МНОГОКРАТНОЕ РАССЕЯНИЕ ПОЛЯРИЗОВАННОГО СВЕТА В СРЕДЕ С КРУПНЫМИ НЕОДНОРОДНОСТЯМИ

Е. Е. Городничев^{*}, А. И. Кузовлев, Д. Б. Рогозкин

Московский государственный инженерно-физический институт 115409, Москва, Россия

Поступила в редакцию 3 августа 2006 г.

Показано, что многократное рассеяние поляризованного света в неупорядоченной среде с крупномасштабными неоднородностями можно представить как независимое распространение трех основных мод интенсивности, линейно и циркулярно поляризованных мод. Слабое взаимодействие между основными модами может быть учтено по теории возмущений и приводит к возникновению «обертонов» — дополнительных поляризационных мод. Из векторного уравнения переноса получены транспортные уравнения для основных и дополнительных мод. Для практически важных случаев пространственной диффузии и малоуглового многократного рассеяния найдены их аналитические решения. Полученные соотношения хорошо согласуются с экспериментальными данными и результатами численных расчетов и позволяют объяснить наблюдаемые на опыте различия в деполяризации линейно и циркулярно поляризованного света.

PACS: 42.25.Fx, 42.25.Ja

1. ВВЕДЕНИЕ

В последние пятнадцать лет большое внимание уделяется исследованию распространения поляризованного света в случайно-неоднородных средах с крупными (больше длины волны) рассеивателями (см., например, [1–23]). Интерес к этой проблеме обусловлен различными приложениями [5–7, 14–19, 23]. Одной из наиболее ярких обнаруженных закономерностей является относительно медленная деполяризация поляризованного по кругу света (циркулярная поляризация может сохраняться даже после изотропизации потока излучения по направлениям [2–4, 7, 24]).

При распространении света в случайно-неоднородной среде можно выделить два фундаментальных механизма деполяризации [24]. «Геометрический» механизм обусловлен эффектом Рытова [25] плоскость поляризации линейно поляризованного света поворачивается вместе со световым лучом, который остается поляризованным вдоль всей траектории распространения. При многократном рассеянии плоскости поляризации различных лучей становятся хаотически ориентированными. В результате по мере изотропизации пучка по направлениям наступает и деполяризация света. «Динамический» механизм обусловлен различием амплитуд однократно рассеянных волн, поляризованных параллельно и перпендикулярно плоскости рассеяния. Деполяризация происходит из-за случайного разброса амплитуд кросс-поляризованных волн, возникающего в результате многих актов рассеяния.

Существование двух различных механизмов деполяризации является причиной различий в затухании линейно и циркулярно поляризованных волн [24]. При рассеянии линейно поляризованного света действуют оба механизма деполяризации. В зависимости от оптических характеристик рассеивающих неоднородностей, их формы и распределения по размерам «геометрический» механизм может быть доминирующим или играть роль того же порядка, что и «динамический» механизм. Деполяризация циркулярно поляризованного света происходит только за счет «динамического» механизма (поляризованный по кругу свет представляет собой суперпозицию кросс-поляризованных волн равной амплитуды, сдвинутых по фазе на $\pi/2$; рытовский поворот не меняет фазовых и амплитудных соотноше-

^{*}E-mail: gorodn@theor.mephi.ru

ний между ними) [24]. В средах с крупномасштабными слабопреломляющими неоднородностями, когда однократное рассеяние происходит преимущественно на малые углы, «динамическая» деполяризация становится заметной только на расстояниях, превышающих в несколько раз длину изотропизации (т. е. транспортную длину l_{tr} упругого рассеяния). Именно это обстоятельство объясняет обнаруженный в эксперименте и численных расчетах [2–4, 7] эффект относительно медленного затухания циркулярной поляризации.

До последнего времени большинство теоретических исследований деполяризации света в многократно рассеивающих средах основывалось на численном решении векторного уравнения переноса излучения [1, 4, 11–13, 19]. Аналитические результаты были получены только для рэлеевского рассеяния на малых частицах [1, 26, 27], а также при прохождении через очень толстые слои, когда состояние поляризации рассеянного света не зависит от поляризации падающего пучка (см., например, [1, 28]).

В настоящей работе развит метод расцепления векторного уравнения переноса, основанный на использовании резкой анизотропии однократного рассеяния на крупномасштабных неоднородностях $(1 - \langle \cos \gamma \rangle \ll 1)$, где $\langle \cos \gamma \rangle$ — средний косинус угла однократного рассеяния). В условиях преимущественного рассеяния вперед матрица однократного рассеяния в циркулярном представлении [29] (см. также [1, 28, 30]) оказывается почти диагональной недиагональные элементы много меньше диагональных. В первом приближении недиагональными элементами можно пренебречь и векторное уравнение переноса распадается на три независимых транспортных уравнения для основных поляризационных мод — интенсивности, циркулярно и линейно поляризованных мод. Учет в следующих приближениях недиагональных элементов приводит к возбуждению дополнительных поляризационных мод (обертонов). С помощью предложенного метода вычислены параметры Стокса света в многократно рассеивающей среде с крупномасштабными неоднородностями для двух предельных режимов распространения излучения — диффузии и малоуглового многократного рассеяния.

Полученные результаты удовлетворительно согласуются с результатами численного моделирования [4, 13] и экспериментальными данными [4, 7, 17] и могут представлять интерес для применения в оптических исследованиях неоднородных сред.

2. ОБЩИЕ СООТНОШЕНИЯ

Пусть на среду по нормали к поверхности падает пирокий поляризованный пучок света с длиной волны λ . Среда предполагается статистически изотропным неупорядоченным ансамблем крупномасштабных (размер *a* больше длины волны λ) рассеивателей с относительным показателем преломления *n*.

Поляризационное состояние рассеянного света описывается четырьмя параметрами Стокса I, Q, U, V, которые принято объединять в вектор-параметр Стокса [1, 27, 30]

$$\hat{S} = \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} \langle E_{\parallel} E_{\parallel}^* + E_{\perp} E_{\perp}^* \rangle \\ \langle E_{\parallel} E_{\parallel}^* - E_{\perp} E_{\perp}^* \rangle \\ \langle E_{\parallel} E_{\perp}^* + E_{\parallel}^* E_{\perp} \rangle \\ i \langle E_{\parallel} E_{\perp}^* - E_{\parallel}^* E_{\perp} \rangle \end{pmatrix}.$$
(1)

Угловые скобки в (1) обозначают усреднение по различным реализациям расположения рассеивателей.

Параметры Стокса и компоненты напряженности электрического поля E_{\parallel} , E_{\perp} определены в системе ортов $\{\mathbf{e}_{\parallel} = \partial \mathbf{n} / \partial \theta, \mathbf{e}_{\perp} = \mathbf{e}_{\parallel} \times \mathbf{n}, \mathbf{n}\}$, где вектор $\mathbf{n} = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$ указывает направление распространения электромагнитной волны. Вектор \mathbf{e}_{\parallel} лежит в плоскости, образованной векторами $\mathbf{n} \ \mathbf{u} \ \mathbf{n}_0$ (\mathbf{n}_0 — вектор внутренней нормали к поверхности), вектор \mathbf{e}_{\perp} перпендикулярен этой плоскости (рис. 1).

