ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛА $Fe_{1-x}Dy_xSi$

Г. С. Патрин^{а,b*}, В. В. Белецкий^b, Н. В. Волков^a, Д. А. Великанов^a, О. В. Закиева^a

^а Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^b Сибирский федеральный университет 660041, Красноярск, Россия

В работе изложены результаты экспериментальных исследований магнитных и электрических свойств кристалла Fe_{1-x}Dy_xSi. На температурных зависимостях намагниченности обнаружена аномалия, величина и местоположение которой существенно зависят от значения внешнего магнитного поля. Установлено, что введение ионов Dy приводит к слабому магниторезистивному эффекту.

PACS: 75.20.Hr, 75.47.Pq

В силу уникальности своих физических свойств кристалл FeSi привлекает внимание исследователей на протяжении многих лет. В этом кристалле оказалось необычным поведение магнитной восприимчивости, тепловых и электрических параметров. Так, при повышении температуры удельное электрическое сопротивление ρ сначала монотонно уменьшается примерно на четыре порядка, достигая минимума в районе $T \approx 300~{\rm K}$ (при этом зависимость $\rho(T)$ не описывается простой термоактивационной зависимостью), а затем с ростом температуры медленно повышается. По этому признаку кристалл FeSi относят либо к классу кондо-соединений [1], либо к материалу, показывающему переход полупроводник – металл [2]. В магнитном отношении этот материал не укладывается в традиционную схему поведения известных магнетиков. Магнитная восприимчивость ($\chi \sim 10^{-4} - 10^{-6}$) при повышении температуры до $T \approx 90$ К сначала уменьшается, а затем значительно увеличивается, достигая максимума при $T \approx 500$ K [3]. Никакого магнитного порядка в этом соединении методами мессбауэровской спектроскопии [4] и нейтронографии [5] не обнаружено, а при T > 550 К температурная зависимость магнитной восприимчивости подчиняется закону Кюри-Вейса. Хотя из более тщательных экспериментов с поляризованными нейтронами [6] обнаружено наличие магнитного рассеяния, что интерпретируется как существование микрообластей с ферромагнитными корреляциями спиновых флуктуаций.

Был проведен комплекс детальных исследований магнитных, термоэлектрических и гальваномагнитных свойств [7–9] кристалла FeSi, на основании чего авторы этих работ интерпретируют свои результаты в модели Хаббарда с сильными электронными корреляциями. Здесь низкотемпературные особенности физических свойств связываются с образованием спиновых поляронов. Стоит заметить, что существует точка зрения, где низкотемпературные особенности приписываются наличию примесных ионов железа из-за нестехиометрии кристалла [3, 8, 10], а высокотемпературные зависимости объясняются переходом электронов в конфигурации d^4 из состояния e_{2g}^4 (S = 0) в состояние $e_{2g}^3 t_{2g}^1$ (S = 1) [3]. Однако до настоящего времени для описания всего набора физических свойств нет устоявшейся и общепринятой картины.

Имеются работы, где предприняты попытки модификации свойств кристалла FeSi путем легирования различными примесями. Так замещение ионов Fe на 4d-ионы иридия [11] увеличивает величину максимума магнитной восприимчивости и совершенно меняет электрическое сопротивление, приводя к металлическому типу проводимости при концентрации Ir x > 10 ат. %. Добавки 3d-ионов кобальта [12] приводят к образованию магнитного порядка и дырочному механизму проводимости, сохраняя в целом картину температурного изменения ρ . Замена кремния на алюминий [13] приводит к металлизации состояния образца и общему росту магнитной восприимчивости.

^{*}E-mail: patrin@iph.krasn.ru

В ряду магнитных элементов 4*f*-ионы характеризуются тем, что многие из них легко образуют химические соединения с кремнием [14] и имеют локализованные магнитные моменты. При низких температурах наиболее ярко проявляются индивидуальные свойства редкоземельных ионов, что позволяет использовать их в качестве зондов при целенаправленном изменении физических свойств кристаллов.

В настоящей работе мы приводим результаты исследований по влиянию примесных 4*f*-ионов диспрозия на электрические и магнитные свойства кристалла моносилицида железа.

