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Within a mean-field approach, we study the stationary states of the kinetic spin-1 Blume—Capel model in
presence of a time-dependent oscillating external magnetic field. We use the Glauber-type stochastic dynam-
ics to describe the time evolution of the system and obtain the mean-field dynamic equation of the motion.
The dynamic phase transition points are calculated and phase diagrams are presented in the temperature and
crystal-field interaction plane. According to the values of the magnetic field amplitude, we find three fundamen-
tal types of phase diagrams in which they exhibit a dynamic tricritical point and only two of them a dynamic

zero-temperature critical point.
PACS: 05.50.+q, 05.70.Fh, 64.60.Ht, 75.10.Hk

1. INTRODUCTION

The physics of equilibrium phase transitions is now
rather well understood (see, e.g., [1]) within the frame-
work of equilibrium statistical physics. But the mecha-
nism behind the nonequilibrium or dynamic phase tran-
sitions (DPT) has not yet been explored rigorously, and
basic phenomenology is still undeveloped. Hence, fur-
ther efforts on these challenging time-dependent prob-
lems, especially calculating the DPT points and con-
structing the phase diagram, must be rewarding in the
future. The DPT was first found in a study within
a mean-field approach to the stationary states of the
kinetic spin-1/2 Ising model under a time-dependent
oscillating field [2, 3], by using a Glauber-type stochas-
tic dynamics [4], and it was followed by the Monte-
Carlo simulation, which allows the microscopic fluctu-
ations, research of kinetic spin-1/2 Ising models [5-8],
as well as further mean-field studies [9]. Moreover,
Tutu and Fujiwara [10] developed a systematic method
for obtaining the phase diagrams in DPTs and con-
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structed the general theory of DPTs near the transi-
tion point based on the mean-field description such as
Landau’s general treatment of equilibrium phase tran-
sitions. The DPT has also been found within the one-
dimensional kinetic spin-1/2 Ising model with bound-
aries [11]. Recent research on the DPT is widely ex-
tended to more complex systems such as vector-type
order parameter systems, e.g., the Heisenberg spin sys-
tems [12], the XY model [13], the Ziff - Gulari - Barshad
model for CO oxidation with CO desorption to peri-
odic variation of the CO pressure [14], the mixed-spin
Ising model, e.g., the kinetics of the mixed spin-1/2 and
spin-1 Ising models [15], the kinetic spin-1 Ising sys-
tems [16], and the kinetic spin-3/2 Ising systems [17].
We also mention that experimental evidences for the
DPT has been found in highly anisotropic (Ising-like)
and ultrathin Co/Cu(001) ferromagnetic films [18] and
in ferroic systems (ferromagnets, ferroelectrics, and fer-
roelastics) with pinned domain walls [19].

Recently [20], we used the mean-field approach to
study stationary states of the kinetic spin-1 Blume—
Capel model with the help of the Glauber stochastic
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dynamics in presence of a time-dependent oscillating
external magnetic field. Especially, we investigated
the behavior of the time dependence of the magneti-
zation and the behavior of the average magnetization
in a period as functions of the reduced temperature
and reduced external magnetic field and calculated the
DPT points. We only presented the phase diagrams
in the reduced magnetic field amplitude (h) and re-
duced temperature (T') plane and obtained five differ-
ent phase-diagram topologies. We also calculated the
Lyapunov exponent to verify the stability of a solution
and the DPT points. On the other hand, one should
study phase diagrams of the dynamic phase boundaries
in the temperature and crystal field interaction plane.
Therefore, the aim of this paper is to present the phase
diagrams of the kinetic spin-1 Blume — Capel model in
presence of a time-varying (sinusoidal) magnetic field
in the reduced temperature and crystal-field interaction
plane by using the Glauber stochastic dynamics.

The outline of this paper is as follows. In Sec. 2,
the spin-1 Blume — Capel model is presented briefly and
the derivation of the mean-field dynamic equations of
motion is given by using a Glauber-type stochastic dy-
namics in the presence of a time-dependent oscillating
external magnetic field. In Sec. 3, the DPT points are
calculated, and the obtained phase diagrams are pre-
sented and discussed in the reduced temperature and
crystal field interaction plane. A summary is given in
Sec. 4.

