾, а η_0 — начальному моменту подбарьерного движения.

В выражения (3.9), (3.10) входят величины η_0 и J, которые фиксируются начальными условиями ММВ,

$$E_{kin}(\eta_0) = \sqrt{p_x^2 + p_y^2 + 1} = \epsilon,$$

$$p_x(\eta_0) = \epsilon - J,$$
(3.11)

откуда следуют уравнения, определяющие η_0 и J при заданной форме импульса:

$$\tilde{a}(\eta_0) = \gamma_0 \sqrt{1 - 2\epsilon J + J^2},
\frac{1}{\eta_0} \int_0^{\eta_0} \tilde{a}^2(\eta) \, d\eta = \gamma_0^2 (1 - J^2),$$
(3.12)

где $\gamma_0 = mc\omega/e\mathcal{E}_0$. Введем также безразмерный параметр адиабатичности

$$\gamma_R = \gamma_0 \sqrt{3\xi^2/(1+\xi^2)},$$
 (3.13)

который в нерелятивистской области переходит в параметр Келдыша [22].

В качестве конкретного примера сильносвязанного состояния будем ориентироваться на основной уровень $1s_{1/2}$ водородоподобного атома с зарядом ядра Z. В этом случае уравнение Дирака с кулоновским потенциалом решается аналитически [47–49]:

$$\epsilon = \sqrt{1 - \zeta^2}, \quad C_{1s}^2 = 2^{2\epsilon - 1} / \Gamma(2\epsilon + 1),$$

$$\xi = \left\{ \frac{3}{2} \left[1 - \frac{\zeta^2}{3} - \sqrt{(1 - \zeta^2) \left(1 - \frac{\zeta^2}{9} \right)} \right] \right\}^{1/2}, \quad (3.14)$$

где $0 < \zeta = Z\alpha < 1$, а C_{1s} — асимптотический (на расстояниях $r \gg a_B/Z$) коэффициент атомной волновой функции (его определение см., например, в обзоре [27]). Зависимость $\xi(Z)$ показана на рис. 1.

⁹⁾ Которые не обязательны для применимости ММВ. Однако если отказаться от них, то не удается в общем виде исключить $i = \sqrt{-1}$ из уравнений подбарьерного движения и придется численно решать уравнения с комплексным «временем» t (что в настоящее время не представляет принципиальных затруднений).

¹⁰⁾ Следует отметить, что формулы (2.9)-(2.12) относятся к случаю ионизации уровня, связанного короткодействующими силами. Кулоновское взаимодействие между вылетающим электроном и атомным остовом можно рассмотреть по квазиклассической теории возмущений [25].

Рис. 1. Переменная ξ и отношение $\mathcal{E}_{ch}/\mathcal{E}_{cr}$ для основного состояния водородоподобного атома (иона) с зарядом ядра Z

Вероятность туннелирования электрона определяется [26,33] мнимой частью функции «укороченного действия» W, вычисленной вдоль подбарьерной траектории:

$$W = \int_{t_0}^{0} \left[-\sqrt{1 - v^2} + e(\mathbf{A} \cdot \mathbf{v}) - eA^0 + \epsilon \right] dt - - \mathbf{P} \cdot \mathbf{r}|_{t=0} = \tau_0 - \epsilon t_0 - i \frac{e^2 \mathcal{E}_0^2}{J^2 \omega^3} \times \int_{0}^{\eta_0} \tilde{a}^2(\eta) \, d\eta = \frac{i \eta_0 (J - \epsilon)}{\omega}, \quad (3.15)$$

где мы использовали выражения (3.12) и соотношения: $t_0 = J\tau_0 = i\eta_0/\omega$. Окончательно находим (с экспоненциальной точностью) скорость ионизации атомного уровня:

$$w_R \propto \exp\left\{-\frac{2mc^2}{\hbar\omega}(J-\epsilon)\eta_0\right\},$$
 (3.16)

что дает обобщение формулы Келдыша [22] на случай релятивистского туннельного перехода. Можно показать (см. ниже разд. 5), что в нерелятивистском пределе эта формула совпадает с результатами, полученными для монохроматического лазерного света [22] и для полевого импульса произвольной формы [50].

Рис. 2. Отношение γ_r/γ_R в зависимости от Z

Формулу (3.16) можно представить в виде

$$w_R \propto \exp\left\{-\frac{2}{3F}g(\gamma_R,\epsilon)\right\},$$
 (3.17)

где $F = \mathcal{E}_0 / \mathcal{E}_{ch} \ll 1$, величина \mathcal{E}_{ch} определена в (2.9), см. также рис. 1,

$$g(\gamma_R,\epsilon) = \frac{\sqrt{1+\xi^2}}{\xi^2} \frac{(J-\epsilon)\eta_0}{\gamma_R}$$
(3.18)

и принято условие нормировки $g(0,\epsilon) = 1$, вследствие которого выражение (3.17) при $\omega \to 0$ непосредственно переходит в формулу (2.8) для постоянного поля. Для случая быстропеременных полей, $\gamma_R \gg 1$, удобно переписать формулу (3.16) в виде

$$w_R \propto \exp\left\{-2K_0 f(\gamma_R, \epsilon)\right\},$$

$$K_0 = \frac{E_b}{\hbar\omega} = (1 - \epsilon) \frac{mc^2}{\hbar\omega},$$
(3.19)

где K_0 — параметр многоквантовости процесса, а E_b — энергия связи уровня.

Сделаем несколько замечаний по поводу формул (3.17)-(3.19).

