
ÆÝÒÔ, 2007, òîì 131, âûï. 6, ñòð. 1073�1080 

 2007
DYNAMIC PHASE TRANSITION IN THE KINETIC SPIN-1BLUME�CAPEL MODEL: PHASE DIAGRAMS IN THETEMPERATURE AND CRYSTAL-FIELD INTERACTION PLANEM. Keskin *, O. CankoDepartment of Physi
s, Er
iyes University38039, Kayseri, TurkeyÜ. TemizerDepartment of Physi
s, Bozok University66100, Yozgat, TurkeyRe
eived De
ember 6, 2006Within a mean-�eld approa
h, we study the stationary states of the kineti
 spin-1 Blume �Capel model inpresen
e of a time-dependent os
illating external magneti
 �eld. We use the Glauber-type sto
hasti
 dynam-i
s to des
ribe the time evolution of the system and obtain the mean-�eld dynami
 equation of the motion.The dynami
 phase transition points are 
al
ulated and phase diagrams are presented in the temperature and
rystal-�eld intera
tion plane. A

ording to the values of the magneti
 �eld amplitude, we �nd three fundamen-tal types of phase diagrams in whi
h they exhibit a dynami
 tri
riti
al point and only two of them a dynami
zero-temperature 
riti
al point.PACS: 05.50.+q, 05.70.Fh, 64.60.Ht, 75.10.Hk1. INTRODUCTIONThe physi
s of equilibrium phase transitions is nowrather well understood (see, e.g., [1℄) within the frame-work of equilibrium statisti
al physi
s. But the me
ha-nism behind the nonequilibrium or dynami
 phase tran-sitions (DPT) has not yet been explored rigorously, andbasi
 phenomenology is still undeveloped. Hen
e, fur-ther e�orts on these 
hallenging time-dependent prob-lems, espe
ially 
al
ulating the DPT points and 
on-stru
ting the phase diagram, must be rewarding in thefuture. The DPT was �rst found in a study withina mean-�eld approa
h to the stationary states of thekineti
 spin-1/2 Ising model under a time-dependentos
illating �eld [2, 3℄, by using a Glauber-type sto
has-ti
 dynami
s [4℄, and it was followed by the Monte-Carlo simulation, whi
h allows the mi
ros
opi
 �u
tu-ations, resear
h of kineti
 spin-1/2 Ising models [5�8℄,as well as further mean-�eld studies [9℄. Moreover,Tutu and Fujiwara [10℄ developed a systemati
 methodfor obtaining the phase diagrams in DPTs and 
on-*E-mail: keskin�er
iyes.edu.tr