2. THE MODEL AND THE DERIVATION OF
MEAN-FIELD DYNAMIC EQUATION OF
MOTION

The spin-1 Ising model with a crystal-field inter-
action or single-ion anisotropy, which is often called
the spin-1 Blume — Capel model or simply the Blume —
Capel model, was first introduced by Blume [21] and
independently by Capel [22]. The model has been a
subject of many theoretical studies since its introduc-
tion [21, 22] nearly 40 years ago because it plays a
fundamental role in multicritical phenomena associated
with various physical systems, such as multicomponent
fluids, ternary alloys, and magnetic systems. The in-
vestigations [21, 22] were based on well-known methods
in equilibrium statistical physics such as the mean-field
approximation, the cluster variation method, the effec-
tive field theory, the renormalization-group techniques,
and the Monte-Carlo simulations (see, e.g., [23]). While
the equilibrium properties of the model have been ex-
tensively investigated by many different methods, the

nonequilibrium properties of the model have not been
as thoroughly explored. As in Ref. [20], Fiig et al. [24]
used dynamic Monte-Carlo simulations to study a dy-
namic behavior of metastable states in the Blume-—
Capel model and found that the decay of a particular
metastable state might happen either directly or via a
succession of separate steps, depending on the availabil-
ity and relative stability of a second metastable state
intermediate between the initial one and the equilib-
rium phase. Manzo and Olivieri [25] have used this
model to study the metastability and nucleation by
also using the dynamic Monte-Carlo simulations. Ekiz
et al. [26] have studied the dynamics of the Blume -
Capel model using the path probability method with
point distribution [27] in order to investigate how to
obtain the metastable phases with long-range order pa-
rameters and also to see the “flatness” property of the
metastable state and the unstable state. They have
also calculated the phase transitions of the metastable
and the unstable branches of the order parameters be-
sides the stable branches and presented the complete
phase diagram.

The Hamiltonian of the spin-1 Blume — Capel model
is given by

H=-J> SiS;—=D> S;—H> S;, (1)
(i) i i

where S; take the values £1 or 0 at each site i of a
lattice and (ij) indicates summation over all pairs of
nearest-neighbor sites; .J is the bilinear exchange in-
teraction parameter; D is the crystal-field interaction
or a single-ion anisotropy, and H is a time-dependent
external oscillating magnetic field: H(t) = Hp coswt,
Hy and w = 27v are the amplitude and the angular
frequency of the oscillating field. The system is in con-
tact with an isothermal heat bath at absolute temper-
ature Ty.

We apply the Glauber-type stochastic dynamics to
obtain the mean-field dynamic equation of motion. The
system evolves according to a Glauber-type stochastic
process at a rate of 1/7 transitions per unit time. We
define P(Sy,Ss,...,Sn;t) as the probability that the
system has the S-spin configuration, Sy, Ss,..., SN, at
time t. The time dependence of this probability func-
tion is assumed to be governed by the master equation
that describes the interaction between spins and heat
bath and can be written as
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d
—P ..
dt (817527

= — Z Wz(Sz — S;) X
i Si#S!

XP(817SQ,... ,Si7... 7SN7t)+

+3 1 wisi— s | x

i SHéSlf

XP(817SQ,...7S£7...7SN;t)7 (2)

where W;(S; — S}) is the probability per unit time
that the i¢th spin changes from the value S; to S}, and
in this sense the Glauber model is stochastic. Because
the system is in contact with a heat bath at absolute
temperature T4, each spin can change from the value
S; to S} with the probability per unit time

1 exp[-BAE(S; = S))]

T3 exp[-BAE(S; — S))]
s,

(3)

where 8 = 1/kpTq, kp is the Boltzmann constant, the
sum ranges the three possible values £1 and 0 for S},
and

AE(S; = S)) =

=—(Si=S)[ID_Si+H|-(S?-S)D (4)
(7)

gives the change in the energy of the system when the
S; spin changes. The probabilities satisfy the detailed
balance condition