1) В работах [40, 41] вместо (3.13) использовалось другое определение параметра адиабатичности:

$$\gamma_r = \gamma_0 \sqrt{1 - \epsilon^2} = \frac{\hbar\omega}{mc^2} \frac{\mathcal{E}_{cr}}{\mathcal{E}_0} \sqrt{1 - \epsilon^2}.$$
 (3.20)

Хотя выбор параметра (3.13) несколько более оправдан¹¹⁾, однако при $Z \leq 100$ различием между γ_R и γ_r можно пренебречь (рис. 2). В нерелятивистском пределе как γ_R , так и γ_r переходят в параметр Келдыша γ . Для монохроматического поля функция $g(\gamma_r)$ приведена на рис. 3.

Z

¹¹⁾ Поскольку $\gamma_R = \omega |t_0|$, где t_0 — полное мнимое время подбарьерного движения (2.6).

Рис.3. Функция $g(\gamma_r, Z)$, определяющая частотную зависимость скорости релятивистской ионизации. Кривые соответствуют Z = 1, 60, 92, 114, 126, 137

2) В момент выхода из-под барьера

$$b = \frac{\mathcal{E}_{cr}}{\mathcal{E}_0} \frac{1}{J\gamma_0^2} \int_0^{\eta_0} \tilde{a}(\eta) \, d\eta, \qquad (3.21)$$

$$p_{0} = \frac{1}{2J\gamma_{0}^{2}\eta_{0}} \int_{0}^{\eta_{0}} \tilde{a}^{2}(\eta) \, d\eta \equiv \frac{1-J^{2}}{2J},$$

$$E_{kin}(0) = \frac{1+J^{2}}{2J}.$$
(3.22)

Здесь $\gamma_0 = mc\omega/e\mathcal{E}_0$, ширина барьера *b* измеряется в единицах λ_C , а импульс p_0 на выходе — в единицах mc. В частности, $J = (1 + \xi^2)^{-1/2}$ в случае постоянного скрещенного поля, и эти формулы переходят в (2.7).

Можно показать, что при условии плавного (адиабатического) выключения лазерного поля величина \mathbf{p}_0 совпадает с импульсом фотоэлектрона на бесконечности (см. Приложение).

3) Отметим, что выражения (3.14) относятся к неэкранированному кулоновскому потенциалу, т.е. справедливы при условии, что в атоме имеется только один электрон на *K*-оболочке, а все остальные электроны ободраны (водородоподобный атом с зарядом *Z*).

4) Выше мы считали, что электромагнитная волна имеет линейную поляризацию, но функция профиля $a'(\theta)$ в значительной мере произвольна (см., однако, условия (3.7)). Ионизация атомов лазерным светом с эллиптической поляризацией (общий случай монохроматического излучения) рассмотрен в работах [24, 39, 51].

4. НЕКОТОРЫЕ ПРИМЕРЫ

Уравнения (3.17) и (3.18) определяют главный (экспоненциальный) фактор в вероятности ионизации для произвольного¹²⁾ поля вида (3.1). Проиллюстрируем применение их на конкретных примерах, что позволит рассмотреть зависимость вероятности релятивистской ионизации от энергии связи уровня E_b и от формы полевого импульса.

1. Начнем с монохроматического излучения, когда $a(\theta) = \sin \theta$, $\tilde{a}(\eta) = \sin \eta$. Уравнения (3.12) принимают вид

и легко решаются численно. В случае низкочастотного поля отсюда находим:

$$g(\gamma_R, \epsilon) = 1 - \frac{1}{10}\gamma_R^2 + \frac{107\xi^2 + 405}{4200(\xi^2 + 3)}\gamma_R^4 + \dots, \qquad (4.2)$$
$$\gamma_R \ll 1,$$

что в нерелятивистском пределе ($\epsilon \to 1, \xi \to 0$) переходит в разложение для функции Келдыша (см. ниже (5.6)):

$$g(\gamma) = 1 - \frac{1}{10}\gamma^2 + \frac{9}{280}\gamma^4 - \dots$$

Коэффициент при γ_R^4 меняется в пределах от 0.0305 до 0.0321 (при 0 < ϵ < 1), поэтому в адиабатической области зависимость функции *g* от энергии уровня незначительна, что подтверждается данными табл. 1. В случае $\gamma_R \ll 1$ были вычислены [44, 45] также кулоновский фактор *Q* и предэкспонента *P*. Полная формула для скорости w_R релятивистской ионизации, включающая эти факторы, а также спиновый множитель *S*, получена в работе [39], см. там уравнение (4.2).

¹²⁾ Предполагается лишь, что $a(\theta)$ — вещественная аналитическая функция.

Ζ	γ_R							
	0.5	1.0	1.5	2	3	10		
1	0.976804	0.92243	0.85934	0.79880	0.6962	0.3766		
20	0.976804	0.92242	0.85932	0.79878	0.6962	0.3765		
40	0.976801	0.92240	0.85927	0.79869	0.6960	0.3763		
60	0.976797	0.92237	0.85917	0.79852	0.6958	0.3759		
92	0.976785	0.92226	0.85890	0.79807	0.6955	0.3749		
137	0.976724	0.92171	0.85747	0.79571	0.6950	0.3694		

Таблица 1. Функция $g(\gamma_R, Z)$ для основного уровня

Примечание. Числа относятся к случаю линейной поляризации, энергия 1s-уровня $\epsilon = \sqrt{1 - (Z\alpha)^2}$.

В другом пределе, $\gamma_R \to \infty$, асимптотика является логарифмической:

$$f(\gamma_R, \epsilon) = \ln 2\gamma_R - \frac{1}{2} + \frac{1}{2}\ln\left(\frac{1-\xi^2/3}{1+\epsilon}\right) + \dots \approx$$
$$\approx \eta_0 - \frac{1}{2}, \quad (4.3)$$

где f — функция, входящая в (3.19). В частности, при $\epsilon \to 1$ имеем

$$f(\gamma) = \left(1 + \frac{1}{2\gamma^2}\right) \ln \gamma + \left(\ln 2 - \frac{1}{2}\right) \frac{1}{\gamma^2} + \frac{\ln 2}{2\gamma^4} + \dots,$$

$$\gamma \to \infty.$$

Здесь γ — параметр Келдыша, см. ниже формулу (5.1).