stru
ted the general theory of DPTs near the transi-tion point based on the mean-�eld des
ription su
h asLandau's general treatment of equilibrium phase tran-sitions. The DPT has also been found within the one-dimensional kineti
 spin-1/2 Ising model with bound-aries [11℄. Re
ent resear
h on the DPT is widely ex-tended to more 
omplex systems su
h as ve
tor-typeorder parameter systems, e.g., the Heisenberg spin sys-tems [12℄, the XY model [13℄, the Zi� �Gulari �Barshadmodel for CO oxidation with CO desorption to peri-odi
 variation of the CO pressure [14℄, the mixed-spinIsing model, e.g., the kineti
s of the mixed spin-1/2 andspin-1 Ising models [15℄, the kineti
 spin-1 Ising sys-tems [16℄, and the kineti
 spin-3/2 Ising systems [17℄.We also mention that experimental eviden
es for theDPT has been found in highly anisotropi
 (Ising-like)and ultrathin Co/Cu(001) ferromagneti
 �lms [18℄ andin ferroi
 systems (ferromagnets, ferroele
tri
s, and fer-roelasti
s) with pinned domain walls [19℄.Re
ently [20℄, we used the mean-�eld approa
h tostudy stationary states of the kineti
 spin-1 Blume �Capel model with the help of the Glauber sto
hasti
8 ÆÝÒÔ, âûï. 6 1073
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s in presen
e of a time-dependent os
illatingexternal magneti
 �eld. Espe
ially, we investigatedthe behavior of the time dependen
e of the magneti-zation and the behavior of the average magnetizationin a period as fun
tions of the redu
ed temperatureand redu
ed external magneti
 �eld and 
al
ulated theDPT points. We only presented the phase diagramsin the redu
ed magneti
 �eld amplitude (h) and re-du
ed temperature (T ) plane and obtained �ve di�er-ent phase-diagram topologies. We also 
al
ulated theLyapunov exponent to verify the stability of a solutionand the DPT points. On the other hand, one shouldstudy phase diagrams of the dynami
 phase boundariesin the temperature and 
rystal �eld intera
tion plane.Therefore, the aim of this paper is to present the phasediagrams of the kineti
 spin-1 Blume �Capel model inpresen
e of a time-varying (sinusoidal) magneti
 �eldin the redu
ed temperature and 
rystal-�eld intera
tionplane by using the Glauber sto
hasti
 dynami
s.The outline of this paper is as follows. In Se
. 2,the spin-1 Blume �Capel model is presented brie�y andthe derivation of the mean-�eld dynami
 equations ofmotion is given by using a Glauber-type sto
hasti
 dy-nami
s in the presen
e of a time-dependent os
illatingexternal magneti
 �eld. In Se
. 3, the DPT points are
al
ulated, and the obtained phase diagrams are pre-sented and dis
ussed in the redu
ed temperature and
rystal �eld intera
tion plane. A summary is given inSe
. 4.2. THE MODEL AND THE DERIVATION OFMEAN-FIELD DYNAMIC EQUATION OFMOTIONThe spin-1 Ising model with a 
rystal-�eld inter-a
tion or single-ion anisotropy, whi
h is often 
alledthe spin-1 Blume �Capel model or simply the Blume �Capel model, was �rst introdu
ed by Blume [21℄ andindependently by Capel [22℄. The model has been asubje
t of many theoreti
al studies sin
e its introdu
-tion [21, 22℄ nearly 40 years ago be
ause it plays afundamental role in multi
riti
al phenomena asso
iatedwith various physi
al systems, su
h as multi
omponent�uids, ternary alloys, and magneti
 systems. The in-vestigations [21; 22℄ were based on well-known methodsin equilibrium statisti
al physi
s su
h as the mean-�eldapproximation, the 
luster variation method, the e�e
-tive �eld theory, the renormalization-group te
hniques,and the Monte-Carlo simulations (see, e.g., [23℄). Whilethe equilibrium properties of the model have been ex-tensively investigated by many di�erent methods, the

nonequilibrium properties of the model have not beenas thoroughly explored. As in Ref. [20℄, Fiig et al. [24℄used dynami
 Monte-Carlo simulations to study a dy-nami
 behavior of metastable states in the Blume �Capel model and found that the de
ay of a parti
ularmetastable state might happen either dire
tly or via asu

ession of separate steps, depending on the availabil-ity and relative stability of a se
ond metastable stateintermediate between the initial one and the equilib-rium phase. Manzo and Olivieri [25℄ have used thismodel to study the metastability and nu
leation byalso using the dynami
 Monte-Carlo simulations. Ekizet al. [26℄ have studied the dynami
s of the Blume �Capel model using the path probability method withpoint distribution [27℄ in order to investigate how toobtain the metastable phases with long-range order pa-rameters and also to see the ��atness� property of themetastable state and the unstable state. They havealso 
al
ulated the phase transitions of the metastableand the unstable bran
hes of the order parameters be-sides the stable bran
hes and presented the 
ompletephase diagram.The Hamiltonian of the spin-1 Blume �Capel modelis given byH = �JXhiji SiSj �DXi S2i �HXi Si; (1)where Si take the values �1 or 0 at ea
h site i of alatti
e and hiji indi
ates summation over all pairs ofnearest-neighbor sites; J is the bilinear ex
hange in-tera
tion parameter; D is the 
rystal-�eld intera
tionor a single-ion anisotropy, and H is a time-dependentexternal os
illating magneti
 �eld: H(t) = H0 
os!t,H0 and ! = 2�� are the amplitude and the angularfrequen
y of the os
illating �eld. The system is in 
on-ta
t with an isothermal heat bath at absolute temper-ature TA.We apply the Glauber-type sto
hasti
 dynami
s toobtain the mean-�eld dynami
 equation of motion. Thesystem evolves a