WZ(SZ%S;)_P(SLS%,S;/,SN) (5)
Wi(SL = ) P(S1,55 - 56 Sw)

Substituting the possible values of S;, we obtain

Wi(l—-1)=W;(0 - —1) =

_ 1 exp(—AD)

1 2ch(Ba) +exp(—pD)’
Wi(1l—-1)=W;(0— —-1) =

1 explpw ©)

1 2ch(Ba) +exp(—pD)’

Wi(0—=1)=W;(-1—=1) =
1 exp(fa)
1 2ch(Ba) +exp(—pD)’

J>S; + H.  We note that because
(4)
Wi(S; — S}) is independent of S;, we can write

where a =

;). Then the master equation

becomes
d
%P(shs%"'sz;t):Z Z WZ(SZI) x
v Si#Si
X P(817SQ7... ,Si7... 7SN7t)+
L) [ PS1 S S Shi)
i SI£S;

(7)

Because the sum of probabilities is normalized to
unity, by multiplying both sides of Eq. (7) by Sy and
taking the average, we obtain

T%<Sk> = —(Sk) +

2sh3 [JY S;+H
()

2chB | T S+ H| +exp(—4D)
(9
or, in terms of the mean-field approach,

d
2sh 3 [Jz(S) + Hy cos wt)]

*3 ch 3[J2(S) + Hy coswt] + exp(—BD)’ )

where z is the coordination number. The system
evolves according to the differential equation given by
Eq. (9), which can be written as

Q—m=-m+

N sh[(m + hcos&)/T]
ch[(m + hcos€)/T] + exp(—d/T)/2’

(10)

where m = (S), € = wt, Q = 7w, T = (B2J) L,
d=D/zJ, and h = Hy/zJ. We fix z =4 and Q0 = 2.

3. DYNAMIC PHASE TRANSITION POINTS
AND PHASE DIAGRAMS

In this section, we first solve the mean-field dy-
namic equation and present the behavior of average
order parameters in a period as a function of the re-
duced temperature. As a result, the DPT points are
calculated. For these purposes, we first have to study
the stationary solutions of the dynamic equation, given
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in Eq. (10), when the parameters T, d, and h are var-
ied. The stationary solution of Eq. (10) is a periodic
function of ¢ with period 27. Moreover, it can be one
of two types according to whether it has or does not
have the property

m(& +m) = —m(§). (11)

A solution that satisfies Eq. (11) is called a symmet-
ric solution, which corresponds to a paramagnetic (P)
solution. In this solution, the average magnetization
m(&) oscillates around the zero value and is delayed
with respect to the external magnetic field. The sec-
ond type of solution, which does not satisfy Eq. (11),
is called nonsymmetric solution and corresponds to a
ferromagnetic (F) solution. In this case, the magneti-
zation does not follow the external magnetic field, but
instead of oscillating around a zero value, it oscillates
around a nonzero value. These facts are seen explic-
itly by solving Eq. (10) numerically. Equation (10)
is solved using the numerical method of the Adams-—
Moulton predictor corrector method for a given set of
parameters and initial values, and is shown in Fig. 1.
From Fig. 1, we see that three different solutions ex-
ist in the system: the P, F, and coexistence (P+F)
solutions, in which the F and P solutions coexist. In
Fig. 1a, only the symmetric solution is always obtained,
and hence we have the P solution, but in Fig. 15, only
the nonsymmetric solution is found; therefore, we have
the F solution. Neither solution depends on the initial
values. On the other hand, in Fig. 1¢, both the sym-
metric and nonsymmetric solutions always exist in the
system, and hence we have the F+P solution. In this
case, the solutions depend on the initial values, seen in
Fig. 1c explicitly.