Рис. 1.

Параметры Стокса подчиняются векторному уравнению переноса [1, 27, 31],

$$\left\{\mu\frac{\partial}{\partial z} + \sigma_{tot}\right\}\hat{S}(z,\mathbf{n}) = \sigma \int d\mathbf{n}' \hat{P}(\mathbf{n},\mathbf{n}')\hat{S}(z,\mathbf{n}'), \quad (2)$$

где $\sigma_{tot} = \sigma + \sigma_a$ — полный коэффициент затухания, σ, σ_a — коэффициенты рассеяния и поглощения.

Входящая в формулу (2) матрица $\hat{P}(\mathbf{n}, \mathbf{n}')$ связана с матрицей рассеяния $\hat{P}(\cos \gamma)$ ($\cos \gamma = \mathbf{n} \cdot \mathbf{n}'$) в плоскости рассеяния (т. е. в плоскости, образованной векторами \mathbf{n}, \mathbf{n}') соотношением

$$\hat{P}(\mathbf{n},\mathbf{n}') = \hat{L}(\pi-\beta)\hat{P}(\cos\gamma)\hat{L}(-\beta').$$
(3)

Матрица

$$\hat{L}(-\beta') = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \cos 2\beta' & -\sin 2\beta' & 0\\ 0 & \sin 2\beta' & \cos 2\beta' & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(4)

описывает преобразование параметров Стокса падающего излучения при переходе из системы ортов $(\mathbf{e'}_{\parallel}, \mathbf{e'}_{\perp}, \mathbf{n'})$ в плоскость рассеяния (рис. 1). Аналогично (4) определяется матрица $\hat{L}(\pi - \beta)$, отвечающая обратному преобразованию из плоскости рассеяния в систему отсчета $(\mathbf{e}_{\parallel}, \mathbf{e}_{\perp}, \mathbf{n})$, связанную с направлением распространения рассеянного излучения. Входящие в (3) углы определяются формулами

$$\cos 2\beta = 1 - \frac{2(1 - \mu'^2)(1 - \cos^2 \psi)}{1 - (\mathbf{nn'})^2},$$
$$\sin 2\beta = \frac{2\sqrt{1 - \mu'^2}(\mu'\sqrt{1 - \mu^2} - \mu\sqrt{1 - \mu'^2}\cos\psi)\sin\psi}{1 - (\mathbf{n} \cdot \mathbf{n'})^2},$$
$$\mathbf{n} \cdot \mathbf{n'} = \mu\mu' + \sqrt{(1 - \mu^2)(1 - \mu'^2)}\cos\psi, \quad \mu = \cos\theta,$$

 $\mu' = \cos \theta', \quad \psi = \varphi - \varphi'.$

Функции $\cos 2\beta'$ и $\sin 2\beta'$ отличаются от $\cos 2\beta, \sin 2\beta$ заменой μ на $\mu'.$

В оптически изотропной среде со сферическими рассеивателями входящая в формулу (3) матрица $\hat{P}(\cos \gamma)$ имеет следующий вид (см., например, [1, 27, 30]):

$$\hat{P}(\cos\gamma) = \begin{pmatrix} a_1 & b_1 & 0 & 0\\ b_1 & a_1 & 0 & 0\\ 0 & 0 & a_2 & b_2\\ 0 & 0 & -b_2 & a_2 \end{pmatrix}.$$
 (5)

Величина $a_1(\cos \gamma)$ в (5) имеет смысл индикатрисы — нормированного дифференциального сечения рассеяния — и удовлетворяет равенству

$$2\pi \int_{0}^{\pi} \sin \gamma d\gamma a_1(\cos \gamma) = 1.$$
 (6)

Для частиц с заданными оптическими параметрами и радиусом входящие в (5) матричные элементы a_i , b_i выражаются через амплитуды рассеяния A_{\parallel} и A_{\perp} волн, поляризованных параллельно и перпендикулярно плоскости рассеяния [30]:

$$a_1(\cos\gamma) = \frac{1}{2\sigma_0} (|A_{\parallel}(\cos\gamma)|^2 + |A_{\perp}(\cos\gamma)|^2), \quad (7)$$

$$a_2(\cos\gamma) = \frac{1}{\sigma_0} \text{Re}A_{\parallel}(\cos\gamma)A_{\perp}^*(\cos\gamma), \qquad (8)$$

$$b_1(\cos\gamma) = \frac{1}{2\sigma_0} (|A_{\parallel}(\cos\gamma)|^2 - |A_{\perp}(\cos\gamma)|^2), \quad (9)$$

$$b_2(\cos\gamma) = \frac{1}{\sigma_0} \operatorname{Im} A_{\parallel}^*(\cos\gamma) A_{\perp}(\cos\gamma).$$
(10)

Здесь σ_0 — сечение рассеяния на отдельной частице; коэффициент и сечение рассеяния связаны соотношением $\sigma = n_0 \sigma_0$, n_0 — число рассеивателей в единице объема. Если размеры и оптические параметры рассеивателей различаются, соотношения (7)–(10) необходимо усреднить с соответствующей функцией распределения (например, по размеру рассеивателей и т. п.).

В борновском приближении ($ka(n-1) \ll 1$, где $k = 2\pi/\lambda$) амплитуды рассеяния A_{\parallel} и A_{\perp} связаны между собой соотношением [30]

$$A_{\parallel}(\cos\gamma) = A_{\perp}(\cos\gamma)\cos\gamma, \qquad (11)$$

и выражения (7)–(10) дополнительно упрощаются. В этой ситуации, в частности, $b_2 = 0$, а матрица (5) есть произведение формфактора $|A_{\perp}|^2/\sigma_0$ на рэлеевскую матрицу рассеяния [27, 30].

Во многих практических ситуациях недиагональным элементом b_2 , который отвечает за взаимодействие между линейной и циркулярной поляризациями, можно пренебречь [1, 32]. В этом предположении уравнение для четвертого параметра Стокса V оказывается не связанным с уравнениями для остальных параметров Стокса, и поэтому распространение циркулярно и линейно поляризованных пучков в рассеивающей среде можно рассматривать независимо. Отдельное уравнение для V (здесь и далее предполагаем $b_2 = 0$) имеет вид

$$\left\{ \mu \frac{\partial}{\partial z} + \sigma_{tot} \right\} V(z,\mu) =$$
$$= \sigma \int d\mathbf{n}' a_2(\mathbf{n} \cdot \mathbf{n}') V(z,\mu'). \quad (12)$$

В уравнении для V присутствует дополнительное «поглощение», которое определяется разностью [24],

$$\sigma_{dep} = \sigma (1 - 2\pi \int_{0}^{\pi} \sin \gamma d\gamma a_2(\cos \gamma)).$$
(13)

Дополнительное затухание V, обусловленное σ_{dep} , описывает деполяризацию циркулярно поляризованного пучка при многократном рассеянии [24].

