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CORRELATION ENERGIES IN DISTORTED 3d-t2gPEROVSKITE OXIDESI. V. Solovyev *Computational Materials Siene Center (CMSC),National Institute for Materials Siene (NIMS),1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, JapanReeived Otober 17, 2006Using an e�etive low-energy Hamiltonian derived from the �rst-priniple eletroni struture alulations forthe narrow t2g bands of YTiO3, LaTiO3, YVO3, and LaVO3, we evaluate the ontributions of the orrelationenergy E to the stability of di�erent magneti strutures that an be realized in these distorted perovskiteoxides. We onsider two approximations for E that are based on the regular perturbation theory expansionaround a nondegenerate Hartree � Fok ground state. One is the seond order of the perturbation theory,whih allows omparing the e�ets of loal and nonloal orrelations. The other is the loal t-matrix approah,whih allows treating some higher-order ontributions to E. The orrelation e�ets systematially improve theagreement with the experimental data and additionally stabilize the experimentally observed G- and C-typeantiferromagneti (AFM) strutures in YVO3 and LaVO3, although the absolute magnitude of the stabilizationenergy is sensitive to the level of approximations and is somewhat smaller in the t-matrix method. The nonloalorrelations additionally stabilize the ferromagneti ground state in YTiO3 and the C-type AFM ground statein LaVO3. Among two inequivalent transition-metal sites in the monolini struture, the loal orrelationsare stronger at the sites with the least distorted environment. Limitations of the regular perturbation-theoryexpansion for LaTiO3 are also disussed.PACS: 71.10.-w, 71.15.N, 71.28.+d, 75.25.+z1. INTRODUCTIONAn interest in the transition-metal perovskite oxidesYTiO3, LaTiO3, YVO3, and LaVO3 is mainly relatedto the variety of magneti strutures that an be real-ized in these seemingly alike ompounds. For example,YTiO3 has the ferromagneti struture [1℄. LaTiO3 isa three-dimensional (G-type) antiferromagnet [2℄. Atthe low temperature, YVO3 forms the G-type antiferro-magneti (AFM) struture, whih an be transformedto a hainlike (C-type) antiferromagneti struture ataround 77 K [3℄. On the ontrary, LaVO3 is a C-typeantiferromagnet in the entire temperature range belowthe magneti transition temperature [4℄. Surprisingly,the di�erene exists not only between titanates (YTiO3and LaTiO3) and vanadites (YVO3 and LaVO3), whihhave a di�erent number of valent eletrons, but alsowithin eah group of formally isoeletroni materials.The di�erenes are apparently related to tiny hanges*E-mail: solovyev.igor�nims.go.jp

in the distorted perovskite struture, whih are ampli-�ed by Coulomb interations in the narrow t2g band.The details of the rystal struture an be found inRefs. [1�4℄. Brie�y, both titanites have an orthorhom-bi struture, although the details of this strutureare rather di�erent for YTiO3 and LaTiO3. LaVO3is rystallized in a monolini struture. The low-temperature phase of YVO3 is orthorhombi (shownin the Figure), whih beomes monolini at around77 K. The strutural orthorhombi-monolini transi-tion oinides with the G�C AFM transition. Gener-ally, Y-based ompounds are more distorted (due tothe smaller size of the Y3+ ions).There are a large number of theoretial artiles de-voted to the origin of the magneti ground states inthe distorted t2g perovskite oxides. The problem hasbeen onsidered on the basis of the �rst-priniple ele-troni struture alulations (see, e.g., Refs. [5℄) andthe model approahes for strongly orrelated systems(see, e.g., Refs. [6�8℄). The model theories typially57