ording to a Glauber-type sto
hasti
pro
ess at a rate of 1=� transitions per unit time. Wede�ne P (S1; S2; : : : ; SN ; t) as the probability that thesystem has the S-spin 
on�guration, S1; S2; : : : ; SN , attime t. The time dependen
e of this probability fun
-tion is assumed to be governed by the master equationthat des
ribes the intera
tion between spins and heatbath and 
an be written as1074
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 spin-1 : : :ddtP (S1; S2; : : : ; SN ; t) == �Xi 0� XSi 6=S0i Wi(Si ! S0i)1A�� P (S1; S2; : : : ; Si; : : : ; SN ; t) ++Xi 0� XSi 6=S0i Wi(S0i ! Si)1A�� P (S1; S2; : : : ; S0i; : : : ; SN ; t); (2)where Wi(Si ! S0i) is the probability per unit timethat the ith spin 
hanges from the value Si to S0i, andin this sense the Glauber model is sto
hasti
. Be
ausethe system is in 
onta
t with a heat bath at absolutetemperature TA, ea
h spin 
an 
hange from the valueSi to S0i with the probability per unit timeWi(Si ! S0i) = 1� exp [���E(Si ! S0i)℄XS0i exp [���E(Si ! S0i)℄ ; (3)where � = 1=kBTA, kB is the Boltzmann 
onstant, thesum ranges the three possible values �1 and 0 for S0i,and�E(Si ! S0i) == �(S0i � Si)0�JXhji Sj +H1A� (S0i2 � S2i )D (4)gives the 
hange in the energy of the system when theSi spin 
hanges. The probabilities satisfy the detailedbalan
e 
onditionWi(Si ! S0i)Wi(S0i ! Si) = P (S1; S2; : : : ; S0i; : : : ; SN )P (S1; S2; : : : ; Si; : : : ; SN) : (5)Substituting the possible values of Si, we obtainWi(1! �1) = Wi(0! �1) == 1� exp(��D)2 
h(�a) + exp(��D) ;Wi(1! �1) = Wi(0! �1) == 1� exp(��a)2 
h(�a) + exp(��D) ;Wi(0! 1) = Wi(�1! 1) == 1� exp(�a)2 
h(�a) + exp(��D) ; (6)
where a = JPhji Sj + H . We note that be
auseWi(Si ! S0i) is independent of Si, we 
an write

Wi(Si ! S0i) = Wi(S0i). Then the master equationbe
omesddtP (S1; S2; : : : ; SN ; t) =Xi 0� XS0i 6=Si Wi(S0i)1A�� P (S1; S2; : : : ; Si; : : : ; SN ; t) ++Xi Wi(S)0� XS0i 6=Si P (S1; S2; : : : ; S0i; : : : ; SN ; t)1A :(7)Be
ause the sum of probabilities is normalized tounity, by multiplying both sides of Eq. (7) by Sk andtaking the average, we obtain� ddt hSki = �hSki++* 2 sh� 24JXhji Sj +H352 
h� 24JXhji Sj +H35+ exp(��D)+ ; (8)or, in terms of the mean-�eld approa
h,� ddt hSi = �hSi++ 2 sh� [JzhSi+H0 
os!t)℄2 
h� [JzhSi+H0 
os!t℄ + exp(��D) ; (9)where z is the 
oordination number. The systemevolves a

ording to the di�erential equation given byEq. (9), whi
h 
an be written as
 dd�m = �m++ sh [(m+ h 
os �)=T ℄
h [(m+ h 
os �)=T ℄ + exp(�d=T )=2 ; (10)where m = hSi, � = !t, 
 = �!, T = (�zJ)�1,d = D=zJ , and h = H0=zJ . We �x z = 4 and 
 = 2�.3. DYNAMIC PHASE TRANSITION POINTSAND PHASE DIAGRAMSIn this se
tion, we �rst solve the mean-�eld dy-nami
 equation and present the behavior of averageorder parameters in a period as a fun
tion of the re-du
ed temperature. As a result, the DPT points are
al
ulated. For these purposes, we �rst have to studythe stationary solutions of the dynami
 equation, given1075 8*