Интенсивность I и четвертый параметр Стокса V являются соответственно скаляром и псевдоскаляром [30, 33]. При поворотах в пространстве эти величины не меняются. Напротив, второй Q и третий U параметры Стокса при поворотах преобразуются друг через друга (за «перепутывание» Q и U отвечает центральный блок в матрице $\hat{L}(\alpha)$):

$$Q' = Q \cos 2\alpha + U \sin 2\alpha,$$
$$U' = -Q \sin 2\alpha + U \cos 2\alpha.$$

Это обстоятельство оказывается существенным при рассеянии, поскольку матрица (3) включает в себя два преобразования поворота. Они переводят систему ортов (\mathbf{e}'_{\parallel} , \mathbf{e}'_{\perp} , \mathbf{n}'), в которой определен вектор Стокса $\hat{S}(\mathbf{r}, \mathbf{n}')$, в систему (\mathbf{e}_{\parallel} , \mathbf{e}_{\perp} , \mathbf{n}), в которой определен вектор $\hat{S}(\mathbf{r}, \mathbf{n})$. В связи с этим, даже если считать матрицу рассеяния \hat{P} (5) диагональной и пренебречь различием между диагональными элементами a_1 и a_2 , уравнения для параметров Стокса Q и U все равно будут связаны между собой.

Чтобы исключить перемешивание Q и U при поворотах в пространстве, следуя работе [29] (см. также [1, 28]), введем вместо параметров Стокса Q и U новые величины

$$I_{\pm 2} = \frac{1}{\sqrt{2}} (Q \mp iU). \tag{14}$$

В отличие от параметров Стокса Q и U, каждая из определенных равенством (14) величин будет при вращениях преобразовываться сама через себя:

$$I'_{\pm 2} = \exp(\pm 2i\alpha)I_{\pm 2}$$

Для описания состояния линейной поляризации излучения будем использовать вектор

$$\hat{I} = \begin{pmatrix} \frac{1}{\sqrt{2}}(Q - iU) \\ I \\ \frac{1}{\sqrt{2}}(Q + iU) \end{pmatrix} = \begin{pmatrix} I_2 \\ I_0 \\ I_{-2} \end{pmatrix}.$$
 (15)

Преобразование от представления параметров Стокса (1) к представлению (15) (оно соответствует «циркулярному» представлению [1, 29, 30]),

$$\hat{M} \begin{pmatrix} I \\ Q \\ U \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}(Q - iU) \\ I \\ \frac{1}{\sqrt{2}}(Q + iU) \end{pmatrix}$$

осуществляется с помощью унитарной матрицы \hat{M} ,

$$\hat{M} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & -i \\ \sqrt{2} & 0 & 0 \\ 0 & 1 & i \end{pmatrix}.$$
 (16)

Транспортное уравнение для вектора \hat{I} имеет вид

$$\left\{ \mu \frac{\partial}{\partial z} + \sigma_{tot} \right\} \hat{I}(z, \mathbf{n}) =$$
$$= \sigma \int d\mathbf{n} \ \hat{d}(\mathbf{n}, \mathbf{n}') \hat{I}(z, \mathbf{n}'), \quad (17)$$

где матрица $\hat{d}(\mathbf{n},\mathbf{n}')$ связана с матрицей $\hat{P}(\mathbf{n},\mathbf{n}')$ (3) соотношением

$$\hat{d} = \hat{M}\hat{P}\hat{M}^{-1}.$$
 (18)

В представлении (15) аналогом формулы (3), устанавливающей связь с матрицей в плоскости рассеяния, будет следующее соотношение:

$$\hat{d}(\mathbf{n},\mathbf{n}') = \hat{\mathcal{L}}(\pi - \beta)\hat{d}(\cos\gamma)\hat{\mathcal{L}}(-\beta'), \qquad (19)$$

где $\hat{d}(\cos\gamma)$ есть матрица $\hat{d}(\mathbf{n},\mathbf{n}')$ в плоскости рассеяния:

$$\hat{d}(\cos\gamma) = \begin{pmatrix} \frac{a_1 + a_2}{2} & \frac{b_1}{\sqrt{2}} & \frac{a_1 - a_2}{2} \\ \frac{b_1}{\sqrt{2}} & a_1 & \frac{b_1}{\sqrt{2}} \\ \frac{a_1 - a_2}{2} & \frac{b_1}{\sqrt{2}} & \frac{a_1 + a_2}{2} \end{pmatrix}, \quad (20)$$

а матрица

$$\hat{\mathcal{L}}(-\beta') = \begin{pmatrix} \exp(-2i\beta') & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & \exp(2i\beta') \end{pmatrix}$$
(21)

описывает преобразование параметров \hat{I} падающего излучения при переходе из плоскости $(\mathbf{n}', \mathbf{n}_0)$ в плоскость рассеяния $(\mathbf{n}, \mathbf{n}')$.Соответственно матрица $\hat{\mathcal{L}}(\pi - \beta)$ описывает преобразование параметров \hat{I} рассеянного излучения при переходе из плоскости рассеяния в плоскость $(\mathbf{n}, \mathbf{n}_0)$.

Перемножив матрицы в соотношении (19), выражение для $\hat{d}(\mathbf{n},\mathbf{n}')$ можно записать в явном виде:

$$\hat{d}(\mathbf{n}, \mathbf{n}') = \begin{pmatrix} \frac{a_1 + a_2}{2} \exp(2i\chi_+) & \frac{b_1}{\sqrt{2}} \exp(-2i\beta) & \frac{a_1 - a_2}{2} \exp(2i\chi_-) \\ \frac{b_1}{\sqrt{2}} \exp(-2i\beta') & a_1 & \frac{b_1}{\sqrt{2}} \exp(2i\beta') \\ \frac{a_1 - a_2}{2} \exp(-2i\chi_-) & \frac{b_1}{\sqrt{2}} \exp(2i\beta) & \frac{a_1 + a_2}{2} \exp(-2i\chi_+) \end{pmatrix}.$$
(22)

Углы χ_\pm в матрице (22) равны

$$\chi_{\pm} = \pi - (\beta \pm \beta').$$

Из выражения (22) нетрудно понять, в чем состоит преимущество перехода к «циркулярному» представлению (15) в случае рассеяния на крупных частицах.

Однократное рассеяние на крупномасштабных неоднородностях происходит преимущественно вперед. В этой области углов различие между амплитудами $A_{\parallel}(\cos \gamma)$ и $A_{\perp}(\cos \gamma)$ оказывается малым [30] и поэтому, согласно формулам (7)–(9), недиагональные элементы матриц (20) или (22) (в представлении (15) матрицы $\hat{d}(\mathbf{n}, \mathbf{n}')$ и $\hat{d}(\cos \gamma)$ отличаются только фазовыми множителями) оказываются много меньше диагональных. Порядок величины недиагональных элементов при рассеянии под малыми углами проще всего оценить для «борновских» рассеивателей (см. (11)). Согласно (11), (20) или (22),

$$b_1(\cos\gamma) \approx (1 - \cos\gamma)a_1(\cos\gamma) \approx \frac{1}{2}\gamma^2 a_1(\cos\gamma), \quad (23)$$

$$\frac{1}{2}(a_1(\cos\gamma) - a_2(\cos\gamma)) \approx \frac{1}{8}\gamma^4 a_1(\cos\gamma).$$
(24)

В первом приближении недиагональными элементами (22) можно пренебречь. Тогда векторное уравнение (17) сразу распадается на независимые уравнения для каждой из компонент вектора \hat{I} (15). Связь между уравнениями для отдельных величин I_0 и $I_{\pm 2}$ возникает только в следующем приближении при учете недиагональных элементов матрицы (22).