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Energy, eVA harateristi example of the rystal struture (a) and the eletroni struture in the loal-density approximation (b) ofthe orthorhombially distorted YVO3. a � the symbols a, b, and  stand for orthorhombi translations, and the symbols1�4 denote the transition-metal sites, whih form the unit ell of the distorted perovskite oxides. b � the ontributionsof the atomi V(3d) states are shown. Other symbols show the positions of the main bands. The Fermi level is at zeroenergyvary on the assessment of the role played by the lattiedistortions [6℄ and the Coulomb orrelations [7, 8℄.We believe that any realisti theoretial desriptionof these ompounds is pratially impossible withoutthe impat from the �rst-priniple eletroni struturealulations: simply, the lattie distortion is too om-plex, and, had we tried to postulate a model Hamil-tonian for these t2g perovskite oxides, we would haveinevitably faed the problem of hoosing the valuesfor a large number of model parameters, whih an-not be �xed in an unbiased way. However, the on-ventional eletroni struture alulations are also farfrom being perfet. Typially, they are supplementedwith some additional approximations, whih have se-rious limitations for treating the Coulomb orrelationsin the ase of strongly orrelated materials. A typialexample is the loal-density approximation. From thisstandpoint, a promising diretion is to make a bridgebetween the �rst-priniple eletroni struture alula-tions and models for strongly orrelated systems, andonstrut an appropriate model Hamiltonian entirely�from the �rst priniples�. Fortunately, in the ase oftransition-metal oxides, we are typially dealing withonly a small group of states loated near the Fermilevel and well separated from the remaining part ofthe spetrum (for instane, t2g bands in the Figure).These states are mainly responsible for the eletroniand magneti properties of oxide materials.Therefore, in many ases, it su�es to onsider a

minimal model, onsisting of only the t2g bands, andinlude the e�et of the other bands into the renormal-ization of interation parameters in the t2g band. Suha strategy was pursued in Refs. [9�11℄. It onsists ofthree major steps: �rst-priniple eletroni struturealulations ! onstrution of the model Hamiltonian! solution of this model Hamiltonian.The �rst appliations to the distorted t2g perovskiteoxides were onsidered in Refs. [11, 12℄. The presentpaper deals with the last part of the problem. We solvethe model Hamiltonian derived in Ref. [11℄, and mainlyfous on the role played by the orrelation e�ets, be-yond the mean-�eld Hartree � Fok (HF) approxima-tion. In partiular, we onsider two perturbative ap-proahes. One is the regular seond-order perturbationtheory for the orrelation energy [13℄, and the other isthe t-matrix approah [14�16℄. In both approahes, theHF approximation is used as the starting point. Thisimplies that the degeneray of the HF ground state isalready lifted by the rystal distortion suh that theregular perturbation theory is justi�ed. We also dis-uss some limitations of this treatment for LaTiO3.2. CONSTRUCTION OF THE MODELHAMILTONIANOur �rst goal is the onstrution of the e�etivemulti-orbital Hubbard model for the isolated t2g bands:58