Поликристаллические образцы Fe_{0.99}Dy_{0.01}Si были получены методом, описанным в работе [10]. Рентгеновские измерения были выполнены на дифрактометре ДРОН-4 на поликристаллических образцах, взятых из разных областей тигля. Все дифрактограммы были идентичны. Измерения намагниченности были проведены на СКВИД-магнетометре в малых магнитных полях и на установке PPMS в больших полях. Перед каждым измерением образец помещался в демагнетизатор. Температурные и полевые зависимости удельного сопротивления были получены четырехзондовым методом.

Из сравнения дифрактограмм для примесного и номинально чистого кристаллов было получено, что легирование кристалла FeSi ионами Dy при концентрациях ≤ 1 ат. % не изменяет структуру. Также следов присутствия соединений в системах Dy–Fe и Dy–Si не обнаружено.

Как известно [10], для номинально чистого кристалла в области низких температур никаких особенностей магнитной восприимчивости не наблюдается. Внедрение ионов диспрозия существенно влияет на магнитные свойства при низких температурах в малых магнитных полях (см. рис. 1). При измерении намагниченности М в режиме охлаждения в нулевом магнитном поле (ZFC) обнаружено, что на температурной зависимости M(T) имеет место аномалия в виде пика. При увеличении магнитного поля местоположение (температура блокировки T_c) этого пика сдвигается в область низких температур, высота максимума растет, а сам пик значительно уширяется (рис. 1а). При охлаждении в магнитном поле (режим FC), равном полю измерения, особенность сохраняется, но пик смещается в более низкие температуры, а высота пика значительно выше, чем в режиме ZFC (рис. 16). В последнем случае кривая M(T) имеет один и тот же вид как при увеличении температуры, так и при уменьшении. В магнитных полях $H \geq 5$ кЭ зависимости M(T) для номиналь-

Рис. 1. Температурные зависимости намагниченности $Fe_{1-x}Dy_xSi: a - в$ режиме ZFC в разных магнитных полях H = 10 (1), 100 (2), 500 (3), 1500 (4), 2500 (5) Э; δ — при охлаждении в поле (FC) и без поля (ZFC), H = 400 Э. На вставке: зависимость при H = 10 кЭ

но чистого кристалла и легированного диспрозием ведут себя аналогичным образом (см. вставку на рис. 1). На рис. 2 приведены полевые зависимости намагниченности при разных температурах. Наблюдаются гистерезисные явления, однако, как видно из рисунка, такое поведение имеет место при температурах T < 25 K, а при более высоких температурах аномалия уже не проявляется.

При измерении удельного электросопротивления кристалла, легированного диспрозием, получено, что вид температурной зависимости $\rho(T)$ качественно такой же, как и у номинально чистого кристалла. Разница состоит лишь в том, что при одних и тех же экспериментальных условиях величина сопротивления для примесного кристалла ($\rho_{\rm Dv}$) меньше, чем для номинально чистого кристалла (ρ_{NP}). На рис. 3 приведены температурные зависимости разности $\Delta \rho = \rho_{Dy} - \rho_{NP}$, полученные в разных магнитных полях. Обращает на себя внимание то, что зависимость $\Delta \rho$ от магнитного поля наблюдается только при температурах $T\,<\,40$ K, а при более высоких температурах имеет место постоянное, но магнитно-независимое изменение электросопротивления. При фиксированной температуре для кристалла Fe_{1-x}Dy_xSi удельное электросопротивление при увеличении магнитного поля растет и экспери-

Рис. 2. Полевые зависимости намагниченности при T = 2 (*a*), 10 (*б*) и 20 (*в*) К

Рис. 3. Температурные зависимости изменения электросопротивления в разных магнитных полях H = 10 (1), 50 (2), 90 (3) кЭ. На вставке: полевая зависимость электросопротивления при T = 2 К: $1 - \kappa$ ристалл Fe_{1-x} Dy_xSi, $2 - \kappa$ ристалл FeSi

Образец	$A\cdot 10^5$	$B\cdot 10^{11}$	$C \cdot 10^{16}$
${ m FeSi}$	9.5	8.8	6.4
$\mathrm{Fe}_{1-x}\mathrm{Dy}_x\mathrm{Si}$	9.2	8.3	4.0

ментальная кривая может быть аппроксимирована квадратичной зависимостью (см. вставку на рис. 3), вида

$$\rho_{\mathbf{j}}(H) = A_{\mathbf{j}} + B_{\mathbf{j}}H + C_{\mathbf{j}}H^2$$

где j = Dy либо NP. В таблице приведены значения коэффициентов подгоночной зависимости для $\rho(H)$.

