ЭФФЕКТ АНДРЕЕВА–БАШКИНА В ДВУХКОМПОНЕНТНОМ БОЗЕ-ГАЗЕ

С. И. Шевченко*

Физико-технический институт низких температур им. Б. И. Веркина Национальной академии наук Украины 61103, Харьков, Украина

Д. В. Филь

Институт монокристаллов Национальной академии наук Украины 61001, Харьков, Украина

Развита микроскопическая теория эффекта Андреева – Башкина в сверхтекучем двухкомпонентном слабонеидеальном бозе-газе. Получено выражение для матрицы сверхтекучих плотностей в общем случае двух газов с различными плотностями, массами частиц и длинами рассеяния. Предложен способ наблюдения увлечения между сверхтекучими компонентами.

PACS: 03.75.Mn

Эффект бездиссипативного увлечения между сверхтекучими компонентами был впервые рассмотрен полуфеноменологически в работе [1] для смеси сверхтекучих ³Не и ⁴Не. В дальнейшем этот эффект, получивший название эффекта Андреева-Башкина, обсуждался в связи с моделями нейтронных звезд [2]. Теоретически рассматривалось увлечение в двухслойных бозе-системах с кулоновским, ван-дер-ваальсовым и дипольным взаимодействиями между компонентами [3-5], в системе двух близко расположенных сверхпроводников [6] и в А-фазе сверхтекучего ³Не [7]. Развитие экспериментальных исследований бозе-конденсации в ультрахолодных газах щелочных металлов позволило создавать охлажденные до сверхнизких температур двухкомпонентные бозе-газы [8–10]. Для этих систем эффект Андреева-Башкина может быть описан микроскопически, что и является основной целью настоящей работы.

Как было показано в работе [1], для двухкомпонентной сверхтекучей системы связь между сверхтоками и градиентами фаз параметров порядка имеет вид

$$\mathbf{j}_i = \rho_{ik} \, \mathbf{v}_k, \tag{1}$$

где i, k = 1, 2 — индексы компонент, $\mathbf{v}_i = \hbar \nabla \varphi_i / m_i$ — сверхтекучие скорости, m_i — масса атомов (или бо-

зе-пар) *i*-й компоненты, матрица сверхтекучих плотностей ρ_{ik} содержит недиагональные компоненты. В работе [1] было найдено, что элементы этой матрицы можно записать через сверхтекучие плотности $\rho_{s,i}^{(0)}$ компонент в отсутствие взаимодействия между компонентами и эффективную массу m_1^* частиц одной из компонент в следующем виде:

$$\rho_{12} = \rho_{21} = \rho_{s,1}^{(0)} \left(1 - \frac{m_1}{m_1^*} \right), \quad \rho_{ii} = \rho_{s,i}^{(0)} - \rho_{12}.$$

Для смеси ³Не и ⁴Не известно, что эффективная масса атомов ³Не в ⁴Не в 2.3 раза больше массы свободных атомов ³Не, что дает положительный знак увлечения.

Рассмотрим теперь, к каким результатам приводит микроскопическая теория для смеси двух бозе-газов с точечным взаимодействием между частицами. Гамильтониан системы имеет вид

$$H = \sum_{i=1,2} \int \left(\frac{\hbar^2}{2m_i} \left[\nabla \phi_i^{\dagger}(\mathbf{r}) \right] \nabla \phi_i(\mathbf{r}) - \mu_i \phi_i^{\dagger}(\mathbf{r}) \phi_i(\mathbf{r}) \right) d\mathbf{r} + \frac{1}{2} \sum_{i,j=1,2} \int \gamma_{ij} \phi_i^{\dagger}(\mathbf{r}) \phi_j^{\dagger}(\mathbf{r}) \phi_j(\mathbf{r}) \phi_i(\mathbf{r}), \quad (2)$$

^{*}E-mail: shevchenko@ilt.kharkov.ua

где ϕ^{\dagger} и ϕ — операторы рождения и уничтожения, удовлетворяющие бозевским коммутационным соотношениям, μ_i — химические потенциалы компонент,

$$\gamma_{ii} = \frac{4\pi\hbar^2 a_{ii}}{m_i}, \quad \gamma_{12} = 2\pi\hbar^2 \frac{a_{12}(m_1 + m_2)}{m_1 m_2}$$

— константы взаимодействия (a_{ik} — длины рассеяния). В дальнейшем мы ограничимся случаем слабонеидеальных газов, т. е. развиваемая теория является обобщением теории Боголюбова на случай смеси двух разреженных бозе-газов.