Thus, Fig. 1 shows that we have two types of so-
lutions, symmetric and nonsymmetric. Moreover, it
displays that the P solution or phase, the F phase, and
the F+P phase exist in the system. To see the bound-
aries between these three regions, we have to calculate
DPT points, and then we can present phase diagrams
of the system. DPT points are to be obtained by inves-
tigating the behavior of the average magnetization in a
period, which is also called the dynamic magnetization,
as a function of the reduced temperature. Moreover,
we also calculate the Lyapunov exponent to verify the
stability of a solution and the DPT points.

The average magnetization in a period or the dy-
namic magnetization M is given by

1 2
M= /m(f) de. (12)
0
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Fig.1. Time variations of the magnetization m:
a) exhibiting a paramagnetic phase (P), d = —0.25,
h = 0.5, and T = 0.75; b) exhibiting a ferromag-
netic phase (F), d = —0.25, h = 0.2, and T = 0.5;
c) exhibiting a coexistence region (F+P), d = —0.25,
h=0.75,and T = 0.1

The behavior of M as a function of the reduced temper-
ature for several values of h and d is obtained by com-
bining the numerical methods of the Adams—Moulton
predictor corrector with the Romberg integration; the
results are plotted in Fig. 2 together with the Lyapunov
exponent \. Figure 2a represents the reduced temper-
ature dependence of the average magnetization M for
h =0.75and d = 0.25. In this case, M decreases to zero
discontinuously as the reduced temperature increases,
and therefore a first-order phase transition occurs at
T; = 0.2950. Figures 2b and 2c illustrate the thermal
variations of M for h = 0.675 and d = 0.25 for two
different initial values M = 1 and M = 0, respectively.
In Fig. 2b, M decreases to zero continuously as the re-
duced temperature increases, and therefore the system
exhibits a second-order phase transition at T, = 0.46.
In Fig. 2¢, the system undergoes two successive phase
transitions. The first is a first-order transition from the
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Fig.2. The reduced temperature dependence of the dynamic magnetization M (the thick solid line) and the Lyapunov
exponents As and A, (the thin solid line), the subscript “s” indicates a symmetric solution which corresponds to the P phase
and “n” indicates a nonsymmetric solution that corresponds to the F phase; T; and T. are the first- and second-order phase
transition temperatures, respectively. The F+P region exists for d = 0.25 and h = 0.675. a) Exhibiting a first-order phase
transition from the F phase to the P phase for d = 0.25 and h = 0.75; T is found to be 0.2950; b) exhibiting a second-order
phase transition from the F phase to the P phase for d = 0.25 and h = 0.675; T. is found to be 0.460; c) exhibiting two
successive phase transitions, the first one is a first-order phase transition from the P phase to the F phase and the second
one is a second-order phase transition from the F phase to the P phase for d = 0.25 and h = 0.675; T; and T, are found
to be 0.1950 and 0.460, respectively; d) exhibiting a second-order phase transition from the F phase to the P phase for
d=0.25 and h = 0.4; T} is found to be 0.6720

P phase to the F phase at T; = 0.1950 and the second
is a second-order transition from the F phase to the P
phase at 7. = 0.46. Finally, Fig. 2d shows the behav-
ior of M as a function of the reduced temperature for
h =0.4 and d = 0.25. Tt is easily seen that the system
undergoes only a second-order phase transition, from
the F phase to the P phase at T, = 0.6720.

In order to check the DPT points and verify the
stability of solutions, we must calculate the Lyapunov
exponent . If we write Eq. (10) as

dm
Q— = F(m, 1
& = Fm.o) (13)
then the Lyapunov exponent \ is given by
1 for
ON=— | —d¢. 14
2w ) Om ¢ (14)
0

The solution is stable when A < 0. The behavior
of the Lyapunov exponent as a function of tempera-
ture is also shown in Fig. 2, thin lines (A\s and \, are
the Lyapunov exponents associated with the symmet-
ric and nonsymmetric solutions). If Ay and A, increase
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Fig.3. Phase diagrams of the Blume—Capel model in

the (T, d) plane. The P, F, and F+P phase regions are

found. Dashed and solid lines represent the dynamic

first- and second-order phase boundaries, respectively,

the dynamic tricritical points are indicated with solid

circles, and Z is the dynamic zero-temperature critical
point

to zero continuously as the temperature approaches
the phase transition temperature, the temperature, at
which A, = Ay = 0, is the second-order phase tran-
sition temperature T,.. On the other hand, if one of
the X increases to zero discontinuously and the other A
increases to zero continuously as the temperature ap-
proaches the phase transition temperature, the temper-
ature, at which the discontinuity first occurs for one of
the A and the other A = 0, is the first-order phase tran-
sition temperature T;. Moreover, if we compare the
behavior of M and ) in Fig. 2, we see that 73 and T,
found by using both calculations are exactly the same.