Для иллюстрации указанных выше свойств матрицы рассеяния на рис. 2 приведены результаты численных расчетов угловой зависимости ее элементов. Расчеты выполнены для сред, которые часто используются в экспериментах и численном моделировании — водной суспензии частиц латекса (относительный показатель преломления n = 1.20) и модели облачной среды Cloud 1 [34]. Для частиц латекса заданного радиуса *а* расчеты проводились на основе формул Ми для A_{\parallel} и A_{\perp} [1, 30]. Для модели Cloud 1, в которой частицы распределены по размеру, исходные численные данные взяты из таблиц [34].

3. «ГЕОМЕТРИЧЕСКИЙ» И «ДИНАМИЧЕСКИЙ» МЕХАНИЗМЫ ДЕПОЛЯРИЗАЦИИ

Переход от обычных параметров Стокса к представлению (15) и, соответственно, векторному уравнению переноса в виде (17) с матрицей рассеяния (22) позволяет наглядно показать, что деполяризация волн в среде обусловлена двумя разными причинами [35–37] — искривлением траекторий световых лучей и увеличением разброса амплитуд кросс-поляризованных волн при многократном рассеянии.

С искривлением траектории лучей связан «геометрический» механизм деполяризации [38, 39]. Геометрический механизм обусловлен «рытовским» поворотом плоскости поляризации при распространении света вдоль искривленной неплоской траектории [25]. Плоскость поляризации поворачивается согласованно с искривлением луча — свет остается линейно поляризованным вдоль всей траектории распространения. Наблюдаемая при многократном рассеянии деполяризация есть результат сложения поляризации лучей, распространявшихся вдоль различных случайных траекторий. Поэтому деполяризация наступает одновременно с изотропизацией потока по направлениям [24]. «Динамический» (по терминологии [38, 40] «дифракционный») механизм возникает из-за различия между амплитудами рассеяния A_{\parallel} и A_{\perp} волн, поляризованных параллельно и перпендикулярно плоскости рассеяния [40].

Впервые на существование двух разных механизмов деполяризации указал Кравцов [38] при исследовании рассеяния волн в турбулентной атмосфере. В случае, рассмотренном в работе [38], искривление траекторий лучей оказывается незначительным и преобладает «динамическая» деполяризация. Для диффузии света в средах с дискретными неоднородностями характерным является сильное искривление траекторий лучей. Поэтому доминирующую роль играет геометрический механизм деполяризации.

В чистом виде «геометрическую» деполяризацию можно получить, положив $A_{\parallel} = A_{\perp}$ [35]. При однократном рассеянии на малые углы равенство $A_{\parallel} = A_{\perp}$ можно рассматривать как первое приближение [30]. В приближении $A_{\parallel} = A_{\perp}$ однократное рассеяние описывается диагональной матрицей

$$\hat{d} \approx \hat{d}^{geom} = a_1 \hat{\mathcal{L}} (\pi - \beta - \beta') =$$

$$= a_1 \begin{pmatrix} \exp(2i\chi_+) & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \exp(-2i\chi_+) \end{pmatrix}. \quad (25)$$

Уравнение (17) с матрицей рассеяния (22) распадается на независимые уравнения для величин $I = I_{scal}$ и $I_{\pm 2}$.

Интенсивность $I = I_{scal}$ подчиняется обычному скалярному уравнению переноса

$$\left\{\mu \frac{\partial}{\partial z} + \sigma_{tot}\right\} I_{scal}(z,\mu) = \sigma \int d\mathbf{n}' a_1(\mathbf{n} \cdot \mathbf{n}') I_{scal}(z,\mu'). \quad (26)$$

Уравнения для $I_{\pm 2}$ могут быть сведены к одному уравнению. Если в угловой зависимости $I_{\pm 2}$ выделить фазовые множители, отвечающие за преобразование $I_{\pm 2}$ при поворотах в пространстве,

$$I_{\pm 2} = \frac{1}{\sqrt{2}} W \exp(\pm 2i\varphi), \qquad (27)$$

то для величины W, которая в случае нормального падения не зависит от азимутального угла, $W = W(z, \mu)$, получим уравнение [35]

$$\left\{\mu \frac{\partial}{\partial z} + \sigma_{tot}\right\} W(z,\mu) =$$

= $\sigma \int d\mathbf{n}' a_1(\mathbf{n} \cdot \mathbf{n}') \exp(2i(\chi_+ - \psi)) W(z,\mu').$ (28)

Уравнения (26), (28) описывают распространение и деполяризацию линейно поляризованного света в «геометрическом» приближении.

При многократном рассеянии, когда направление распространения падающего света \mathbf{n}_0 и направления распространения рассеянных волн \mathbf{n} , \mathbf{n}' не лежат в одной плоскости (рис. 1), величина ($\chi_+ - \psi$) в уравнении (28) оказывается отличной от нуля. Разность углов

$$\chi_{+} - \psi = \pi - \beta - \beta' - (\varphi - \varphi') \tag{29}$$

представляет собой разность углов при вершине соответствующих сферического и плоского треугольников (так называемый сферический избыток [41]). Благодаря фазовому множителю в уравнении для W (28) появляется эффективное дополнительное «поглощение»

$$\sigma \int d\mathbf{n}' a_1(\mathbf{n} \cdot \mathbf{n}') (1 - \exp(2i(\chi_+ - \psi))).$$
(30)

Дополнительное «поглощение» (30) обеспечивает более быстрое затухание величины W по сравнению с интенсивностью I и описывает деполяризацию линейно поляризованного света за счет геометрического — рытовского — механизма.

Поскольку однократное рассеяние на крупных неоднородностях происходит преимущественно на малые углы, коэффициент эффективного «поглощения» (30) оказывается малым по сравнению с коэффициентом упругого рассеяния σ , и поэтому деполяризация света происходит медленно, в результате многих актов рассеяния.

При однократном рассеянии на малые углы [36]

$$\sigma \int d\mathbf{n}' a_1(\mathbf{n} \cdot \mathbf{n}') \left(1 - \exp(2i(\chi_+ - \psi))\right) \approx \\ \approx 2\sigma_{tr} \frac{1 - \mu}{1 + \mu}, \quad (31)$$

где $\sigma_{tr} = \sigma(1 - \langle \cos \gamma \rangle)$ — транспортный коэффициент упругого рассеяния. Согласно (31), деполяризация линейно поляризованного света происходит на расстояниях порядка транспортной длины упругого рассеяния $l_{tr} = (\sigma_{tr})^{-1}$ [4, 24].