M. Keskin, O. Canko, Ü. Temizer ÆÝÒÔ, òîì 131, âûï. 6, 2007in Eq. (10), when the parameters T , d, and h are var-ied. The stationary solution of Eq. (10) is a periodi
fun
tion of � with period 2�. Moreover, it 
an be oneof two types a

ording to whether it has or does nothave the propertym(� + �) = �m(�): (11)A solution that satis�es Eq. (11) is 
alled a symmet-ri
 solution, whi
h 
orresponds to a paramagneti
 (P)solution. In this solution, the average magnetizationm(�) os
illates around the zero value and is delayedwith respe
t to the external magneti
 �eld. The se
-ond type of solution, whi
h does not satisfy Eq. (11),is 
alled nonsymmetri
 solution and 
orresponds to aferromagneti
 (F) solution. In this 
ase, the magneti-zation does not follow the external magneti
 �eld, butinstead of os
illating around a zero value, it os
illatesaround a nonzero value. These fa
ts are seen expli
-itly by solving Eq. (10) numeri
ally. Equation (10)is solved using the numeri
al method of the Adams �Moulton predi
tor 
orre
tor method for a given set ofparameters and initial values, and is shown in Fig. 1.From Fig. 1, we see that three di�erent solutions ex-ist in the system: the P, F, and 
oexisten
e (P+F)solutions, in whi
h the F and P solutions 
oexist. InFig. 1a, only the symmetri
 solution is always obtained,and hen
e we have the P solution, but in Fig. 1b, onlythe nonsymmetri
 solution is found; therefore, we havethe F solution. Neither solution depends on the initialvalues. On the other hand, in Fig. 1
, both the sym-metri
 and nonsymmetri
 solutions always exist in thesystem, and hen
e we have the F+P solution. In this
ase, the solutions depend on the initial values, seen inFig. 1
 expli
itly.Thus, Fig. 1 shows that we have two types of so-lutions, symmetri
 and nonsymmetri
. Moreover, itdisplays that the P solution or phase, the F phase, andthe F+P phase exist in the system. To see the bound-aries between these three regions, we have to 
al
ulateDPT points, and then we 
an present phase diagramsof the system. DPT points are to be obtained by inves-tigating the behavior of the average magnetization in aperiod, whi
h is also 
alled the dynami
 magnetization,as a fun
tion of the redu
ed temperature. Moreover,we also 
al
ulate the Lyapunov exponent to verify thestability of a solution and the DPT points.The average magnetization in a period or the dy-nami
 magnetization M is given byM = 12� 2�Z0 m(�) d�: (12)

0 �
0 �
0 50 100 150 200 �

�10
1 m�10
1 m�10
1 m a
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Fig. 1. Time variations of the magnetization m:a) exhibiting a paramagneti
 phase (P), d = �0:25,h = 0:5, and T = 0:75; b) exhibiting a ferromag-neti
 phase (F), d = �0:25, h = 0:2, and T = 0:5;
) exhibiting a 
oexisten
e region (F+P), d = �0:25,h = 0:75, and T = 0:1The behavior ofM as a fun
tion of the redu
ed temper-ature for several values of h and d is obtained by 
om-bining the numeri
al methods of the Adams �Moultonpredi
tor 
orre
tor with the Romberg integration; theresults are plotted in Fig. 2 together with the Lyapunovexponent �. Figure 2a represents the redu
ed temper-ature dependen
e of the average magnetization M forh = 0:75 and d = 0:25. In this 
ase,M de
reases to zerodis
ontinuously as the redu
ed temperature in
reases,and therefore a �rst-order phase transition o