We can now obtain the phase diagrams of the sys-
tem and the calculated phase diagrams are presented

in Fig. 3. One of the most interesting behavior of the
phase diagram is that the P phase always exists at low
values of 7" and high negative values of d. The reason
can be seen analytically from Eq. (10) as follows. When
d takes negative values and increases, the second term
in the right-hand side of Eq. (10) disappears. Thus, the
solution for the time-dependent magnetization becomes
m(&) < exp(—£/Q). As £ — oo, the stationary solution
for m(&) always corresponds to the paramagnetic solu-
tion or phase, and hence the dynamic magnetization
M vanishes.

Ag seen in Fig. 3, we have obtained three main dif-
ferent phase diagram topologies according to the values
of the reduced external magnetic field amplitude h.

1. For 0 < h < 0.6562, the phase diagram is pre-
sented for h = 0.1 and h = 0.4 in Fig. 3a. The system
exhibits a dynamic tricritical point, where both first-
order phase transition lines merge, and signals change
from a first- to a second-order phase transitions. At the
temperature higher than the dynamic tricritical point
temperature, the dynamic phase boundary between the
P phase and F phase is always of a second order. The
dynamic phase boundaries between the P and the P+F
phases and the P+F and the F phases are always of a
first-order for the temperature lower than the dynamic
tricritical temperature. Moreover, as the A values in-
crease, a dynamic tricritical point occurs at low tem-
peratures and the F+P region shrinks, as can be seen
in the figure. The topology of this phase diagram can
be readily obtained from the phase diagrams in Figs. 7a
and 7b in Ref. [20].

2. For 0.6562 < h < 0.9828, shown in Fig. 3b for
h = 0.8, the phase diagram exhibits the dynamic tri-
critical point and the dynamic zero-temperature criti-
cal point Z. For the high negative values of d, the sys-
tem undergoes a second-order phase transition, which
separates the P phase from the F phase. For the low
negative values of d, a second-order transition occurs at
high temperatures and a first-order transition appears
at low temperatures; the second-order line separates
the F phase from the P phase and the first-order line
separates the F phase from the F+P phase, seen in
the figure. Moreover, for very low negative values of d
and also for all positive values of d, the system always
undergoes a first-order phase transition that separates
the F+P phase from the P phase. The topology of
this phase diagram can also be obtained from the pre-
vious (h,T) phase diagrams, namely Figs. 7¢ and 7d
in Ref. [20], except the occurrence of a dynamic zero-
temperature critical point Z. The occurrence of this
surprising or unexpected result is elucidated at the end
of this section.
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3. For h > 0.928, the phase diagram was con-
structed for A = 1.25, as shown in Fig. 3c. The phase
diagram is similar to the one in Fig. 1b, except the
following two differences: (i) for positive d values, the
system always exhibits the P phase, and hence does not
undergo any phase transition; (ii) the first-order phase
transition line occurs for high values of d, separates the
F phase from the F+P phase (Fig. 3b), terminates at
zero temperature, and separates the F phase from the
F+P phase (Fig. 3¢). Hence, the P phase always occurs
for high values of d and very low values of T'. The topol-
ogy of this phase diagram can also be obtained from the
phase diagram in Fig. 7e in Ref. [20], except for the oc-
currence of a dynamic zero-temperature critical point
7. The occurrence of this surprising or unexpected re-
sult is also elucidated at the end of this section.