Численный расчет дает для $f(\gamma)$ кривые, приведенные на рис. 4, из которого видно, что с уменьшением ϵ , т.е. при углублении связанного уровня, $f(\gamma_R)$ растет, в силу чего скорость ионизации резко падает (при $K_0 \gg 1$). Асимптотика (4.3) имеет хорошую точность при $\gamma \gtrsim 5$.

2. Полагая $a(\theta) = \text{th } \theta$, получаем из (3.12) следующие уравнения:

где γ_r — параметр (3.20). Данная модель соответствует солитоноподобному импульсу

$$\mathcal{E}(t,x) = \mathcal{E}_0/\operatorname{ch}^2[\omega(t-x)], \qquad (4.5)$$

аналогичному точно решаемому потенциалу $U(x)==-U_0/\ch^2 x$ в квантовой механике [31]. При $\gamma_r\to\infty$ получаем

$$\eta_0 = \frac{\pi}{2} - \frac{1}{\gamma_r} \sqrt{\frac{1+\epsilon_0}{2}} + \dots$$

 $J = 1 - \frac{\sqrt{2(1+\epsilon_0)}(1-\epsilon_0)}{\pi\gamma_r} + \dots,$

откуда

$$w_R \propto \exp\left\{-\pi K_0 \left(1 - \frac{2^{3/2}\sqrt{1+\epsilon_0}}{\pi \gamma_r}\right)\right\}, \qquad (4.6)$$
$$\gamma_r \gg 1.$$

В отличие от предыдущего примера, здесь функция $f(\gamma_r)$ выходит на постоянный предел при $\gamma_r \to \infty$, см. рис. 5. Соответственно, вероятность ионизации значительно больше, чем в случае монохроматического поля (при одном и том же значении $K_0 \gg 1$, т.е. для данного атомного уровня и фиксированной частоты лазера ω). Как и в нерелятивистской

Рис.5. Функции $f(\gamma, Z)$ для солитоноподобного импульса (4.5); у кривых (снизу вверх) Z = 1, 92, 114, 126, 137

теории, это объясняется тем, что спектр импульса (4.5) содержит высокие гармоники основной частоты ω , для которых порог фотоионизации существенно меньше, чем $K_0 = E_b/\omega$.

3. Нетрудно рассмотреть также гауссовский импульс $\mathcal{E}(t, x) = \exp(-\theta^2/2\sigma^2)$, лоренцевский импульс $\mathcal{E} = (1 + \theta^2)^{-1}$ или $\mathcal{E} = (1 + \theta^2)^{-3/2}$. В этих случаях уравнения аналогичны и расчет по ним не представляет затруднений. Так, например, в последнем случае достаточно выполнить в левой части уравнения (4.1) замену

$$\operatorname{sh} \eta_0 \to \frac{\eta_0}{\sqrt{1-\eta_0^2}}, \quad \frac{\operatorname{sh} 2\eta_0}{2\eta_0} \to \frac{\operatorname{Arth} \eta_0}{\eta_0}.$$
 (4.7)

4. Наконец, рассмотрим модулированный электромагнитный импульс

$$\mathcal{E}(t,x) = \mathcal{E}_0 \exp\left\{-\frac{\omega^2(x-t)^2}{2\sigma^2}\right\} \cos[\omega(x-t)], \quad (4.8)$$

что является достаточно реалистичной моделью лазерного поля и при $\sigma \to \infty$ переходит в монохроматическую волну. В этом случае в (4.1) следует заменить

Рис. б. Функция $g(\gamma, \sigma)$ для модулированного импульса (4.8) при Z = 60. Кривые для $\sigma = 1, 2, 3, 5, 10$; последняя кривая неотличима (в пределах точности рисунка) от $\sigma = \infty$, что соответствует монохроматическому излучению

(функцию $F(\eta)$ можно выразить через интеграл ошибок). Параметр σ определяет ширину огибающей. С его уменьшением импульс укорачивается, значения функции $g(\gamma, \sigma)$ уменьшаются (см. рис. 6), а вероятность w_R в области $\gamma \gtrsim 1$ (быстропеременное поле) резко возрастает. Объясняется это так же, как и в примере 2.

В следующем разделе мы кратко остановимся на предельном переходе к нерелятивистской теории Келдыша.

5. НЕРЕЛЯТИВИСТСКИЙ СЛУЧАЙ

Покажем, что при $\epsilon \to 1$ предыдущие уравнения¹³⁾ переходят в известные формулы теории Келдыша. Полагая $\epsilon = 1 - \alpha^2 \kappa^2/2$, имеем

$$\gamma_0 = \frac{mc\omega}{e\mathcal{E}_0} = \frac{\gamma}{\alpha\kappa}, \quad \kappa = \sqrt{2E_b},$$
 (5.1)

где $E_b \ll mc^2$ — энергия связи уровня, а $\gamma = \omega \kappa / \mathcal{E}_0$ — параметр Келдыша [22]. При этом

$$(J - \epsilon)^2 = O(\alpha^4), \quad 1 - 2\epsilon J + J^2 = \alpha^2 \kappa^2 + O(\alpha^4),$$

поэтому первое из уравнений (3.12) принимает вид

$$\tilde{a}^2(\eta_0) = \gamma_0^2(\alpha\kappa)^2,$$

или

$$\tilde{a}(\eta_0) = \gamma, \tag{5.2}$$

339

 2^{*}

 $^{^{13)}}$ В этом разделе мы используем атомные единицы $\hbar=m=e=1.$

откуда определяется $\eta_0 = \eta_0(\gamma)$ при заданной форме импульса. Из второго уравнения в (3.12) получаем

$$J - \epsilon = \frac{1}{2} \alpha^2 \kappa^2 \left[1 - \frac{1}{\gamma^2 \eta_0} \int_0^{\eta_0} \tilde{a}^2(\eta) \, d\eta \right]$$
(5.3)

и с учетом (3.16) находим

$$w \propto \exp\{-2K_0 f(\gamma)\}, \quad K_0 = \kappa^2/2\omega,$$
 (5.4)

где

$$f(\gamma) = \frac{2}{3}\gamma g(\gamma) = \eta_0 - \frac{1}{\gamma^2} \int_{0}^{\eta_0} \tilde{a}^2(\eta) d\eta.$$
 (5.5)

Частотная зависимость вероятности ионизации определяется в основном (на уровне экспоненты) функцией $f(\gamma)$. Рассмотрим некоторые примеры.