Следует отметить, что в приближении $A_{\parallel} = A_{\perp}$ деполяризация циркулярно поляризованного света не происходит. В этом приближении уравне-

Рис.2. Угловая зависимость элементов матрицы рассеяния (20): a — водная суспензия частиц латекса (ka = 10), сплошная кривая — индикатриса a_1 , штриховая — $(a_1 - a_2)/2$, пунктирная — $|b_1|$; δ — модель Cloud 1, \blacksquare — индикатриса a_1 , \bullet — $(a_1 - a_2)/2$, \blacktriangle — $|b_1|$

ние (12) совпадает со скалярным уравнением переноса (26) для интенсивности. Дополнительное «поглощение» (13) обращается в нуль. С физической точки зрения это связано с тем, что «рытовский» поворот плоскости поляризации не влияет на состояние циркулярно поляризованного света. Поляризованную по кругу волну можно представить как суперпозицию двух сдвинутых по фазе на $\pi/2$ линейных кросс-поляризованных волн равной амплитуды. При распространении вдоль искривленной траектории плоскости поляризации обеих волн поворачиваются, но при этом фазовый сдвиг между ними и амплитуда не меняются. Деполяризация циркулярно поляризованного света не происходит.

Если в матрице рассеяния (22) пренебречь разницей между значениями углов β , β' сферического треугольника и значениями соответствующих углов в треугольнике на плоскости (т.е. положить $\chi_+ - \psi = 0$, см. также рис. 1), то получим векторное уравнение переноса, в котором за деполяризацию света отвечает только динамический механизм.

Именно благодаря динамическому механизму разрушается циркулярная поляризация. В уравнении (12) для четвертого параметра Стокса V за счет разницы между A_{\parallel} и A_{\perp} (и, соответственно, между a_1 и a_2 (см. (7), (8))) возникает дополнительное «поглощение» (13), которое описывает деполяризацию поляризованного по кругу света.

Для крупных частиц коэффициент динамической деполяризации (13) оказывается существенно меньше транспортного коэффициента рассеяния (отношение σ_{dep}/σ_{tr} , рассчитанное по теории Ми [1, 30],

Рис. 3. Зависимость отношения σ_{dep}/σ_{tr} от радиуса рассеивателей. Сплошная кривая — водная суспензия частиц латекса, n = 1.20, штриховая — капли воды в воздухе, n = 1.33, пунктирная — частицы кварца в воде, n = 1.03

представлено на рис. 3). Поэтому в неупорядоченных средах с крупномасштабными неоднородностями геометрический механизм является доминирующим механизмом деполяризации линейно поляризованного света. В таких средах циркулярно поляризованный свет деполяризуется существенно медленнее линейно поляризованного [2, 4, 7, 13, 17, 24]. Затухание круговой поляризации происходит уже после того, как распределение излучения по углам становится близким к изотропному.

4. ОСНОВНЫЕ И ДОПОЛНИТЕЛЬНЫЕ ПОЛЯРИЗАЦИОННЫЕ МОДЫ

Рассмотрим теперь метод последовательных приближений для расцепления векторного уравнения переноса (17). В его основе лежит утверждение о том, что однократное рассеяние на крупных неоднородностях происходит преимущественно вперед, где недиагональные элементы матрицы рассеяния (22) оказываются много меньше диагональных (см. рис. 2).

В первом приближении пренебрегаем недиагональными элементами матрицы рассеяния (22). Тогда получаем независимые уравнения для $I = I_{scal}$ и $I_{\pm 2}$. Уравнение для I_{scal} совпадает со скалярным уравнением переноса (26). Величины $I_{\pm 2}$ согласно (27) можно выразить через величину W, которая подчиняется уравнению [37]

$$\left\{ \mu \frac{\partial}{\partial z} + \sigma_{tot} \right\} W(z,\mu) =$$

= $\sigma \int d\mathbf{n}' \frac{a_1(\mathbf{n} \cdot \mathbf{n}') + a_2(\mathbf{n} \cdot \mathbf{n}')}{2} \times \exp(2i(\chi_+ - \psi))W(z,\mu').$ (32)

Поскольку при преимущественном рассеянии на малые углы элементы матрицы рассеяния a_1 и a_2 мало отличаются друг от друга, входящую в (32) индикатрису удобно представить в виде

$$\frac{a_1 + a_2}{2} \exp(2i(\chi_+ - \psi)) =$$

$$= a_1 + a_1[\exp(2i(\chi_+ - \psi)) - 1] -$$

$$- \frac{a_1 - a_2}{2} - \frac{a_1 - a_2}{2}[\exp(2i(\chi_+ - \psi)) - 1]. \quad (33)$$

Каждое из слагаемых в равенстве (33) имеет свой физический смысл. Если пренебречь различием между диагональными элементами матрицы рассеяния и отклонением изображенного на рис. 1 сферического треугольника от плоского (т. е. положить $a_1 = a_2$ и $\chi_+ = \psi$), то в равенстве (33) останется только первое слагаемое. В этом приближении уравнение для W не будет отличаться от скалярного уравнения переноса. Деполяризация в этом приближении вообще отсутствует.

За процесс деполяризации отвечают второе, третье и четвертое слагаемые в правой части (33). Второе слагаемое обусловлено отличием изображенного на рис. 1 сферического треугольника от плоского и описывает геометрическую деполяризацию. Третье слагаемое в правой части равенства (33) возникает из-за различия диагональных элементов матрицы рассеяния и отвечает за динамическую деполяризацию (дополнительное «поглощение» в уравнении (32), обусловленное этим слагаемым, оказывается в два раза меньше, чем (13)). Четвертый член в (33) описывает взаимное влияние геометрического и динамического механизмов деполяризации. В условиях рассеяния на крупномасштабных неоднородностях второе, третье и четвертое слагаемые в правой части (33) малы по сравнению с первым, и поэтому деполяризация света происходит медленно, в результате многих актов рассеяния.

Таким образом, в первом приближении состояние линейной поляризации света при многократном рассеянии в среде с крупными неоднородностями определяется значением W. Величину W имеет смысл назвать основной модой линейной поляризации (по аналогии со скалярной модой I_{scal} и циркулярно поляризованной модой V).

Независимое распространение в среде основных поляризационных мод следует рассматривать как первое приближение в векторном уравнении переноса (17) для среды с крупными частицами. В следующем приближении необходимо учитывать межмодовое взаимодействие, которое определяется недиагональными элементами матрицы рассеяния и имеет «динамическую» (т. е. обусловленную различием между амплитудами A_{\parallel} и A_{\perp}) природу.