urs atTt = 0:2950. Figures 2b and 2
 illustrate the thermalvariations of M for h = 0:675 and d = 0:25 for twodi�erent initial values M = 1 and M = 0, respe
tively.In Fig. 2b, M de
reases to zero 
ontinuously as the re-du
ed temperature in
reases, and therefore the systemexhibits a se
ond-order phase transition at T
 = 0:46.In Fig. 2
, the system undergoes two su

essive phasetransitions. The �rst is a �rst-order transition from the1076
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Fig. 2. The redu
ed temperature dependen
e of the dynami
 magnetization M (the thi
k solid line) and the Lyapunovexponents �s and �n (the thin solid line), the subs
ript �s� indi
ates a symmetri
 solution whi
h 
orresponds to the P phaseand �n� indi
ates a nonsymmetri
 solution that 
orresponds to the F phase; Tt and T
 are the �rst- and se
ond-order phasetransition temperatures, respe
tively. The F+P region exists for d = 0:25 and h = 0:675. a) Exhibiting a �rst-order phasetransition from the F phase to the P phase for d = 0:25 and h = 0:75; Tt is found to be 0.2950; b) exhibiting a se
ond-orderphase transition from the F phase to the P phase for d = 0:25 and h = 0:675; T
 is found to be 0.460; 
) exhibiting twosu

essive phase transitions, the �rst one is a �rst-order phase transition from the P phase to the F phase and the se
ondone is a se
ond-order phase transition from the F phase to the P phase for d = 0:25 and h = 0:675; Tt and T
 are foundto be 0:1950 and 0:460, respe
tively; d) exhibiting a se
ond-order phase transition from the F phase to the P phase ford = 0:25 and h = 0:4; Tt is found to be 0:6720P phase to the F phase at Tt = 0:1950 and the se
ondis a se
ond-order transition from the F phase to the Pphase at T
 = 0:46. Finally, Fig. 2d shows the behav-ior of M as a fun
tion of the redu
ed temperature forh = 0:4 and d = 0:25. It is easily seen that the systemundergoes only a se
ond-order phase transition, fromthe F phase to the P phase at T
 = 0:6720.In order to 
he
k the DPT points and verify thestability of solutions, we must 
al
ulate the Lyapunovexponent �. If we write Eq. (10) as

dmd� = F (m; �); (13)then the Lyapunov exponent � is given by
� = 12� 2�Z0 �F�m d�: (14)The solution is stable when � < 0. The behaviorof the Lyapunov exponent as a fun
tion of tempera-ture is also shown in Fig. 2, thin lines (�s and �n arethe Lyapunov exponents asso
iated with the symmet-ri
 and nonsymmetri
 solutions). If �s and �n in
rease1077
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ZFig. 3. Phase diagrams of the Blume �Capel model inthe (T; d) plane. The P, F, and F+P phase regions arefound. Dashed and solid lines represent the dynami
�rst- and se
ond-order phase boundaries, respe
tively,the dynami
 tri
riti
al points are indi
ated with solid
ir
les, and Z is the dynami
 zero-temperature 
riti
alpointto zero 
ontinuously as the temperature approa
hesthe phase transition temperature, the temperature, atwhi
h �n = �s = 0, is the se
ond-order phase tran-sition temperature T
. On the other hand, if one ofthe � in
reases to zero dis
ontinuously and the other �in
reases to zero 
ontinuously as the temperature ap-proa
hes the phase transition temperature, the temper-ature, at whi
h the dis
ontinuity �rst o

urs for one ofthe � and the other � = 0, is the �rst-order phase tran-sition temperature Tt. Moreover, if we 
ompare thebehavior of M and � in Fig. 2, we see that Tt and T
found by using both 
al
ulations are exa
tly the same.We 
an now obtain the phase diagrams of the sys-tem and the 
al
ulated phase diagrams are presented