1) Для монохроматического лазерного поля имеем

$$\tilde{a}(\eta) = \operatorname{sh} \eta, \quad \eta_0 = \operatorname{Arsh} \gamma,$$

откуда

$$f(\gamma) = \left(1 + \frac{1}{2\gamma^2}\right)\eta_0 - \frac{\operatorname{sh} 2\eta_0}{4\gamma^2} = \left(1 + \frac{1}{2\gamma^2}\right)\operatorname{Arsh}\gamma - \frac{\sqrt{1+\gamma^2}}{2\gamma},\quad(5.6)$$

причем

$$f(\gamma) = \begin{cases} \frac{2}{3}\gamma - \frac{1}{15}\gamma^3 + \frac{3}{140}\gamma^5 - \dots, & \gamma \ll 1, \\ \ln 2\gamma - 1/2 + O(\ln \gamma/\gamma^2), & \gamma \gg 1. \end{cases}$$
(5.7)

2) Для солитоноподобного импульса (4.5)

$$\tilde{a}(\eta) = \operatorname{tg} \eta, \quad \eta_0 = \operatorname{arctg} \gamma$$

И

$$f(\gamma) = \left(1 + \frac{1}{\gamma^2}\right) \operatorname{arctg} \gamma - \frac{1}{\gamma} = \\ = \begin{cases} \frac{2}{3}\gamma + \frac{1}{15}\gamma^3 + \dots, & \gamma \to 0, \\ \pi/2 - 2\gamma^{-1} + \dots, & \gamma \to \infty. \end{cases}$$
(5.8)

3) Для лоренцевского импульса $\mathcal{E}(\theta) = \mathcal{E}_0/(1 + \theta^2)$, имеем $\eta_0 = \operatorname{th} \gamma$ и, переходя в (5.5) к переменной интегрирования $x = \operatorname{Arth} \eta$, получаем

$$f(\gamma) = \operatorname{th} \gamma - \frac{1}{\gamma^2} \int_0^{\gamma} \frac{x^2}{\operatorname{ch}^2 x} dx =$$

$$= 1 - \frac{1}{\gamma^2} \int_0^{2\gamma} \frac{x \, dx}{e^x + 1} =$$

$$= \begin{cases} \frac{2}{3}\gamma - \frac{2}{15}\gamma^3 + \dots, & \gamma \to 0, \\ 1 - \pi^2/12\gamma^2 + \dots, & \gamma \to \infty. \end{cases}$$
(5.9)

4) Для полевого импульса вида $\mathcal{E}=\mathcal{E}_0(1\!+\!\theta^2)^{-3/2}$ имеем

$$\eta_0 = \gamma / \sqrt{1 + \gamma^2},$$

$$f(\gamma) = \frac{1}{\gamma} \left(\sqrt{1 + \gamma^2} - \frac{\operatorname{Arsh} \gamma}{\gamma} \right) = \begin{cases} \frac{2}{3}\gamma - \frac{1}{5}\gamma^3 + \dots, & \gamma \to 0, \\ 1 - \left(\ln 2\gamma - \frac{1}{2} \right) \frac{1}{\gamma^2} + \dots, & \gamma \to \infty. \end{cases}$$
(5.10)

Из выражений (5.7)–(5.10) видно, что при малых γ во всех случаях

$$f(\gamma) = \frac{2}{3}\gamma + O(\gamma^3),$$

что соответствует принятой нами нормировке g(0) = 1 для стоящей в показателе экспоненты в (3.17) функции $g(\gamma)$.

Таким образом, уравнения (3.12), (3.16), справедливые для любой энергии уровня, имеют правильный предел при $\epsilon \rightarrow 1$: они переходят в выражения для экспоненциального фактора $\exp[-2K_0 f(\gamma)]$ в нерелятивистской теории многофотонной ионизации, полученные в работах [22] для монохроматического лазерного излучения и [50] для полевого импульса общего вида.

Отметим еще, что в случае монохроматического поля функция $f(\gamma)$ логарифмически возрастает при $\gamma \to \infty$, в то время как для солитонного и лоренцевского импульсов она выходит на конечный предел¹⁴).

¹⁴⁾ Предельное значение $f(\infty)$ соответствует положению ближайшей особой точки функции поля $a'(\theta)$ в комплексной плоскости. Так, $f(\infty) = \pi/2, 1, 1$, соответственно для примеров 2, 3, 4, а для монохроматического поля $a'(\theta) = \cos \theta$ является целой функцией θ , не имеющей особенностей в конечной части комплексной плоскости, и $f(\gamma)$ неограниченно возрастает при $\gamma \to \infty$.

6. ОБ ИМПУЛЬСНОМ СПЕКТРЕ ФОТОЭЛЕКТРОНОВ

В случае линейной поляризации излучения наиболее вероятный импульс электрона в момент выхода из-под барьера направлен вдоль направления волны. При не слишком больших импульсах спектр является гауссовским:

$$w(\mathbf{P}) = w(0) \times \\ \times \exp\left\{-\frac{1}{\omega} \left[c_x [P_x - P_x(0)]^2 + c_y P_y^2 + c_z P_z^2\right]\right\}. \quad (6.1)$$

В рамках ММВ для определения коэффициентов c_i импульсного спектра нужно проварьировать экстремальную подбарьерную траекторию (3.10) и найти квадратичные поправки δW_i к функции действия (3.15). Проиллюстрируем это на примере коэффициента c_z , когда обобщенный импульс P_z совпадает с кинетическим импульсом p_z .