В наиболее компактном виде результаты вычислений можно представить, если ввести соответствующую представлению (15) поляризационную матрицу Грина \hat{G} ,

$$\hat{G} = \begin{pmatrix} G_{22} & G_{20} & G_{2-2} \\ G_{02} & G_{00} & G_{0-2} \\ G_{-22} & G_{-20} & G_{-2-2} \end{pmatrix},$$
(34)

которая позволяет выразить поляризационные параметры рассеянного излучения \hat{I} через параметры падающего пучка $\hat{I}^{(0)}$,

$$\hat{I} = \hat{G}\hat{I}^{(0)}.$$

Матрица \hat{G} подчиняется уравнению (17) и обладает той же симметрией, что и матрица рассеяния \hat{d} (22). Если хотя бы один индекс у матричного элемента G_{mn} равен ±2, то комплексное сопряжение G_{mn} эквивалентно изменению знака у данного индекса:

$$G_{0\pm 2} = G_{0\mp 2}^*, \quad G_{\pm 20} = G_{\mp 20}^*, G_{\pm 2\pm 2} = G_{\mp 2\mp 2}^*.$$
(35)

В первом приближении матрица \hat{G} диагональна,

$$\hat{G} = \begin{pmatrix} W \exp(2i\varphi) & 0 & 0 \\ 0 & I_{scal} & 0 \\ 0 & 0 & W^* \exp(-2i\varphi) \end{pmatrix}, \quad (36)$$

и описывает независимое распространение в среде основных поляризационных мод — I_{scal} и W.

В следующем приближении взаимодействие между скалярной и линейной модами, которое возникает благодаря недиагональным элементам матрицы рассеяния \hat{d} (22), приводит к возбуждению дополнительных мод — «обертонов» — недиагональных элементов $G_{0\pm 2}, G_{\pm 20}, G_{\mp 2\pm 2}$.

Уравнение для элементов G_{km} можно представить в виде

$$\left\{ \mu \frac{\partial}{\partial z} + \sigma_{tot} \right\} G_{km}(z, \mathbf{n}) =$$

= $\sigma \int d\mathbf{n}' d_{kk}(\mathbf{n}, \mathbf{n}') G_{km}(z, \mathbf{n}') + Q_{km}(z, \mathbf{n}), \quad (37)$

где источники Q_{km} определяются выражением

$$Q_{km}(z,\mathbf{n}) = \sigma \sum_{l \neq k} \int d\mathbf{n}' d_{kl}(\mathbf{n},\mathbf{n}') G_{lm}(z,\mathbf{n}'). \quad (38)$$

Основной вклад в сумму (38) дают члены, содержащие основные поляризационные моды, т. е. диагональные элементы G_{mm} . Поэтому в первом приближении

$$Q_{km}(z,\mathbf{n}) = \sigma \int d\mathbf{n}' d_{km}(\mathbf{n},\mathbf{n}') G_{mm}(z,\mathbf{n}').$$
(39)

Азимутальную зависимость недиагональных элементов G_{km} $(k \neq m)$ в случае нормального падения широкого пучка можно представить в виде

$$G_{02}(z, \mathbf{n}) = \frac{1}{\sqrt{2}} Q_W(z, \mu) \exp(2i\varphi),$$

$$G_{20}(z, \mathbf{n}) = \frac{1}{\sqrt{2}} Q_{un}(z, \mu),$$
(40)

$$G_{2-2}(z,\mathbf{n}) = w(z,\mu) \exp(-2i\varphi).$$
(41)

Тогда из формул (37), (39) следуют уравнения для функций Q_W , Q_{un} и w:

$$\left\{ \mu \frac{\partial}{\partial z} + \sigma_{tot} \right\} Q_W(z,\mu) =$$

= $\sigma \int d\mathbf{n}' a_1(\mathbf{n} \cdot \mathbf{n}') \exp(-2i\psi) Q_W(z,\mu') +$
+ $\sigma \int d\mathbf{n}' b_1(\mathbf{n} \cdot \mathbf{n}') \exp(-2i(\beta'+\psi)) W(z,\mu'),$ (42)

$$\left\{ \mu \frac{\partial}{\partial z} + \sigma_{tot} \right\} Q_{un}(z,\mu) =
= \sigma \int d\mathbf{n}' \frac{a_1(\mathbf{n} \cdot \mathbf{n}') + a_2(\mathbf{n} \cdot \mathbf{n}')}{2} \times
\times \exp(2i\chi_+)Q_{un}(z,\mu') +
+ \sigma \int d\mathbf{n}' b_1(\mathbf{n} \cdot \mathbf{n}') \exp(-2i\beta)I_{scal}(z,\mu'), \quad (43)$$

$$\left\{ \mu \frac{\partial}{\partial z} + \sigma_{tot} \right\} w(z,\mu) =
= \sigma \int d\mathbf{n}' \frac{a_1(\mathbf{n} \cdot \mathbf{n}') + a_2(\mathbf{n} \cdot \mathbf{n}')}{2} \times
\times \exp(2i(\chi_+ + \psi))w(z,\mu') +
+ \sigma \int d\mathbf{n}' \frac{a_1(\mathbf{n} \cdot \mathbf{n}') - a_2(\mathbf{n} \cdot \mathbf{n}')}{2} \times
\times \exp(2i(\chi_- + \psi))W(z,\mu'). \quad (44)$$

Величина $Q_{un}(z,\mu)$ совпадает со вторым параметром Стокса рассеянного излучения для первоначально неполяризованного пучка [42]. Если падающее излучение неполяризовано, то основные поляризационные моды не «возбуждаются» (W = V = 0) и поляризация рассеянного света определяется только вкладом «обертона» G_{20} .

Как будет показано ниже, в средах с крупномасштабными неоднородностями вклад «обертонов» Q_W и w в значения параметров Стокса многократно рассеянного света всегда оказывается малым. Вклад обертона Q_{un} становится существенным на больших глубинах, когда в результате многих актов рассеяния излучение «забывает» свою начальную поляризацию.

5. РАЗЛОЖЕНИЕ ПО СФЕРИЧЕСКИМ ГАРМОНИКАМ

Решение уравнений для основных мод (12), (26), (32) и «обертонов» (42)–(44) удобно искать в виде разложений в ряд по обобщенным сферическим функциям. В скалярной теории переноса такой подход известен как *P*_l-приближение [43]. Для векторного уравнения переноса разложение по обобщенным сферическим гармоникам было впервые предложено в работе [29] и использовалось в ряде работ для численного интегрирования, а также в аналитических вычислениях параметров Стокса при прохождении неполяризованного света через толстые слои (см., например, [1, 28, 44]). Недавно этот подход был применен для расчета пространственных моментов углового распределения излучения в импульсе [9]. В случае нормального падения на поверхность среды широкого пучка света функции I_{scal} и V следует искать в виде разложения в ряд по полиномам Лежандра $P_l(\mu)$:

$$I_{scal}(z,\mu) = \sum_{l=0}^{\infty} \frac{2l+1}{4\pi} I_{scal}(z,l) P_l(\mu),$$

$$V(z,\mu) = \sum_{l=0}^{\infty} \frac{2l+1}{4\pi} V(z,l) P_l(\mu).$$
(45)