Таким образом, из наших экспериментов следует, что легирование кристалла FeSi ионами диспрозия приводит к заметному изменению магнитных и транспортных свойств. В номинально чистом кристалле магнитный гистерезис существует в полях H < 100 Э, но имеет другой вид и обусловлен взаимодействием между кластерами железа [10]. В данном случае можно предположить, что наряду с существованием «чисто железных» магнитно-изотропных кластеров из-за нестехиометрии кристалла дополнительно образуются примесные кластеры, содержащие ионы диспрозия. Как известно [15], в сплавах Fe-Dy железо и диспрозий имеют антиферромагнитный обмен. Если диспрозий входит в четырехвалентном состоянии, то он находится в состоянии ⁵ I₈ и его энергетический спектр состоит из серии сильно анизотропных квазидублетов, значительно удаленных друг от друга. Расщепление этих квазидублетов обусловлено обменным полем, создаваемым железным окружением. Пик намагниченности может быть связан с заселением низколежащих уровней ионов диспрозия, а полевые и температурные гистерезисы связаны с перемагничиванием именно таких кластеров. Такой сценарий объясняет наличие энергетического барьера, разделяющего различные метастабильные состояния кластера. Высота этого барьера будет определять температуру блокировки T_c , а поведение всей подсистемы будет похоже на спин-стекольное [16].

В отношении электрических свойств ситуация пока не кажется столь понятной. С одной стороны, введение ионов диспрозия должно приводить к изменению энергетического спектра и изменению числа переносчиков заряда, а с другой стороны — к появлению еще одного канала магнитного рассеяния. Однако мы видим общее уменьшение электросопротивления кристалла при легировании и еще большее его уменьшение при включении магнитного поля. Настоящие исследования ведутся при финансовой поддержке программы «РФФИ — Енисей» (грант № 05-02-97708-а).

ЛИТЕРАТУРА

- G. Aeppli and Z. Fisk, Comm. Condens. Matter Phys. 16, 155 (1992).
- M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
- V. Jaccarino, G. K. Wertheim, J. H. Wernick et al., Phys. Rev. 160, 476 (1967).
- G. K. Wertheim, V. Jaccarino, J. H. Wernick et al., Phys. Lett. 18, 89 (1965).
- M. Kohgi and Y. Ishikawa, Sol. St. Comm. 1, 37833 (1998).
- K. Tajima, Y. Endoh, J. E. Fischer, and G. Shirane, Phys. Rev. B 38, 6954 (1998).
- N. E. Sluchanko, V. V. Glushkov, S. V. Demishev et al., Europhys. Lett. 51, 557 (2000).

- Н. Е. Случанко, В. В. Глушков, С. В. Демишев и др., ЖЭТФ 119, 359 (2001).
- N. E. Sluchanko, V. V. Glushkov, S. V. Demishev et al., Phys. Rev. B 65, 064404 (2002).
- 10. Г. С. Патрин, В. В. Белецкий, Д. А. Великанов и др., ФТТ 48, 638 (2006).
- B. C. Sales, E. C. Jones, B. C. Chakoumakos et al., Phys. Rev. B 50, 8207 (1994).
- S. Asanare, D. Shimoda, and Y. Sasaki, Phys. Rev. 134, A774 (1964).
- J. F. Di Tusa, K. Frielmelt, E. Ducher et al., Phys. Rev. Lett. 78, 2831 (1997).
- В. М. Денисов, С. А. Истомин, О. В. Подкопаев, Л. И. Серябрякова, Л. Т. Антонова, Э. А. Пастухов, В. В. Белецкий, Кремний и его сплавы, УрО РАН, Екатеринбург (2005).
- 15. К. Тейлор, М. Дарби, Физика редкоземельных соединений, Мир, Москва (1974).
- 16. C. Y. Huang, J. Magn. Magn. Mat. 51, 1 (1985).