ÆÝÒÔ, òîì 132, âûï. 1 (7), 2007 Correlation energies in distorted : : :Ĥ = XR;R0X�;� h��RR0 ̂yR�̂R0� ++ 12XR X�;�;;ÆU��Æ ̂yR�̂yR ̂R� ̂RÆ; (1)where ̂yR� (̂R�) reates (annihilates) an eletron in theWannier orbital ~W�R of the transition-metal siteR, and� is a olletive index, inorporating all the remaining(spin and orbital) degrees of freedom. The matrixĥRR0 = kh��RR0kparameterizes the kineti energy of eletrons, wherethe site-diagonal part (R = R0) desribes the loallevel-splitting aused by the rystal �eld, and the o�-diagonal part (R 6= R0) stands for the transfer inte-grals,U��Æ = Z dr Z dr0 ~W�yR (r) ~W �R(r)vsr(r� r0)�� ~W yR (r0) ~W ÆR(r0) � h�jvsrj�Æiare matrix elements of sreened Coulomb interationvsr(r � r0), whih are supposed to be diagonal withrespet to site indies. In priniple, U��Æ an alsodepend on the site index R. Nevertheless, for simpli-ity of notation, here and hereafter, we drop the indexR in the notation for the Coulomb matrix elements(however, we do onsider this dependene in all ouralulations).The proedure of mapping the �rst-priniple ele-troni struture alulations onto the model Hamilto-nian in (1) for distorted perovskite oxides has been dis-ussed in detail in Refs. [10, 11℄. Here, we only outlinethe main idea. The kineti-energy part ĥRR0 an beobtained using the downfolding method, whih is exatand equivalent to the projetor-operator method [17℄.The Wannier funtions an be formally derived fromĥRR0 using the ideas of the linear-mu�n-tin-orbitalmethod [10, 18℄. The matrix of sreened Coulomb in-terations in the t2g band an be alulated using a hy-brid approah, whih ombines the onstraint density-funtional theory with the random-phase approxima-tion for the hybridization e�ets between transition-metal d and other atomi states [10℄. The values of themodel parameters obtained in suh a way an be foundin Ref. [11℄.3. SOLUTION OF MODEL HAMILTONIAN3.1. Hartree � Fok approximationThe HF method provides the simplest approxima-tion for the solution of the many-eletron problem

with Hamiltonian (1). In this ase, the trial many-eletron wave funtion is searhed in the form of a sin-gle Slater determinant jSf'kgi, onstruted from theone-eletron orbitals f'kg. In this notation, k is a ol-letive index that ontains the information about themomentum k in the �rst Brillouin zone, the band num-ber n, and the spin (� = " or #) of the partile. Theone-eletron orbitals f'kg are subjeted to the vari-ational priniple and requested to minimize the totalenergy EHF = minf'kghSf'kgjĤjSf'kgifor a given number of partiles N . This yields the fol-lowing equations for f'kg:�ĥk + V̂ � j'ki = "kj'ki; (2)where ĥk � kh��k kis the kineti part of model Hamiltonian (1) in the re-iproal spae:h��k = 1N XR0 h��RR0 exp(�ik � (R�R0))(N being the number of sites) andV̂ � kV��kis the HF potential:V�� =XÆ (U��Æ � U�Æ�)nÆ: (3)In what follows, we also use the notation ĥHF , whihstands for the total Hamiltonian of the HF method,ĥ+ V̂ . Equation (2) is solved self-onsistently togetherwith the equation n̂ = oXk j'kih'k jfor the density matrixn̂ � kn��kin the basis of Wannier orbitals. Finally, the total en-ergy in the HF method an be obtained asEHF = oXk "k � 12X�� V��n�� :59



I. V. Solovyev ÆÝÒÔ, òîì 132, âûï. 1 (7), 20073.2. Seond-order perturbation theory fororrelation energyThe simplest way to go beyond the HF approxi-mation is to inlude the orrelation interations in theseond order of the perturbation theory for the totalenergy [13℄. The orrelation interation (or a �utu-ation) is de�ned as the di�erene between true many-body Hamiltonian (1) and its one-eletron ounterpart,obtained at the level of HF approximation:Ĥ =XR 0�12 X��ÆU��Æ̂yR�̂yR ̂R� ̂RÆ��X�� V�� ̂yR�̂R�1A : (4)By treating Ĥ as a perturbation, the orrelation en-ergy an be easily estimated as [13℄E(2) = �XS hGjĤjSihSjĤjGiEHF (S)�EHF (G) ; (5)where jGi and jSi are the Slater determinants, respe-tively, orresponding to the low-energy ground state inthe HF approximation and the exited state. Due tothe variational properties of the HF method, the onlyproesses that may ontribute to E(2) are the two-par-tile exitations, for whih