Входящие в выражения (45) коэффициенты $I_{scal}(z,l)$ и V(z,l) удовлетворяют уравнениям

$$\frac{l}{(2l+1)} \frac{\partial I_{scal}(z,l-1)}{\partial z} + \frac{l+1}{2l+1} \frac{\partial I_{scal}(z,l+1)}{\partial z} + [\sigma + \sigma_a - \sigma a_1(l)]I_{scal}(z,l) = 0, \quad (46)$$

$$\frac{l}{(2l+1)} \frac{\partial V(z,l-1)}{\partial z} + \frac{(l+1)}{(2l+1)} \frac{\partial V(z,l+1)}{\partial z} + [\sigma + \sigma_a - \sigma a_2(l)] V(z,l) = 0, \quad (47)$$

где

$$a_{1,2}(l) = 2\pi \int_{-1}^{1} d\mu \, a_{1,2}(\mu) P_l(\mu).$$
(48)

С учетом угловой зависимости интегрального члена в уравнении (32) значение $W(z, \mu)$ удобно искать в виде разложения по обобщенным сферическим функциям P_{l2}^{l} [29] (см. Приложение A):

$$W(z,\mu) = \sum_{l=2} \frac{2l+1}{4\pi} W(z,l) P_{22}^{l}(\mu).$$
(49)

Тогда, подставляя (49) в (32), получим

$$\frac{l^{2}-4}{l(2l+1)} \frac{\partial W(z,l-1)}{\partial z} + \frac{4}{l(l+1)} \frac{\partial W(z,l)}{\partial z} + \\ + \frac{(l+1)^{2}-4}{(l+1)(2l+1)} \frac{\partial W(z,l+1)}{\partial z} + \\ + [\sigma + \sigma_{a} - \sigma a_{+}(l)]W(z,l) = 0, \quad (50)$$

где коэффициенты $a_+(l)$ определяются равенством

$$a_{+}(l) = 2\pi \int_{-1}^{1} d\mu \frac{a_{1}(\mu) + a_{2}(\mu)}{2} P_{22}^{l}(\mu).$$
 (51)

Обобщенные сферические функции P_{mn}^l определены и подробно описаны в работе [45] (см. также Приложение А).

Обертоны $Q_W(z,\mu), Q_{un}(z,\mu), w(z,\mu)$ следует искать в виде разложений

$$Q_W(z,\mu) = \sum_{l=2} \frac{2l+1}{4\pi} Q_W(z,l) P_{20}^l(\mu),$$

$$Q_{un}(z,\mu) = \sum_{l=2} \frac{2l+1}{4\pi} Q_{un}(z,l) P_{20}^l(\mu),$$
 (52)

$$w(z,\mu) = \sum_{l=2} \frac{2l+1}{4\pi} w(z,l) P_{2-2}^l(\mu).$$

Вид разложений (52) диктуется угловой зависимостью интегральных членов в уравнениях (42)–(44). Подстановка разложений (45), (49) и (52) в (42)–(44) приводит к уравнениям для коэффициентов $Q_W(z,l), Q_{un}(z,l), w(z,l)$:

$$\frac{\sqrt{(l+2)(l-2)}}{2l+1} \frac{\partial Q_W(z,l-1)}{\partial z} + \\ + \frac{\sqrt{(l+3)(l-1)}}{2l+1} \frac{\partial Q_W(z,l+1)}{\partial z} + \\ + (\sigma - \sigma a_1(l) + \sigma_a) Q_W(z,l) = b_1(l) W(z,l), \quad (53)$$

$$\frac{\sqrt{(l+2)(l-2)}}{2l+1} \frac{\partial Q_{un}(z,l-1)}{\partial z} + \frac{\sqrt{(l+3)(l-1)}}{2l+1} \frac{\partial Q_{un}(z,l+1)}{\partial z} + (\sigma - \sigma a_{+}(l) + \sigma_{a})Q_{un}(z,l) = b_{1}(l)I_{scal}(z,l), \quad (54)$$

$$\frac{(l+2)(l-2)}{l(2l+1)} \frac{\partial w(z,l-1)}{\partial z} - \frac{4}{l(l+1)} \frac{\partial w(z,l)}{\partial z} + \\ + \frac{(l+3)(l-1)}{(l+1)(2l+1)} \frac{\partial w(z,l+1)}{\partial z} + \\ + (\sigma - \sigma a_{+}(l) + \sigma_{a})w(z,l) = a_{-}(l)W(z,l).$$
(55)

Здесь

$$b_{1}(l) = 2\pi \int_{-1}^{1} d\mu b_{1}(\mu) P_{20}^{l}(\mu),$$

$$a_{-}(l) = 2\pi \int_{-1}^{1} d\mu \frac{a_{2}(\mu) - a_{3}(\mu)}{2} P_{2-2}^{l}(\mu).$$
(56)

Воспользуемся уравнениями (46), (47), (50), (53)–(55) для вычисления значений основных мод и «обертонов» в асимптотическом при больших *z* режиме распространения излучения. В асимптотическом режиме наиболее ярко проявляются различия в деполяризации линейно и циркулярно поляризованного света, и поэтому этот случай важен для многих приложений (см., например, [4, 7, 14, 17]).

6. АСИМПТОТИЧЕСКИЙ РЕЖИМ РАСПРОСТРАНЕНИЯ

В асимптотическом режиме [27, 43] решение отдельных уравнений, входящих в векторное уравнение переноса, факторизуется — угловая зависимость решений перестает меняться с глубиной и отделяется от множителя, который описывает затухание с ростом z. Применительно к скалярному уравнению переноса определение углового распределения излучения и коэффициента затухания в асимптотическом режиме детально изучено в работах [27, 43].

Подставляя $I_{scal}(z,l)$, V(z,l) и W(z,l) в экспоненциальном виде (например, $I_{scal}(z,l) = I_{scal}(l)$ ехр $(-\epsilon_I z)$) в уравнения (46), (47), (50), приходим к задаче на собственные функции и собственные значения. Наименьшее собственное значение (ϵ_I , ϵ_V и ϵ_W) дает коэффициент затухания, а отвечающий ему набор коэффициентов ($I_{scal}(l)$, V(l) или W(l)) определяет собственную функцию ($\Phi_I(\mu)$, $\Phi_V(\mu)$ или $\Phi_W(\mu)$) — угловую зависимость соответствующей моды в асимптотическом режиме, —

$$I_{scal}^{(as)}(z,\mu) = \exp(-\epsilon_{I}z) \sum_{l=0}^{\infty} \frac{2l+1}{4\pi} I_{scal}(l) P_{l}(\mu) = C_{I} \Phi_{I}(\mu) \exp(-\epsilon_{I}z), \quad (57)$$

$$V^{(as)}(z,\mu) = \exp\left(-\epsilon_V z\right) \sum_{l=0} \frac{2l+1}{4\pi} V(l) P_l(\mu) =$$
$$= C_V \Phi_V(\mu) \exp\left(-\epsilon_V z\right), \quad (58)$$

$$W^{(as)}(z,\mu) = \exp(-\epsilon_W z) \sum_{l=2} \frac{2l+1}{4\pi} W(l) P_{22}^l(\mu) =$$

= $C_W \Phi_W(\mu) \exp(-\epsilon_W z)$. (59)