Поскольку p_z =const вдоль всей траектории, получаем

$$\delta\sqrt{1-v^2} = -\frac{v_z^2}{2\sqrt{1-v^2}} = -\frac{1}{2}p_z^2\sqrt{1-v^2}$$

поэтому вариация интеграла (3.15) дает

$$\delta W_1 = \frac{1}{2} p_z^2 \int_{t_0}^0 \sqrt{1 - v^2} \, dt = -\frac{1}{2} \tau_0 p_z^2, \qquad (6.2)$$

где τ — собственное время частицы. Добавляя сюда вклад от последнего слагаемого в (3.15),

$$\delta W_2 = -p_z z(0) = -p_z \int_{t_0}^0 p_z \sqrt{1 - v^2} \, dt = \tau_0 p_z^2,$$

получаем в итоге

$$\delta W = \delta W_1 + \delta W_2 = \frac{1}{2}\tau_0 p_z^2, \quad c_z = \frac{\eta_0}{J}$$
 (6.3)

(здесь мы учли, что величины $\tau_0 = i\eta_0/J\omega$ и W — чисто мнимые). Обсудим два частных случая этой формулы.

а) В нерелятивистском пределе для монохроматического поля имеем $\eta_0 = \operatorname{Arsh} \gamma, J = 1$, откуда

$$c_z = \operatorname{Arsh} \gamma, \quad \gamma = \omega \kappa / \mathcal{E}_0 \quad (\hbar = m = e = 1), \quad (6.4)$$

что соответствует импульсному распределению [20]

$$w(p_z) = w(0) \exp\left\{-\frac{\operatorname{Arsh}\gamma}{\omega}p_z^2\right\}.$$
 (6.5)

Рис.7. Коэффициент c_z импульсного спектра (вдоль направления магнитного поля волны). Кривые соответствуют значениям $\epsilon = 1, 0.9, 0.75, 0.5, 0.25, 0$

б) Для низкочастотного поля имеем

$$\eta_0 = \gamma_r + \dots, \quad J = (1 + \xi^2)^{-1/2} + \dots,$$

откуда

$$c_z/\omega = \sqrt{3}\,\xi \mathcal{E}_{cr}/\mathcal{E}_0, \quad \gamma_r \ll 1. \tag{6.6}$$

В нерелятивистском случае

$$\epsilon = 1 - \frac{1}{2}\alpha^2 \kappa^2 \to 1, \quad \xi = \frac{\alpha\kappa}{\sqrt{3}},$$

так что соотношение (6.6) переходит в (6.5). Численный расчет дает для $c_z(\gamma_r)$ кривые, приведенные на рис. 7. Вычисление импульсного спектра электронов в общем случае эллиптической поляризации излучения приводит, даже в нерелятивистском случае, к очень громоздким формулам [24], которые были приведены к более простому виду в работе [46].

7. ЧИСЛЕННЫЕ РАСЧЕТЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Применение ММВ позволяет найти экстремальную подбарьерную траекторию в поле линейно-поляризованной волны с произвольной формой электромагнитного импульса. Определена, с экспоненциальной точностью, вероятность ионизации w_R релятивистского связанного уровня, рассмотрена зависимость w_R от формы импульса и от параметра адиабатичности. Как и в нерелятивистском случае,

Z = 20			Z = 40				
$\lg I$	$\rho = 0$		$\rho = 1$	la I	$\rho = 0$		$\rho = 1$
	$F \cdot 100$	w_R	w_R	Ig I	$F \cdot 100$	w_R	w_R
20.50	1.18	1.47(-4)	1.3(-13)	22.00	0.81	3.4(-15)	_
20.75	1.57	1.79(2)	4.88(-5)	22.25	1.08	2.7(-6)	_
21.00	2.10	6.36(6)	1.21(2)	22.50	1.44	1.22(1)	7.17(-7)
21.25	2.79	1.58(10)	7.01(6)	22.75	1.93	1.17(6)	7.07
21.50	3.73	5.39(12)	2.44(10)	23.00	2.56	6.16(9)	1.16(6)
21.75	4.97	4.12(14)	1.03(13)	23.25	3.42	3.69(12)	8.87(9)
22.00	6.63	1.03(16)	8.94(14)	23.50	4.56	4.34(14)	6.78(12)
22.25	8.84	1.11(17)	2.37(16)	23.75	6.08	1.50(16)	9.21(14)
22.50	11.8	6.39(17)	2.57(17)	24.00	8.09	2.08(17)	3.43(16)

Таблица 2. Скорость ионизации w_R основного уровня водородоподобного атома

Z = 60			Z = 92			
l., T	$\rho = 0$		la I	$\rho = 0$		
ig I	$F \cdot 100$	w_R	ig I	$F \cdot 100$	w_R	
23.25	0.97	4.7(-9)	24.50	1.01	4.7(-8)	
23.50	1.30	0.120	24.75	1.35	0.682	
23.75	1.73	4.22(4)	25.00	1.80	1.61(5)	
24.00	2.30	5.96(8)	25.25	2.40	1.73(9)	
24.25	3.07	7.55(11)	25.50	3.20	1.82(12)	
24.50	4.10	1.57(14)	25.75	4.26	3.37(14)	
24.75	5.46	8.40(15)	26.00	5.68	1.69(16)	
25.00	7.29	1.63(17)	26.25	7.58	3.19(17)	
25.25	9.72	1.47(18)	26.50	10.10	2.89(18)	

Примечание. Интенсивность I измеряется в BT/cm^2 , скорость ионизации w_R — в c^{-1} , ρ – эллиптичность лазерного излучения ($\rho = 0$ соответствует линейной, $\rho = 1$ — циркулярной поляризации). F — приведенное поле, критическому полю \mathcal{E}_{cr} соответствует интенсивность $I = 2.32 \cdot 10^{29}$ BT/cm^2 . Обозначение $a(b) \equiv a \cdot 10^b$.