in Fig. 3. One of the most interesting behavior of thephase diagram is that the P phase always exists at lowvalues of T and high negative values of d. The reason
an be seen analyti
ally from Eq. (10) as follows. Whend takes negative values and in
reases, the se
ond termin the right-hand side of Eq. (10) disappears. Thus, thesolution for the time-dependent magnetization be
omesm(�) / exp(��=
). As � !1, the stationary solutionfor m(�) always 
orresponds to the paramagneti
 solu-tion or phase, and hen
e the dynami
 magnetizationM vanishes.As seen in Fig. 3, we have obtained three main dif-ferent phase diagram topologies a

ording to the valuesof the redu
ed external magneti
 �eld amplitude h.1. For 0 < h � 0:6562, the phase diagram is pre-sented for h = 0:1 and h = 0:4 in Fig. 3a. The systemexhibits a dynami
 tri
riti
al point, where both �rst-order phase transition lines merge, and signals 
hangefrom a �rst- to a se
ond-order phase transitions. At thetemperature higher than the dynami
 tri
riti
al pointtemperature, the dynami
 phase boundary between theP phase and F phase is always of a se
ond order. Thedynami
 phase boundaries between the P and the P+Fphases and the P+F and the F phases are always of a�rst-order for the temperature lower than the dynami
tri
riti
al temperature. Moreover, as the h values in-
rease, a dynami
 tri
riti
al point o

urs at low tem-peratures and the F+P region shrinks, as 
an be seenin the �gure. The topology of this phase diagram 
anbe readily obtained from the phase diagrams in Figs. 7aand 7b in Ref. [20℄.2. For 0:6562 < h � 0:9828, shown in Fig. 3b forh = 0:8, the phase diagram exhibits the dynami
 tri-
riti
al point and the dynami
 zero-temperature 
riti-
al point Z. For the high negative values of d, the sys-tem undergoes a se
ond-order phase transition, whi
hseparates the P phase from the F phase. For the lownegative values of d, a se
ond-order transition o

urs athigh temperatures and a �rst-order transition appearsat low temperatures; the se
ond-order line separatesthe F phase from the P phase and the �rst-order lineseparates the F phase from the F+P phase, seen inthe �gure. Moreover, for very low negative values of dand also for all positive values of d, the system alwaysundergoes a �rst-order phase transition that separatesthe F+P phase from the P phase. The topology ofthis phase diagram 
an also be obtained from the pre-vious (h; T ) phase diagrams, namely Figs. 7
 and 7din Ref. [20℄, ex
ept the o

urren
e of a dynami
 zero-temperature 
riti
al point Z. The o

urren
e of thissurprising or unexpe
ted result is elu
idated at the endof this se
tion.1078



ÆÝÒÔ, òîì 131, âûï. 6, 2007 Dynami
 phase transition in the kineti
 spin-1 : : :3. For h > 0:928, the phase diagram was 
on-stru
ted for h = 1:25, as shown in Fig. 3
. The phasediagram is similar to the one in Fig. 1b, ex
ept thefollowing two di�eren
es: (i) for positive d values, thesystem always exhibits the P phase, and hen
e does notundergo any phase transition; (ii) the �rst-order phasetransition line o

urs for high values of d, separates theF phase from the F+P phase (Fig. 3b), terminates atzero temperature, and separates the F phase from theF+P phase (Fig. 3
). Hen
e, the P phase always o

ursfor high values of d and very low values of T . The topol-ogy of this phase diagram 
an also be obtained from thephase diagram in Fig. 7e in Ref. [20℄, ex
ept for the o
-
urren
e of a dynami
 zero-temperature 
riti
al pointZ. The o

urren
e of this surprising or unexpe
ted re-sult is also elu
idated at the end of this se
tion.Finally, it is worthwhile to mention that we 
an seethe surprising result in Figs. 3b and 3
 that a dynami
zero-temperature 
riti
al point Z appears in these �g-ures, although su
h a Z point was not to be expe
tedfrom the previous (h; T ) phase diagrams, shown inFigs. 7
�e in Ref. [20℄: another dynami
 tri
riti
al pointinstead of a dynami
 zero-temperature 
riti
al point Z.This unexpe
ted result 
an be elu
idated by studyingthe phase diagrams in Figs. 3b and 3
 and 
onsider-ing the previous (h; T ) phase diagrams in Figs. 7
�ein Ref. [20℄. In the previous (h; T ) phase diagrams,the P, F, and P+F phases exist for low values of T in-
luding the absolute zero temperature and the dynami
phase boundary between the P and F phases is alwaysa se
ond-order phase transition line. It has a bulgefor a 
ertain range of T , suggesting the o