eah jSi is obtained fromjGi by replaing two one-eletron orbitals, e.g., 'k1 and'k2 , from the oupied part of the spetrum by two un-oupied orbitals, e.g., 'k3 and 'k4 . Hene, using thenotation of Se. 2, the matrix elements take the formhSjĤjGi = hk3k4jvsrjk1k2i � hk3k4jvsrjk2k1i: (6)Then, we employ a ommon approximation of nonin-terating quasipartiles and replae the denominator inEq. (5) with the linear ombination of HF eigenvalues:EHF (S)�EHF (G) � "k3 + "k4 � "k1 � "k2see [13℄. Matrix elements (6) satisfy the onditionhSjĤjGi � 1N XR exp(i(k3 + k4 � k1 � k2) �R)if the sreened Coulomb interations are diagonal withrespet to the site indies.A good point of the seond-order of the perturba-tion theory is that it allows estimating both on-site(R = 0) and intersite (R 6= 0) elements of this ex-pansion relatively easily. In what follows, we use this

method in order to study the relative role played bythese e�ets in the stability of di�erent magneti stru-tures of the distorted perovskite oxides. The R = 0term orresponds to the ommonly used single-siteapproximation for the orrelation interations, whihbeomes exat in the limit of in�nite spatial dimen-sions [19℄. 3.3. The t-matrix approahThe basi idea of the t-matrix approah is to lookat the true many-eletron system as a superpositionof independent two-eletron subsystems, and to rigor-ously solve the Shrödinger equations for eah of thesesubsystems [14, 15, 16℄. Hene, we onsider the two-eletron HamiltonianĤ(1; 2) = ĥHF (1) + ĥHF (2) + �v̂(1; 2);where �v̂(1; 2) = v̂sr(1; 2)� V̂ (1)� V̂ (2);v̂sr(1; 2) is the sreened (by other bands) Coulomb in-terations between eletrons �1� and �2� in the t2gband, and ĥHF (V̂ ) is the one-eletron Hamiltonian(potential) in the HF approximation. For a periodisystem, the Shrödinger equation an be written asĤ j	k1k2i = Ek1k2 j	k1k2i: (7)Any two-eletron wave funtion j	k1k2i an be ex-panded in the basis of (also two-eletron) Slater de-terminants:jk1k2i = 1p2f'k1(1)'k2(2)� 'k2(1)'k1(2)g;et. Apart from a normalization fator, this expansionhas the form [16℄j	k1k2i = jk1k2i+ Xjk3k4i�k3k4k1k2 jk3k4i: (8)We note that the summation ranges only nonequiv-alent Slater determinant jk3k4i onstruted from theone-eletron orbitals k3 and k4. For example, beausejk4k3i = �jk3k4i;the determinant jk4k3i must be exluded from the sumin (8), et. Substituting Eq. (8) in Eq. (7) and intro-duing the new notation�Ek1k2 = Ek1k2 � "k1 � "k2suh that60



ÆÝÒÔ, òîì 132, âûï. 1 (7), 2007 Correlation energies in distorted : : :hĥHF (1) + ĥHF (2)� "k1 � "k2i jk1k2i = 0(i.e., "k1 and "k2 are the eigenvalues of the HF Hamil-tonian), we obtain the following equation for �Ek1k2and �k3k4k1k2 :(�v̂ ��Ek1k2) jk1k2i++ Xjk3k4i ("k3 + "k4 � "k1 � "k2++ �v̂ ��Ek1k2) �k3k4k1k2 jk3k4i = 0:By onsidering the matrix element of this equation withhk1k2j, we an �nd that�Ek1k2 = hk1k2j�v̂jk1k2i++ Xjk3k4i�k3k4k1k2hk1k2j�v̂jk3k4i; (9)where the �rst term is the energy of the Coulomb andexhange interations in the HF approximation (minusthe potential energy), while the seond term is the or-relation energy. By onsidering the matrix elementswith hk5k6j 6= hk1k2j, we an �nd another set of equa-tions for �k3k4k1k2 :hk5k6j�v̂jk1k2i++ ("k5 + "k6 � "k1 � "k2 ��Ek1k2) �k5k6k1k2 ++ Xjk3k4i�k3k4k1k2hk5k6j�v̂jk3k4i = 0:They are solved iteratively with respet to�v̂. For this,it is onvenient to introdue the two-partile Green'sfuntionĜk1k2 = Xjk3k4i jk3k4ihk3k4j"k3 + "k4 � "k1 � "k2 ��Ek1k2and derive a matrix equation for f�k3k4k1k2g to be substi-tuted in Eq. (9). It is then rather straightforward toderive the following expression for �Ek1k2 :�Ek1k2 = hk1k2jT̂k1k2 jk1k2i; (10)where T̂k1k2 is the so-alled t-matrix:T̂k1k2 = �v̂ h1̂ + Ĝk1k2�v̂i�1 : (11)The orrelation energy of the t-matrix method is ob-tained after subtrating the energies of Coulomb andexhange interations in the HF approximation from