вероятность ионизации резко возрастает¹⁵⁾ при переходе из адиабатической ($\gamma_R \ll 1$) области в область быстро-переменных полей ($\gamma_R \gg 1$). Выше мы использовали (см. разд. 4) простые аналитические модели для профиля волны $a'(\theta)$, однако нетрудно выполнить расчет для произвольной формы лазерного импульса, в том числе взятой непосредственно из эксперимента.

Результаты расчета скорости ионизации w_R низкочастотным лазерным излучением приведены в табл. 2. При этом использовалась формула (4.2) из работы [39], а энергия уровня полагалась равной $\epsilon = \sqrt{1 - (Z\alpha)^2}$, что отвечает $1s_{1/2}$ -состоянию водородоподобного атома (иона) с зарядом ядра Z. Заметим, что от конкретного атомного уровня в выражение для w_R входят только его энергия ϵ и асимптотический коэффициент C_{λ}^2 , значения которого рассчитываются на основе уравнений Хартри – Фока и в настоящее время известны для основных состояний всех атомов, от водорода до урана (см., например, табл. 1 в работе [27] и рис. 9 в [39]). Это позволяет рассчитать вероятность w_R для глубоких уровней произвольного атома. Таблица 2 содержит так-

¹⁵⁾ При одном и том же значении приведенного поля F (считаем $F \ll 1$, что необходимо для применимости MMB).

водородоподобного атома с зарядом Z

Параметры для основного состояния

Таблица 3.

же значения приведенного электрического поля F,

$$F = \frac{\mathcal{E}_0}{\mathcal{E}_{ch}} = \frac{1+\xi^2}{(3\xi^2)^{3/2}} \sqrt{\frac{1}{1+\rho^2} \frac{I}{I_{cr}}}$$
(7.1)

 $(\rho - эллиптичность излучения, I_{cr} = (c/8\pi)\mathcal{E}_{cr}^2 = 2.32 \cdot 10^{29} \text{ Bt/cm}^2)$. Из таблицы видно, что ионизация атомов реально происходит (для любого Z) при $0.01 \lesssim F \lesssim 0.1$: при меньших значениях F скорость ионизации w_R слишком мала, а при больших F атом ионизуется уже за один период поля. Значения F из табл. 2 относятся к случаю линейной поляризации $(\rho = 0)$. При заданной интенсивности I значения F для циркулярной поляризации в 0.707 раз меньше, чем для $\rho = 0$, что приводит к уменьшению w_R на несколько порядков. Таблица 2 иллюстрирует чрезвычайно резкую зависимость w_R от интенсивности излучения, что характерно для туннельных процессов.

Параметр адиабатичности удобно записать в виде

$$\gamma_R = k/K_0 F, \tag{7.2}$$

где $K_0 = (1 - \epsilon)/\omega$ — минимальное число квантов, необходимое для ионизации уровня, а k — коэффициент, практически не зависящий от энергии уровня:

$$k = \frac{1}{3\xi^2} \left(\sqrt{1+\xi^2} + \xi^2 - 1 \right), \tag{7.3}$$

 $k = 1/2 - \xi^2/24$ в нерелятивистском случае $(\xi = \alpha \kappa / \sqrt{3} \rightarrow 0)$ и k = 0.493 при Z = 92. В теории Келдыша принимается, что $K_0 \gg 1$ (многофотонная ионизация) и $F \ll 1$, поэтому параметр адиабатичности может, в принципе, принимать любые значения. Это и осуществляется в нерелятивистском случае, однако для глубоких уровней область значений $\gamma_R \gtrsim 1$, в которой в полной мере проявляется частотная зависимость вероятности w_R , достигается при условии $F \lesssim 1/K_0$. Для лазеров оптического и инфракрасного диапазонов $K_0 \gtrsim 10^5$, поэтому соответствующие значения F лежат в той области, где ионизация атомов пренебрежимо мала. Значения $F\gtrsim 0.01,$ при которых происходит ионизация, могут быть достигнуты при $K_0 \sim 100$, для чего требуется (табл. 3), чтобы $\hbar \omega \sim 100$ эВ в случае Z = 30 и $\hbar \omega \sim 1$ кэВ при Z = 92. Таким образом, наблюдение зависимости w_R от параметра адиабатичности в случае глубоких уровней станет возможным только после создания рентгеновских и гамма-лазеров [2–5].

В заключение сделаем несколько замечаний об истории вопроса. Вскоре после появления пионерской работы Келдыша [22] теория многофотонной

Zξ ϵ \mathcal{E}_{ch} I_{ch} 100.99730.04223.90(12)2.02(22)200.98930.08474.13(13)2.27(24)30 0.97570.12781.41(14)2.66(25)400.95640.17193.38(14)1.52(26)500.9310 0.21736.72(14)6.01(26)60 0.89900.26471.19(15)1.88(27)0.85965.02(27)700.31451.94(15)80 0.8118 0.36763.00(15)1.20(28)900.75390.42514.46(15)2.65(28)920.74100.43734.82(15)3.10(28)1370 3.43(16)1.57(30)1

Примечание. Поле \mathcal{E}_{ch} измеряется в В/см, интенсивность I_{ch} – в Вт/см² (линейная поляризация).