urren
e ofsome sort of a reentrant phenomenon. In Figs. 3b and3
, the se
ond-order phase transition line between theP and F phases should start at the Z point, be
ausethe P phase o

urs at absolute zero, seen in previous(h; T ) phase diagrams, and terminates at the dynami
tri
riti
al point where the se
ond-order phase transi-tion line turns to a �rst-order line; and be
ause the Pphase always o

urs for high values of T and the dy-nami
 phase boundary between the P and P+F phasesis a �rst-order line. Therefore, this new and surprisingresult 
annot be readily obtained from only the pre-vious (h; T ) phase diagrams and it 
an be understoodafter 
al
ulating and presenting the phase diagrams inthe (T; d) plane. 4. CONCLUSIONSWithin the mean-�eld approa
h, we have analyzedstationary states of the kineti
 spin-1 Blume �Capel

model in presen
e of a time-dependent os
illating ex-ternal magneti
 �eld. We use a Glauber-type sto
hasti
dynami
s to des
ribe the time evolution of the system.The dynami
 phase transition (DPT) points are ob-tained by investigating the behavior of the dynami
magnetization as a fun
tion of the redu
ed tempera-ture. Phase diagrams are presented in the (T; d) plane.We found that the behavior of the system strongly de-pends on the values of h; three fundamental types ofphase diagrams, where the P, F or the P+F phases o
-
ur that depend on values of h, are found. Moreover,the system always exhibits a dynami
 tri
riti
al point.For h > 0:6562, the system also exhibits a dynami
zero-temperature 
riti
al point Z, whi
h is unexpe
tedand 
annot be readily obtained from only the previ-ous (h; T ) phase diagrams [20℄. This unexpe
ted result
an be elu
idated by studying the phase diagrams inFigs. 3b and 3
 and with 
onsidering the previous (h; T )phase diagrams. The stability of the solutions and theDPT points are 
he
ked by 
al
ulating the Lyapunovexponents.Finally, we also mention that experimental eviden
efor the DPT has been found in highly anisotropi
(Ising-like) and ultrathin Co/Cu(001) ferromagneti
�lms [18℄ by the surfa
e magneto-opti
 Kerr e�e
t andin ferroi
 systems (ferromagnets, ferroele
tri
s and fer-roelasti
s) with pinned domain walls [19℄. However,the dynami
 phase boundary and the nature (
ontin-uous/dis
ontinuous) of the transition have not beenstudied in detail. We hope that our detailed theo-reti
al investigation, espe
ially of the dynami
 phaseboundary and the nature of the transition, may shedsome light or explanation while the detailed experi-mental studies will be done with the above systems ornew systems.This work was supported by the S
ienti�
 and Te
h-nologi
al Resear
h Coun
il of Turkey (TÜB_ITAK),Grant � 105T114, and Er
iyes University Resear
hFunds, Grant �FBA-06-01.REFERENCES1. H. E. Stanley, Introdu
tion to the Phase Transitionsand Criti
al Phenomena, Oxford Univ. Press, Oxford(1971); S. K. Ma, Modern Theory of Criti
al Pheno-mena, W. A. Benjamin, In
, Reading (1976).2. T. Tomé and M. J. de Oliveira, Phys. Rev. A 41, 4251(1990).3. J. F. F. Mendes and E. J. S. Lage, J. Stat. Phys. 64,653 (1991).1079