Eq. (10) and summing over all Slater determinants on-struted from the oupied one-eletron orbitals of theHF method:E(t) = oXjk1k2ihk1k2jT̂k1k2 ��v̂jk1k2i: (12)In pratie, eah HF orbital has been expanded over thebasis of Wannier funtions, and then all alulations ofT̂k1k2 and E(t) have been performed in this basis.By expanding T̂k1k2 up to the seond order in �v̂,we regain Eq. (5), obtained in the seond order of theperturbation theory. Therefore, the good point of thet-matrix approah is that it allows going beyond theseond order of the perturbation theory and evaluat-ing the higher-order e�ets in �v̂ on the orrelationenergy. Nevertheless, it was supplemented with someadditional approximations.1. When we ompute the matrix elements of theform hk3k4j�v̂jk1k2i, being proportional to1N XR exp(i(k3 + k4 � k1 � k2) �R);we onsider only the R = 0 part of this sum and ne-glet all other ontributions. This orresponds to thesingle-site approximation for the t-matrix.2. In all matrix elements hk3k4j�v̂jk1k2i, we replae�v̂ with v̂sr and drop the one-eletron potentials of theHF method. Stritly speaking, this proedure is justi-�ed only when both one-eletron states k1 and k2 aredi�erent from k3 and k4, for example, when they be-long, orrespondingly, to the oupied and unoupiedpart of the spetrum, as in the seond-order of pertur-bation theory. However, this is no longer true for thehigher-order terms in�v̂. Nevertheless, we believe thatthe di�erene is small.All orrelation energies have been omputed in themesh of 75 points in the �rst Brillouin zone, orre-sponding to the 4 : 4 : 2 division of the reiproaltranslation vetors for the distorted perovskite stru-ture. The atual integration over the Brillouin zonehas been replaed by the summation over this mesh ofpoints. 4. RESULTS AND DISCUSSIONSFirst appliations of the proposed method toYTiO3, LaTiO3, YVO3, and LaVO3 have been on-sidered in Ref. [11℄, where we have summarized resultsof HF alulations for model (1) and the behavior of61



I. V. Solovyev ÆÝÒÔ, òîì 132, âûï. 1 (7), 2007Table 1. The Hartree � Fok energy EHF and orre-lation energies obtained in the seond order of pertur-bation theory, E(2) , and in the t-matrix approah, E(t) ,for the orthorhombi phase of YTiO3. The Hartree �Fok energies are measured from the most stable mag-neti state in meV per one formula unit. The orrela-tion energies are measured in meV per one transition-metal site or a pair of sites, orrespondingly for theon-site and intersite ontributions. The t-matrix wasomputed in the single-site approximation. Therefore,only the site-diagonal part of E(t) is shown. The po-sitions of the transition-metal sites are shown in theFigurePhase EHF E(2) E(t)Ti1 Ti1�Ti2 Ti1�Ti3 Ti1F 0 �5:13 �0:38 �0:01 �4:58A 2:05 �6:19 �0:37 0 �4:80C 14:40 �8:32 �0:17 �0:01 �5:28G 16:25 �8:48 �0:18 �0:01 �5:31Table 2. The Hartree � Fok energy EHF and or-relation energies obtained in the seond order of per-turbation theory, E(2) , and in the t-matrix approah,E(t) , for the low-temperature orthorhombi phase ofYVO3 (T < 77 K). All energies are measured in meV.See the Figure for the details of the notationPhase EHF E(2) E(t)V1 V1�V2 V1�V3 V1F 21:66 �2:19 �0:12 �0:02 �2:16A 14:59 �4:67 �0:12 �0:01 �3:31C 10:14 �5:61 �0:07 0 �3:14G 0 �7:07 �0:07 �0:01 �4:06orrelation energies in the seond order of the pertur-bation theory, supplemented with the single-site ap-proximation. In the present work, we further elaboratethe problem by fousing on the following questions:1. the role of higher-order ontributions to the or-relation energy;2. the role of nonloal (or intersite) ontributionsto the orrelation energy.We also onsider the e�ets of monolini distortionand analyze the ontributions to the orrelation energyof inequivalent transition-metal sites. The results ofthese alulations are presented in Tables 1�5 for all