Finally, it is worthwhile to mention that we can see
the surprising result in Figs. 3b and 3¢ that a dynamic
zero-temperature critical point Z appears in these fig-
ures, although such a Z point was not to be expected
from the previous (h,T) phase diagrams, shown in
Figs. Tc-ein Ref. [20]: another dynamic tricritical point
instead of a dynamic zero-temperature critical point Z.
This unexpected result can be elucidated by studying
the phase diagrams in Figs. 3b and 3¢ and consider-
ing the previous (h,T) phase diagrams in Figs. 7c—e
in Ref. [20]. In the previous (h,T) phase diagrams,
the P, F, and P+F phases exist for low values of T in-
cluding the absolute zero temperature and the dynamic
phase boundary between the P and F phases is always
a second-order phase transition line. It has a bulge
for a certain range of T, suggesting the occurrence of
some sort of a reentrant phenomenon. In Figs. 3b and
3¢, the second-order phase transition line between the
P and F phases should start at the Z point, because
the P phase occurs at absolute zero, seen in previous
(h,T) phase diagrams, and terminates at the dynamic
tricritical point where the second-order phase transi-
tion line turns to a first-order line; and because the P
phase always occurs for high values of 7" and the dy-
namic phase boundary between the P and P+F phases
is a first-order line. Therefore, this new and surprising
result cannot be readily obtained from only the pre-
vious (h,T) phase diagrams and it can be understood
after calculating and presenting the phase diagrams in
the (T, d) plane.

4. CONCLUSIONS

Within the mean-field approach, we have analyzed
stationary states of the kinetic spin-1 Blume— Capel

model in presence of a time-dependent oscillating ex-
ternal magnetic field. We use a Glauber-type stochastic
dynamics to describe the time evolution of the system.
The dynamic phase transition (DPT) points are ob-
tained by investigating the behavior of the dynamic
magnetization as a function of the reduced tempera-
ture. Phase diagrams are presented in the (7', d) plane.
We found that the behavior of the system strongly de-
pends on the values of h; three fundamental types of
phase diagrams, where the P, F or the P+F phases oc-
cur that depend on values of h, are found. Moreover,
the system always exhibits a dynamic tricritical point.
For h > 0.6562, the system also exhibits a dynamic
zero-temperature critical point Z, which is unexpected
and cannot be readily obtained from only the previ-
ous (h,T') phase diagrams [20]. This unexpected result
can be elucidated by studying the phase diagrams in
Figs. 3b and 3¢ and with considering the previous (h,T')
phase diagrams. The stability of the solutions and the
DPT points are checked by calculating the Lyapunov
exponents.

Finally, we also mention that experimental evidence
for the DPT has been found in highly anisotropic
(Tsing-like) and ultrathin Co/Cu(001) ferromagnetic
films [18] by the surface magneto-optic Kerr effect and
in ferroic systems (ferromagnets, ferroelectrics and fer-
roelastics) with pinned domain walls [19]. However,
the dynamic phase boundary and the nature (contin-
uous/discontinuous) of the transition have not been
studied in detail. We hope that our detailed theo-
retical investigation, especially of the dynamic phase
boundary and the nature of the transition, may shed
some light or explanation while the detailed experi-
mental studies will be done with the above systems or
new systems.

This work was supported by the Scientific and Tech-
nological Research Council of Turkey (TUBITAK),
Grant Ne105T114, and Erciyes University Research
Funds, Grant Ne FBA-06-01.

REFERENCES

1. H. E. Stanley, Introduction to the Phase Transitions
and Critical Phenomena, Oxford Univ. Press, Oxford
(1971); S. K. Ma, Modern Theory of Critical Pheno-
mena, W. A. Benjamin, Inc, Reading (1976).

2. T. Tomé and M. J. de Oliveira, Phys. Rev. A 41, 4251
(1990).

3. J. F. F. Mendes and E. J. S. Lage, J. Stat. Phys. 64,
653 (1991).

1079



M. Keskin, O. Canko, U. Temizer

MWITD, Tom 131, BHIM. 6, 2007

10.

11.

12.

13.

14.