M. Keskin, O. Canko, Ü. Temizer ÆÝÒÔ, òîì 131, âûï. 6, 20074. R. J. Glauber, J. Math. Phys. 4, 294 (1963).5. M. A
haryya, Phys. Rev. E 56, 2407 (1997); A. Chat-terjee and B. K. Chakrabarti, Phys. Rev. E 67, 046113(2003).6. S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys.Rev. Lett. 81, 834 (1998); Phys. Rev. E 59, 2710(1999); G. Korniss, C. J. White, P. A. Rikvold, and M.A. Novotny, Phys. Rev. E 63, 016120 (2001); G. Kor-niss, P. A. Rikvold, and M. A. Novotny, Phys. Rev.E 66, 056127 (2002).7. B. K. Chakrabarti and M. A
haryya, Rev. Mod. Phys.71, 847 (1999); M. A
haryya, Int. J. Mod. Phys. C 16,1631 (2005).8. A. Krawie
ki, Int. J. Mod. Phys. B 19, 4769 (2005).9. M. F. Zimmer, Phys. Rev. E 47, 3950 (1993); M. A
ha-ryya and B. K. Chakrabarti, Phys. Rev. B 52, 6550(1995); M. A
haryya, Phys. Rev. E 58, 179 (1998);H. Fujisaka, H. Tutu, and P. A. Rikvold, Phys. Rev.E 63, 036109 (2001).10. H. Tutu and N. Fujiwara, J. Phys. So
. Jpn. 73, 2680(2004).11. M. Khorrami and A. Aghamohammadi, Phys. Rev.E 65, 056129 (2002).12. H. Jang and M. J. Grimson, Phys. Rev. E 63, 066119(2001); H. Jang, M. J. Grimson, and C. K. Hall, Phys.Rev. B 67, 094411 (2003); Phys. Rev. E 68, 046115(2003); Z. Huang, Z. Chen, F. Zhang, and Y. Du, Phys.Lett. A 338, 485 (2005).13. T. Yasui, H. Tutu, M. Yamamoto, and H. Fujisaka,Phys. Rev. E 66, 036123 (2002).14. E. Ma
hado, G. M. Buendia, P. A. Rikvold, andR. M. Zi�, Phys. Rev. E 71, 016120 (2005).

15. G. M. Buendia and E. Ma
hado, Phys. Rev. E 58, 1260(1998).16. M. Keskin, O. Canko, and E. Kantar, Int. J. Mod.Phys. C 17, 1239 (2006); O. Canko, Ü. Temizer, andM. Keskin, Int. J. Mod. Phys. C 17, 1717 (2006).17. M. Keskin, O. Canko, and B. Deviren, Phys. Rev. E 74,011110 (2006); O. Canko, B. Deviren, and M. Keskin,J. Phys.: Condens. Matter 18, 6635 (2006); M. Ke-skin, O. Canko, and M. K�rak, J. Stat. Phys. (2007),in press.18. Q. Jiang, H. N. Yang, and G. C. Wang, Phys. Rev.B 52, 14911 (1995); J. Appl. Phys. 79, 5122 (1996).19. W. Kleemann, T. Braun, J. De
, and O. Petra
i
,Phase Trans. 78, 811 (2005).20. M. Keskin, O. Canko, and Ü. Temizer, Phys. Rev.E 72, 036125 (2005).21. M. Blume, Phys. Rev. 141, 517 (1966).22. H. W. Capel, Physi
a (Utre
ht) 32, 966 (1966); 33,295 (1967).23. S. Grollau, E. Kierlik, M. L. Rosinberg, and G. Tarjus,Phys. Rev. E 63, 41111 (2001); A. Du, Y. Q. Yü andH. J. Liu, Physi
a A 320, 387 (2003); C. Ekiz, Phys.Lett. A 324, 114 (2004).24. T. Fiig, B. M. Gorman, P. A. Rikvold, and M. A. No-votny, Phys. Rev. E 50, 1930 (1994).25. F. Manzo and E. Olivieri, J. Stat. Phys. 104, 1029(2001).26. C. Ekiz, M. Keskin, and O. Yalçin, Physi
a A 293, 215(2001).27. R. Kiku
hi, Suppl. Progr. Theor. Phys. 35, 1 (1966).

1080