В однородном случае при наличии сверхтекучих потоков конденсатные волновые функции для компонент имеют вид

$$\Psi_{0i} = \sqrt{n_i} e^{i\varphi_i},$$

где n_i — плотности компонент. С использованием подхода, основанного на введении операторов флуктуаций плотности и фазы [11], было получено дисперсионное уравнение для спектра возбуждений в двухкомпонентной системе со сверхтекучими потоками:

$$\begin{bmatrix} E_1^2 - (\omega - \hbar \mathbf{k} \cdot \mathbf{v}_1)^2 \end{bmatrix} \begin{bmatrix} E_2^2 - (\omega - \hbar \mathbf{k} \cdot \mathbf{v}_2)^2 \end{bmatrix} - 4\gamma_{12}^2 n_1 n_2 \varepsilon_1 \varepsilon_2 = 0, \quad (3)$$

где $E_i = \sqrt{\varepsilon_i(\varepsilon_i + 2\gamma_{ii}n_i)}$ — боголюбовский спектр (спектр возбуждений в отсутствие взаимодействия между компонентами) и $\varepsilon_i = \hbar^2 k^2 / 2m_i$.

При $\mathbf{v}_1 = \mathbf{v}_2 = \mathbf{v}$ спектр имеет вид

$$\omega_{\lambda} = \Omega_{\lambda} + \hbar \mathbf{k} \cdot \mathbf{v},$$

где

$$\Omega_{1,2} = \sqrt{\frac{E_1^2 + E_2^2}{2} \pm \sqrt{\frac{(E_1^2 - E_2^2)^2}{4} + \frac{\gamma_{12}^2 n_1 n_2 \hbar^4 k^4}{m_1 m_2}}} \quad (4)$$

— спектр в отсутствие потоков. В случае $\mathbf{v}_1 \neq \mathbf{v}_2$ спектр возбуждений нелинейным образом зависит от скоростей и может быть представлен в виде ряда по \mathbf{v}_i .

В пренебрежении взаимодействием между возбуждениями (что соответствует температурам, много меньшим температуры конденсации) выражение для свободной энергии системы (на единицу объема) имеет следующий вид:

$$F = \frac{1}{2} \sum_{i,j} \gamma_{ij} n_i n_j + \frac{1}{2} \sum_i m_i n_i \mathbf{v}_i^2 + \frac{1}{2V} \left(\sum_{\mathbf{k},\lambda} \omega_\lambda - \sum_{i,\mathbf{k}} \varepsilon_i \right) + \frac{T}{V} \sum_{\mathbf{k},\lambda} \ln\left[1 - \exp\left(-\frac{\omega_\lambda}{T}\right) \right] \quad (5)$$

(V — объем системы). Здесь первые два слагаемых дают энергию конденсата, третье слагаемое есть энергия нулевых колебаний, а последнее слагаемое описывает температурный вклад в свободную энергию газа возбуждений.

При малых скоростях с учетом явного вида разложения ω_i по \mathbf{v}_i свободную энергию также можно записать в виде ряда по \mathbf{v}_i . В квадратичном по \mathbf{v}_i приближении она имеет вид

$$F = F_0 + \frac{1}{2} \left[\sum_{i} (\rho_i - \rho_{n,i}) \mathbf{v}_i^2 - \rho_{dr} (\mathbf{v}_1 - \mathbf{v}_2)^2 \right], \quad (6)$$

где F_0 — не зависящая от скоростей часть энергии, $\rho_i = m_i n_i$ — массовые плотности. Явный вид величин $\rho_{n,i}$ и ρ_{dr} следующий:

$$\rho_{n,i} = -\frac{m_i}{3V} \sum_{\mathbf{k}} \varepsilon_i \left[\frac{\partial N_1}{\partial \Omega_1} + \frac{\partial N_2}{\partial \Omega_2} - (-1)^i \frac{E_1^2 - E_2^2}{\Omega_1^2 - \Omega_2^2} \left(\frac{\partial N_1}{\partial \Omega_1} - \frac{\partial N_2}{\partial \Omega_2} \right) \right], \quad (7)$$

$$\rho_{dr} = \frac{4}{3V} \sqrt{m_1 m_2} \sum_{\mathbf{k}} \frac{\gamma_{12}^2 n_1 n_2 (\varepsilon_1 \varepsilon_2)^{3/2}}{\Omega_1 \Omega_2} \times \left[\frac{1 + N_1 + N_2}{(\Omega_1 + \Omega_2)^3} - \frac{N_1 - N_2}{(\Omega_1 - \Omega_2)^3} + \frac{2\Omega_1 \Omega_2}{(\Omega_1^2 - \Omega_2^2)^4} \left(\frac{\partial N_1}{\partial \Omega_1} + \frac{\partial N_2}{\partial \Omega_2} \right) \right], \quad (8)$$

где $N_i = [\exp(\Omega_i/T) - 1]$ — бозевские функции распределения, V — объем системы.