the onsidered ompounds. First, we summarize themain results in Ref. [11℄.1. The HF approximation yields the orret mag-neti ground state for YTiO3, LaVO3, and both phasesof YVO3. This onlusion is fully onsistent with theresults of aurate all-eletron band-struture alula-tions [5℄, and it is quite remarkable that all these resultsan be reprodued in our minimal model derived for thet2g bands.2. The orrelation e�ets favor the AFM spinalignment and additionally stabilize the experimentallyobserved G- and C-type AFM states in YVO3 andLaVO3.3. None of the onsidered approahes reproduesthe experimental G-type AFM ground state of LaTiO3(instead, the theoretial alulations steadily onvergeto the A-type AFM ground state [11, 12℄).Then, what is to happen if we go beyond the seond-order perturbation theory and apply the t-matrix ap-proah? Generally, the t-matrix approah redues theabsolute value of the orrelation energy. But the mag-nitude of this redution strongly depends on the mag-neti state. For example, if the ferromagneti stateis only weakly a�eted by the higher-order orrela-tion e�ets (the typial hanges of E vary from 1%in YVO3 to 13% in LaTiO3), E in the G-type AFMphase an drop by nearly 50%. From this standpoint,if the seond order of the perturbation theory does notsolve the problem of the G-type AFM ground state ofLaTiO3, it seems to be unlikely that the higher-ordere�ets an reverse the situation. Apparently, LaTiO3is di�erent from other perovskite oxides, and the regu-lar perturbation-theory expansion, although justi�ablefor the majority of onsidered ompounds, does notwork for LaTiO3. This seems to be reasonable beauseLaTiO3 has the largest orrelation energies, whih areomparable to the splitting of the t2g levels aused bythe rystal distortion (� 37 meV [11℄). Therefore, itis quite possible that the orrelation e�ets in LaTiO3should be onsidered at the �rst plae, and the sim-ple HF theory for the spin and orbital ordering withthe subsequent inlusion of the orrelation e�ets as aperturbation to the HF ground state may not be ap-propriate here [7, 8℄. We note that in other materials,the situation is di�erent: the typial values of the t2g-levels splitting in YTiO3, YVO3, and LaVO3 are about100 meV [11℄, whih exeeds the orrelation energy byat least one order of magnitude. Therefore, it seemsthat the degeneray of the HF ground state is alreadylifted by the rystal distortion, and the orrelation ef-fets are well desribed by means of the regular pertur-bation theory expansion. This is partly supported by62



ÆÝÒÔ, òîì 132, âûï. 1 (7), 2007 Correlation energies in distorted : : :Table 3. The Hartree � Fok energy EHF and orrelation energies obtained in the seond order of perturbation theory,E(2) , and in the t-matrix approah, E(t) , for the high-temperature monolini phase of YVO3 (77 K < T < 116 K). Allenergies are measured in meV. See Table 1 for the details of the notation. In the monolini phase, the planes 1�2 and3�4 are inequivalent (see the Figure). Therefore, there are two di�erent types of on-site (denoted as V1 and V4) andintersite (denoted as V1�V2 and V4�V3) ontributions to the orrelation energy. The ontributions V1�V3 and V4�V2are equivalent and are both shown only for the sake of ompletenessPhase EHF E(2) E(t)V1 V1�V2 V1�V3 V4 V4�V3 V4�V2 V1 V4F 11:71 �2:81 �0:02 �0:03 �1:74 �0:01 �0:03 �2:76 �1:71A 13:97 �5:87 �0:03 �0:01 �3:63 �0:01 �0:01 �4:14 �2:55C 0 �8:08 �0:02 �0:05 �6:98 �0:03 �0:05 �4:85 �4:33G 6:63 �7:56 �0:02 �0:01 �6:49 �0:03 �0:01 �4:38 �3:76Table 4. The Hartree � Fok energy EHF and orrelation energies obtained in the seond order of perturbation theory,E(2) , and in the t-matrix approah, E(t) , for the monolini phase of LaVO3. All energies are measured in meV. SeeTables 1 and 3 for the details of the notation. In the monolini phase, the planes 1�2 and 3�4 (see the Figure) areinequivalent, whih results in two types of V sites as well as the in-plane interationsPhase EHF E(2) E(t)V1 V1�V2 V1�V3 V4 V4�V3 V4�V2 V1 V4F 20:98 � 3:82 �0:02 �0:15 � 4:13 �0:02 �0:15 �3:74 �4:02A 20:63 �11:77 �0:22 �0:03 � 8:80 �0:02 �0:03 �8:34 �5:84C 0 �13:37 �0:04 �0:26 �12:54 �0:02 �0:26 �8:86 �8:39G 7:65 �10:52 �0:04 �0:02 � 9:02 �0:03 �0:02 �6:17 �5:41reent total-energy alulations for the orthorhombiphase of YVO3 using the path-integral renormalization-group method, whih is free of any perturbation-theoryexpansions for the orrelation energy [20℄. The methodwas applied to the same model, and the main onlu-sions onerning the magneti phase diagram were sim-ilar to our present �nding.The orrelations additionally stabilize the experi-mentally observed G- and C-type AFM states in YVO3and LaVO3. Moreover, in the orthorhombi phase ofYVO3, the orrelation e�ets tend to stabilize the G-type AFM state; while in the monolini phase, theystabilize the C-type AFM state, being in total agree-ment with the experimental data. This trend is learlyseen both in the seond order of the perturbation the-ory and in the t-matrix approah, although the latteryields somewhat smaller values for the stabilization en-ergy assoiated with the orrelation e�ets.The higher-order orrelations play an importantrole in YTiO3 and additionally stabilize the ferromag-neti phase. The latter emerges as the ground state

Table 5. The Hartree � Fok energy EHF and or-relation energies obtained in the seond order of per-turbation theory, E(2) , and in the t-matrix approah,E(t) , for the orthorhombi phase of LaTiO3. All ener-gies are measured in meV. See Table 1 for the detailsof the notationPhase EHF E(2) E(t)Ti1 Ti1�Ti2 Ti1�Ti3 Ti1F 4:95 �11:08 �0:52 �0:08 � 9:66A 0 �22:53 �0:54 �0:07 �15:17C 19:57 �17:19 �0:23 �0:11 �11:04G 11:51 �23:02 �0:22 �0:09 �13:99already in the HF approah, where the total energydi�erene between ferromagneti and the next A-typeAFM state is about 2:05 meV per one Ti site (Table 1).However, if we take the orrelation e�ets in the se-63



I. V. Solovyev ÆÝÒÔ, òîì 132, âûï. 1 (7), 2007ond order of the perturbation theory into aount (andonsider the single-site approximation), this di�ereneis redued to only 0:99 meV. Therefore, the situationis very fragile. Nevertheless, the t-matrix approah,whih a�ets the A-type AFM state more strongly, re-overs some of these energy gains and is to make thetotal energy di�erene between ferromagneti and A-type AFM states about 1:83 meV per one Ti site.The intersite orrelation energies estimated in theseond order of the perturbation theory, an be largein some ferromagnetially oupled bonds. This is espe-ially true for YTiO3 and LaVO3. For example, the en-ergy of interation between nearest-neighbor sites �1�and �2� (see the Figure), loated in the ab-plane ofthe ferromagneti phase of YTiO3 is about �0:38 meV(Table 1). Beause eah transition-metal atom inter-ats with four nearest neighbors in the ab-plane, thisvalue orresponds to the additional energy gain�0:38� 4 = �1:52 meVper one Ti site. Similar estimates yield�0:37� 4 = �1:48 meV; �0:17� 4 = �0:68 meV;and �0:18� 4 = �0:72 meV;orrespondingly