ионизации была развита более детально в работах [23–26]. Ионизация релятивистского связанного состояния рассмотрена Никишовым и Ритусом [23] на примере задачи об ионизации *s*-уровня бесспиновой частицы, связанной короткодействующим (Z = 0) потенциалом¹⁶). В нерелятивистском случае аналогичная задача была решена [24–26] при произвольных значениях параметров адиабатичности γ и эллиптичности ρ лазерного света, причем вычислена не только полная вероятность ионизации, но и импульсный спектр фотоэлектронов. Результаты этих работ применимы для отрицательных ионов H⁻, Li⁻, Na⁻ и т. д.

В случае нейтральных атомов и положительных ионов необходимо учесть кулоновское взаимодействие между вылетающим электроном и атомным остовом, что увеличивает плотность электронного облака на больших расстояниях и существенно повышает значение вероятности ионизации. Это можно сделать в рамках квазиклассической теории возмущений по кулоновскому потенциалу [25], для чего нужно сначала найти подбарьерную траекторию при Z = 0, т. е. без учета кулоновского взаимодействия. Такая траектория в случае постоянного скрещенного поля получена в работе [44], для монохрома-

¹⁶⁾ Отметим, что в случае постоянного скрещенного поля результаты, полученные в работах [23] и [34, 44] независимыми методами и записанные в разной форме, полностью совпадают.

тического излучения с эллиптической поляризацией — в [40] и для линейно поляризованного импульса произвольной формы — в данной работе. Вычисление функции действия вдоль экстремальной траектории непосредственно дает экспоненту и кулоновскую поправку¹⁷) к w_R .

В большинстве перечисленных выше работ спином электрона в подбарьерном движении пренебрегалось. Спиновая поправка к вероятности туннелирования впервые обсуждалась в работе [11] и была вычислена в случае скрещенных полей в работах [39, 40]. Она приводит к зависимости скорости ионизации атомного уровня от проекции спина электрона $s_z = \pm \hbar/2$ на направление магнитного поля волны и достигает заметной величины в случае тяжелых ($Z \gtrsim 60$) атомов. Для низкочастотного лазерного излучения были вычислены [39] все факторы, входящие в формулу для w_R , что позволило рассчитать скорость ионизации атомов.

Заметим еще, что теории релятивистской ионизации посвящены также статьи [52], которые, однако, не являются оригинальными и просто повторяют результаты, полученные ранее [23, 34, 44, 45]. В этой связи см. работы [40] и раздел 13.3 в обзоре [27].

Авторы благодарны С. В. Попруженко за обсуждение результатов работы, С. Г. Позднякову за проведение численных расчетов и М. Н. Маркиной за помощь при оформлении рукописи.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 06-02-17370, 07-02-01116), гранта Президента РФ по поддержке научных школ (НШ 320.2006.2) и Федеральной программы «Развитие научного потенциала высшей школы» (2006–2008), РНП. 2.1.1.1972.

ПРИЛОЖЕНИЕ

После выхода из-под барьера электрон движется по классически разрешенной траектории, задаваемой формулами, аналогичными (3.9), (3.10). В частности,

$$p_x(\theta) = p_0 + \frac{1}{2J\gamma_0^2}a^2(\theta), \quad p_y(\theta) = \frac{a(\theta)}{\gamma_0}, \quad (\Pi.1)$$
$$0 < \theta < \infty, \quad a(0) = 0$$

 $(\gamma_0 = mc\omega/e\mathcal{E}_0)$. Во многих случаях функция $a(\theta)$ имеет конечный предел при $\theta \to \infty$: для солитоноподобного импульса $a(\infty) = 1$, для поля (3.2)

$$a(\infty) = \sqrt{\pi} \ \frac{\Gamma(\alpha - 1/2)}{2\Gamma(\alpha)}, \quad \alpha > 1/2, \tag{II.2}$$

однако в случае монохроматической волны функция $a(\theta) = \sin \theta$ осциллирует при $\theta \to \infty$. Возникающая неопределенность устраняется при адиабатическом выключении внешнего поля. Например, для модулированного импульса (4.8) имеем

$$a(\infty) = \int_{0}^{\infty} a'(\theta) \, d\theta = \int_{0}^{\infty} \exp\left(-\frac{\theta^2}{2\sigma^2}\right) \cos\theta \, d\theta \propto$$
$$\propto \exp\left(-\frac{\sigma^2}{2}\right). \quad (\Pi.3)$$

В пределе $\sigma \to \infty$, что отвечает монохроматическому полю, получаем

$$a(\infty) = 0, \quad \mathbf{p}(\infty) = \mathbf{p}_0.$$
 (II.4)

Тот же результат справедлив при любом виде огибающей лазерного импульса, например,

$$a(\infty) = \lim_{\sigma \to \infty} \int_{0}^{\infty} \frac{\cos \theta \, d\theta}{1 + \theta^2 / 2\sigma^2} \propto e^{-\sigma} \to 0. \tag{II.5}$$

Таким образом, импульсное распределение электронов в момент выхода из-под барьера практически совпадает со спектром фотоэлектронов на бесконечности, если $\sigma \sim L/\lambda \gg 1$, где λ — длина волны, а L = cT — длина импульса.

ЛИТЕРАТУРА

- S. W. Bahk, P. Rousseau, T. A. Planchon et al., Opt. Lett. 29, 2873 (2004); Appl. Phys. B 80, 823 (2005); 81, 727 (2005).
- T. Tajima and G. Mourou, Phys. Rev. ST Accel. and Beams 5, 031301 (2002).
- 3. N. B. Narozhny, Laser Phys. 15, 1458 (2005).
- 4. G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).
- Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rep. 427, 41 (2006).
- 6. F. Sauter, Z. Phys. 69, 742 (1931); 73, 547 (1931).
- 7. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
- 8. J. Schwinger, Phys. Rev. 82, 664 (1951).