R. J. Glauber, J. Math. Phys. 4, 294 (1963).

M. Acharyya, Phys. Rev. E 56, 2407 (1997); A. Chat-
terjee and B. K. Chakrabarti, Phys. Rev. E 67, 046113
(2003).

S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys.
Rev. Lett. 81, 834 (1998); Phys. Rev. E 59, 2710
(1999); G. Korniss, C. J. White, P. A. Rikvold, and M.
A. Novotny, Phys. Rev. E 63, 016120 (2001); G. Kor-
niss, P. A. Rikvold, and M. A. Novotny, Phys. Rev.
E 66, 056127 (2002).

. B. K. Chakrabarti and M. Acharyya, Rev. Mod. Phys.

71, 847 (1999); M. Acharyya, Int. J. Mod. Phys. C 16,
1631 (2005).

. A. Krawiecki, Int. J. Mod. Phys. B 19, 4769 (2005).

M. F. Zimmer, Phys. Rev. E 47, 3950 (1993); M. Acha-
ryya and B. K. Chakrabarti, Phys. Rev. B 52, 6550
(1995); M. Acharyya, Phys. Rev. E 58, 179 (1998);
H. Fujisaka, H. Tutu, and P. A. Rikvold, Phys. Rev.
E 63, 036109 (2001).

H. Tutu and N. Fujiwara, J. Phys. Soc. Jpn. 73, 2680
(2004).

M. Khorrami and A. Aghamohammadi, Phys. Rev.
E 65, 056129 (2002).

H. Jang and M. J. Grimson, Phys. Rev. E 63, 066119
(2001); H. Jang, M. J. Grimson, and C. K. Hall, Phys.
Rev. B 67, 094411 (2003); Phys. Rev. E 68, 046115
(2003); Z. Huang, Z. Chen, F. Zhang, and Y. Du, Phys.
Lett. A 338, 485 (2005).

T. Yasui, H. Tutu, M. Yamamoto, and H. Fujisaka,
Phys. Rev. E 66, 036123 (2002).

E. Machado, G. M. Buendia, P. A. Rikvold, and
R. M. Ziff, Phys. Rev. E 71, 016120 (2005).

15

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27

1080

. G. M. Buendia and E. Machado, Phys. Rev. E 58, 1260
(1998).

M. Keskin, O. Canko, and E. Kantar, Int. J. Mod.
Phys. C 17, 1239 (2006); O. Canko, U. Temizer, and
M. Keskin, Int. J. Mod. Phys. C 17, 1717 (2006).

M. Keskin, O. Canko, and B. Deviren, Phys. Rev. E 74,
011110 (2006); O. Canko, B. Deviren, and M. Keskin,
J. Phys.: Condens. Matter 18, 6635 (2006); M. Ke-
skin, O. Canko, and M. Kirak, J. Stat. Phys. (2007),
in press.

Q. Jiang, H. N. Yang, and G. C. Wang, Phys. Rev.
B 52, 14911 (1995); J. Appl. Phys. 79, 5122 (1996).

W. Kleemann, T. Braun, J. Dec, and O. Petracic,
Phase Trans. 78, 811 (2005).

M. Keskin, O. Canko, and U. Temizer, Phys. Rev.
E 72, 036125 (2005).

M. Blume, Phys. Rev. 141, 517 (1966).

H. W. Capel, Physica (Utrecht) 32, 966 (1966); 33,
205 (1967).

S. Grollau, E. Kierlik, M. L. Rosinberg, and G. Tarjus,
Phys. Rev. E 63, 41111 (2001); A. Du, Y. Q. Yii and
H. J. Liu, Physica A 320, 387 (2003); C. Ekiz, Phys.
Lett. A 324, 114 (2004).

T. Fiig, B. M. Gorman, P. A. Rikvold, and M. A. No-
votny, Phys. Rev. E 50, 1930 (1994).

F. Manzo and E. Olivieri, J. Stat. Phys. 104, 1029
(2001).

C. Ekiz, M. Keskin, and O. Yalgin, Physica A 293, 215
(2001).

. R. Kikuchi, Suppl. Progr. Theor. Phys. 35, 1 (1966).