for the A-, C-, and G-type AFMstates. Therefore, the in-plane intersite orrelationstend to additionally stabilize the ferromagneti phaserelative to the AFM states C and G. In the A-typeAFM phase, the sites �1� and �2� are also ferro-magnetially oupled, as in the totally ferromagnetiphase. Therefore, these two phases have pratiallythe same intersite orrelation energies in the ab-plane.The inter-plane orrelations appear to be small in allmagneti phases of YTiO3.In LaVO3, the situation is somewhat di�erent, andthis is a good example of a system where the inter-plane orrelations already play a more important role.Indeed, the energies of intersite orrelations are thelargest in the ferromagneti hains of C-type AFMphase, whih is also the magneti ground state of thisompound. These energies are assoiated with thebonds �1�3� and �2�4�, whih are shown in the Fig-ure, and the results are summarized in Table 4. Thus,in the ase of LaVO3, the inter-plane orrelations ad-ditionally stabilize the C-type AFM ground state. Butbeause eah transition-metal atom interats with onlytwo nearest neighbors along the  axis, the stabilizationenergy is not partiularly large, about�0:26� 2 = �0:52 meVper one V atom.

The intersite orrelation energies are also large inthe ase of LaTiO3 (Table 5). However, they tend tostabilize either ferromagneti or A-type AFM states,and do not explain the appearane of the experimentalG-type AFM ground state. Again, we believe that theproblem is related to the use of the regular perturba-tion theory expansion, whih may not be justi�ed inthe ase of LaTiO3.The monolini distortion realized in LaVO3 andin the high-temperature phase of YVO3 produes twoinequivalent pairs of transition-metal sites, whih areshown orrespondingly as (1,2 ) and (3,4 ) in the Fig-ure. Therefore, it is interesting to onsider the interplaybetween orrelation energies and the lattie distortionsaround di�erent transition-metal sites. In our nota-tions, the rystal struture around the sites �3� and�4� is more distorted than the one around the sites�1� and �2�. Suh a distortion diretly orrelates withthe magnitude of the rystal-�eld splitting in di�er-ent sublatties [11℄. Then, the on-site orrelations aregenerally stronger at the sites with the least distortedenvironment (site �1� in the Tables 3 and 4). This ruleholds both for YVO3 and LaVO3 (although with someexeption for the ferromagneti phase of LaVO3). Inthe C-type AFM phase, whih is always realized as themagneti ground state in the monolini struture, thedi�erene of on-site orrelation energies assoiated withsites �1� and �4� is about 1 meV per one V site, as ob-tained in the seond order of the perturbation theory.This value is further redued to 0:5 meV per one V siteby higher-order orrelations in the t-matrix theory.5. SUMMARY AND CONCLUSIONSThis paper is a ontinuation of the previous works(Refs. [10�12℄) devoted to the onstrution and solu-tion of an e�etive low-energy models for the series ofdistorted t2g perovskite oxides on the basis of the �rst-priniple eletroni struture alulations. It deals withthe analysis of orrelation interations and their on-tributions to stability of di�erent magneti struturesthat an be realized in these ompounds. The or-relation energies have been alulated on the basis ofa regular perturbation theory expansion starting fromthe ground state of the HF method. Thus, our strategyimplies that the degeneray of the HF ground state isalready lifted by the rystal distortion and the regu-lar perturbation theory is justi�ed. This seems to bea good approximation for the most distorted YTiO3,YVO3, and even LaVO3, where64
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