¹⁷⁾ Вычисление предэкспоненты сводится к нахождению квадратичных поправок в функции классического действия, что несколько более сложно. Однако в простых случаях такое вычисление может быть проведено аналитически [27, 33].

- 9. E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191 (1970).
- **10**. В. С. Попов, Письма в ЖЭТФ **13**, 261 (1971); ЖЭТФ **61**, 1334 (1971); **62**, 1248 (1972).
- 11. М. С. Маринов, В. С. Попов, ЯФ 15, 1271 (1972);
 М. S. Marinov and V. S. Popov, Forsch. Phys. 25, 373 (1977).
- **12**. Н. Б. Нарожный, А. И. Никишов, ЖЭТФ **65**, 862 (1973).
- 13. A. Ringwald, Phys. Lett. 510B, 107 (2001).
- **14**. В. С. Попов, Письма в ЖЭТФ **74**, 151 (2001); ЖЭТФ **121**, 1235 (2002).
- 15. V. S. Popov, Phys. Lett. 298A, 83 (2002).
- 16. R. Alkofer, M. B. Hecht, S. D. Roberts et al., Phys. Rev. Lett. 87, 193902 (2001).
- 17. N. B. Narozhny, S. S. Bulanov, V. D. Mur, and V. S. Popov, Phys. Lett. **330A**, 1 (2004).
- **18**. С. С. Буланов, Н. Б. Нарожный, В. Д. Мур, В. С. Попов, ЖЭТФ **129**, 14 (2006).
- 19. А. И. Никишов, В. И. Ритус, ЖЭТФ 46, 776 (1964).
- 20. L. S. Brown and T. W. B. Kibble, Phys. Rev. A 133, 706 (1964).
- 21. В. И. Ритус, Труды ФИАН, 111, 5 (1979).
- 22. Л. В. Келдыш, ЖЭТФ 47, 1945 (1964).
- 23. А. И. Никишов, В. И. Ритус, ЖЭТФ 50, 255 (1966);
 52, 223 (1967).
- 24. А. М. Переломов, В. С. Попов, М. В. Терентьев, ЖЭТФ 50, 393 (1966); 51, 309 (1966).
- **25**. А. М. Переломов, В. С. Попов, ЖЭТФ **52**, 514 (1967).
- 26. В. С. Попов, В. П. Кузнецов, А. М. Переломов, ЖЭТФ 53, 331 (1967).
- 27. В. С. Попов, УФН 174, 921 (2004).
- 28. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
- 29. L. D. Landau, Phys. Z. Sowjetunion 1, 88 (1932); 2, 46 (1932).
- **30**. Е. Е. Никитин, Л. П. Питаевский, УФН **163**, 101 (1993).
- 31. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика (нерелятивистская теория), Наука, Москва (1974).
- 32. А. И. Базь, Я. Б. Зельдович, А. М. Переломов, Рассеяние, реакции и распады в нерелятивистской квантовой механике, Наука, Москва (1971).

- 33. В. С. Попов, препринт ИТЭФ № 13-04, Москва (2004); ЯФ 68, 717 (2005).
- 34. В. С. Попов, Б. М. Карнаков, В. Д. Мур, Письма в ЖЭТФ 66, 229 (1997); V. S. Popov, V. D. Mur, and В. М. Karnakov, Phys. Lett. 250A, 20 (1998).
- I. Pomeranchuk and Ya. Smorodinsky, J. Phys. USSR 9, 97 (1945).
- 36. Я. Б. Зельдович, В. С. Попов, УФН 105, 403 (1971).
- 37. W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin (1985).
- **38**. В. С. Попов, ЯФ **64**, 421 (2001).
- 39. В. С. Попов, Б. М. Карнаков, В. Д. Мур, С. Г. Поздняков, ЖЭТФ 129, 871 (2006).
- В. С. Попов, Б. М. Карнаков, В. Д. Мур, Письма в ЖЭТФ 79, 320 (2004); В. М. Karnakov, V. D. Mur, and V. S. Popov, Laser Phys. 15, 1556 (2005).
- 41. В. С. Попов, Б. М. Карнаков, В. Д. Мур, С. Г. Поздняков, Тезисы докладов XXIII съезда по спектроскопии, Звенигород (2005), с. 23; препринт ИТЭФ № 22-05, Москва (2005).
- 42. Б. М. Карнаков, В. Д. Мур, С. Г. Поздняков,
 В. С. Попов, в сб. МИФИ-2006 т. 5, Москва (2006),
 с. 178; МИФИ-2007 т. 5, Москва (2007), с. 186.
- **43**. Л. Д. Ландау, Е. М. Лифшиц, *Теория поля*, Физматлит, Москва (2003).
- 44. В. Д. Мур, Б. М. Карнаков, В. С. Попов, ЖЭТФ 114, 798 (1998).
- **45**. Б. М. Карнаков, В. Д. Мур, В. С. Попов, ЯФ **62**, 1444 (1999).
- 46. В. Д. Мур, С. В. Попруженко, В. С. Попов, ЖЭТФ 119, 893 (2001).
- 47. L. I. Schiff, Quantum Mechanics, McGraw-Hill, New York (1955).
- 48. Г. Бете, Э. Солпитер, Квантовая механика атомов с одним и двумя электронами, Физматгиз, Москва (1960).
- 49. А. И. Ахиезер, В. Б. Берестецкий, Квантовая электродинамика, Наука, Москва (1969).
- **50**. В. С. Попов, Письма в ЖЭТФ **73**, 3(2001); ЖЭТФ **120**, 315 (2001).
- 51. V. S. Popov, V. D. Mur, B. M. Karnakov, and S. G. Pozdnyakov, Phys. Lett. 358A, 21 (2006).
- N. Milosevič, V. P. Krainov, and T. Brabec, Phys. Rev. Lett. 89, 193 001 (2002); J. Phys. B. At. Mol. Opt. Phys. 35, 3515 (2002).