Используя выражение $\mathbf{j}_i = \partial F / \partial \mathbf{v}_i$, приходим к формуле (1) с $\rho_{ii} = \rho_i - \rho_{n,i} - \rho_{dr}$ и $\rho_{12} = \rho_{dr}$. Полученные выражения практически полностью совпадают по форме с соответствующими выражениями работы [1] (различие в том, что величина $mn_i - \rho_{n,i}$ также зависит от взаимодействия между компонентами) и дают явную зависимость компонент матрицы сверхтекучих плотностей через микроскопические параметры. Как видно из выражения (8), при T = 0 величина $\rho_{dr} > 0$, т.е. знак увлечения положительный. При $m_1 = m_2$ и T = 0 сумма в формуле (8) может быть рассчитана аналитически:

$$\rho_{dr} \approx 0.8 \frac{a_{12}^2}{a_{11}a_{22}} \sqrt{\rho_1 \rho_2} \sqrt[4]{n_1 a_{11}^3 n_2 a_{22}^3} \times \left(\sqrt{\frac{n_1 a_{11}}{n_2 a_{22}}} + \sqrt{\frac{n_2 a_{22}}{n_1 a_{11}}} \right)^{-1/2}, \quad (9)$$

что в пределе низкой плотности одной из компонент $(n_1 \ll n_2)$ дает

$$\rho_{dr} \approx 0.8 \rho_1 \frac{a_{12}^2}{a_{22}^2} \sqrt{n_2 a_{22}^3},\tag{10}$$

т. е. в этом случае эффективная масса m^* компоненты с низкой плотностью равна

$$m^* = m \left(1 - 0.8 \frac{a_{12}^2}{a_{22}^2} \sqrt{n_2 a_{22}^3} \right)^{-1}.$$
 (11)

При увеличении температуры величина ρ_{dr} уменьшается. Характерный масштаб температур, при которых это уменьшение значительно, порядка энергии взаимодействия γn . При этом возрастание величин $\rho_{n,i}$ с температурой (они равны нулю при T = 0) значительно меньше, чем убывание ρ_{dr} . В результате в области низких температурах диагональные компоненты матрицы сверхтекучей плотности могут увеличиваться при повышении температуры.

Наблюдение эффекта увлечения — непростая задача. Укажем на одну из возможностей наблюдения эффекта. Рассмотрим кольцо с неоднородной плотностью компонент. В качестве наиболее простого случая исследуем геометрию, в которой кольцо содержит непроницаемый барьер для компоненты 2. В этой ситуации отличным от нуля может быть только ток компоненты 1. Градиент фазы для этой компоненты (он не зависит от координат) удовлетворяет условию квантования

$$2\pi R \nabla \varphi_1 = 2\pi N,$$

где *R* — радиус кольца и *N* — целое число. Градиент фазы компоненты 2 находится из условия

$$j_2 = \rho_{22} \nabla \varphi_2 + \rho_{dr} \nabla \varphi_1 = 0$$

Отсюда величина плотности тока первой компоненты равна

$$j_1 = \frac{N}{R} \rho_{s1} \left[1 - \frac{\rho_{dr} \rho_{s2}}{\rho_{s1} (\rho_{s2} - \rho_{dr})} \right].$$
 (12)

Здесь $\rho_{si} = \rho_i - \rho_{n,i}$. Как следует из (12), уменьшение ρ_{dr} приведет к возрастанию полного тока первой компоненты в кольце. Последнее означает, что ослабление взаимодействия между компонентами будет приводить к увеличению момента импульса кольца, причем эффект должен оставаться конечным и при равной нулю температуре.

ЛИТЕРАТУРА

- 1. А. Ф. Андреев, Е. П. Башкин, ЖЭТФ **69**, 319 (1975).
- M. A. Alpar, S. A. Langer, and J. A. Sauls, Astrophys. J. 282, 533 (1984).
- B. Tanatar and A. K. Das, Phys. Rev. B 54, 13827 (1996).
- С. В. Терентьев, С. И. Шевченко, ФНТ 25, 664 (1999).
- 5. D. V. Fil and S. I. Shevchenko, Φ HT 30, 1028 (2004).
- J. M. Duan and S. Yip, Phys. Rev. Lett. 70, 3647 (1993).
- 7. A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
- D. S. Hall, M. R. Matthews, J. N. Ensher et al., Phys. Rev. Lett. 81, 1539 (1998).
- P. Maddaloni, M. Modugno, C. Fort et al., Phys. Rev. Lett. 85, 2413 (2000).
- G. Modugno, M. Modugno, F. Riboli et al., Phys. Rev. Lett. 89, 190404 (2002).
- 11. D. V. Fil and S. I. Shevchenko, Phys. Rev. A 64, 013607 (2001).