Здесь $C_I = I_{scal}(l = 0), C_V = V(l = 0), C_W = W(l = 2),$ а собственные функции удовлетворяют условию нормировки:

$$2\pi \int_{-1}^{1} d\mu \Phi_{I,V}(\mu) = 1, \qquad (60)$$

$$2\pi \int_{-1}^{1} d\mu P_{22}^{l=2}(\mu) \Phi_{W}(\mu) = 1.$$
 (61)

Для интенсивности собственные значения определяются как корни уравнения

$$\det\left(\left[\sigma(1-a_{1}(l))+\sigma_{a}\right]\delta_{l,m} - \frac{\epsilon_{I}}{2l+1}(l\delta_{l-1,m}+(l+1)\delta_{l+1,m})\right) = 0. \quad (62)$$

Для циркулярно поляризованной моды уравнение для собственных значений ϵ_V получается из (62) заменой $a_1(l)$ на $a_2(l)$. Собственные значения линейно поляризованной моды находятся из уравнения

$$\det\left(\left[\sigma(1-a_{+}(l))+\sigma_{a}\right]\delta_{l,m}--\epsilon_{W}\left(\frac{l^{2}-4}{l(2l+1)}\delta_{l-1,m}++\frac{4}{l(l+1)}\delta_{l,m}+\frac{(l+1)^{2}-4}{(l+1)(2l+1)}\delta_{l+1,m}\right)\right)=0.$$
 (63)

Для заданных оптических характеристик среды решение уравнений (62), (63) и последующее вычисление соответствующих угловых распределений может быть выполнено численно (суммирование по сферическим гармоникам в (45), (49) проводится до некоторого l_{max} , определители в (62), (63) вычисляются от матриц $l_{max} \times l_{max}$).

Результаты расчетов коэффициентов затухания основных поляризационных мод V и W в асимптотическом режиме приведены в табл. 1. Расчеты проводились для водных суспензий частиц латекса и кварца, капель воды в воздухе и модели Cloud 1 [34]. Предполагалось, что поглощение отсутствует. Для сред, состоящих из частиц заданного радиуса, величины $a_1(l), a_2(l)$ и $a_+(l)$, входящие в уравнения (62), (63), вычислялись по формулам Ми [30]. Для модели Cloud 1, в которой частицы распределены по размерам, использовались численные данные для элементов матрицы рассеяния [34]. Результаты расчетов приведены для двух случаев — в разложениях по сферическим гармоникам удерживались, соответственно, два и десять членов. Незначительное различие результатов говорит о хорошей сходимости ряда по *l* для непоглощающей среды.

Для сравнения в табл. 1 наряду с ϵ_W приведены значения коэффициента затухания линейно поляризованной моды в геометрическом приближении ϵ_W^{geom} . В геометрическом приближении в формуле (51) следует заменить величину $(a_1(\mu) + a_2(\mu))/2$ на $a_1(\mu)$. Вычисленное в этом случае значение ϵ_W^{geom} будет определяться только рытовским механизмом деполяризации. Различие между ϵ_W и ϵ_W^{geom} обусловлено динамическим механизмом деполяризации и может рассматриваться как мера относительной роли этого механизма. Согласно результатам расчетов,

	ϵ_V / σ_{tr}		ϵ_W/σ_{tr}		$\epsilon_W^{geom}/\sigma_{tr}$		ϵ_V/ϵ_W	
l_{max}	1	9	3	9	3	9	1(3)	9
Кварцевые частицы, $x = 5$	0.867	0.831	1.365	1.363	1.280	1.279	0.635	0.610
x = 10	0.711	0.693	1.329	1.328	1.330	1.329	0.535	0.522
Частицы латекса, $x = 5$	0.691	0.671	1.262	1.260	1.236	1.234	0.548	0.533
x = 10	0.660	0.642	1.214	1.212	1.186	1.184	0.544	0.530
Капли воды, $x = 5$	0.799	0.763	1.173	1.170	1.133	1.131	0.681	0.652
x = 10	0.922	0.853	1.080	1.075	1.023	1.019	0.854	0.793
Cloud 1	0.960	0.833	1.092	1.088	1.041	1.037	0.879	0.766

Таблица 1. Коэффициенты затухания основных поляризационных мод (x = ka)

Рис. 4. Угловые зависимости циркулярно (1) и линейно (2) поляризованных мод в асимптотическом режиме, $l_{max} = 9$ (сплошная кривая), 1 (штриховая). Водная суспензия частиц латекса, ka = 10

значения ϵ_W и ϵ_W^{geom} для всех рассмотренных случаев различаются не более чем на 5 %. Это свидетельствует о доминирующей роли геометрического механизма деполяризации для линейно поляризованного света.

Примеры угловой зависимости $\Phi_V(\mu)$ и $\Phi_W(\mu)$ основных поляризационных мод в асимптотическом режиме показаны на рис. 4. Расчеты выполнены для водной суспензии частиц латекса. Как и в табл. 1, результаты приведены для двух случаев, когда в разложениях по сферическим гармоникам удерживалось, соответственно, два и десять членов.

При нормальном падении на поверхность среды пучка света единичной плотности потока коэффициент C_I в (57) для слабопоглощающей среды $(\sigma_a \ll \sigma_{tr})$ можно определить как [43]

$$C_I = 5.03 \left(1 - 1.23 \sqrt{\frac{\sigma_a}{\sigma_{tr}}} + \dots \right). \tag{64}$$

С ростом поглощения формула (64) теряет применимость и вместо нее следует использовать соотношение для коэффициента C_I поглощающей среды (см. Приложение В):

$$C_{I} = \frac{\Phi_{I}(\mu = 1)}{2\pi \int_{0}^{1} \mu d\mu \Phi_{I}^{2}(\mu)},$$
(65)

где $\Phi_I(\mu)$ — угловое распределение излучения в асимптотическом режиме. В случае поглощающей среды формула (65) хорошо согласуется с результатами численных расчетов. При $\sigma_a > 0.1\sigma_{tr}$ расчет C_I по формуле (65) и данные численного расчета C_I [27] различаются менее чем на 10%; различие уменьшается с ростом σ_a/σ_{tr} .

Тот факт, что даже в отсутствие истинного поглощения моды V и W характеризуются заметным эффективным «поглощением» (соответственно, порядка σ_{dep} и σ_{tr} (см. (13) и (31))), позволяет воспользоваться формулой (65) и для вычисления множителей $C_{V,W}$. Для вычисления коэффициентов $C_{V,W}$ нужно подставить в выражение (65) соответственно функции $\Phi_{V,W}(\mu)$.

Результаты расчетов C_V , C_W и двух первых коэффициентов разложения мод V и W по сферическим функциям для $l_{max} = 9$ приведены в табл. 2.

Наряду с численными расчетами, в двух предельных случаях — слабого ($\sigma_a \ll \sigma_{tr}$) и сильного

	C_V	C_W	$\frac{V(l=1)}{V(l=0)}$	$\frac{V(l=2)}{V(l=0)}$	$\frac{W(l=3)}{W(l=2)}$	$\frac{W(l=4)}{W(l=2)}$
Кварцевые частицы, $x=5$	3.00	1.58	0.31	0.043	0.125	0.012
x = 10	3.17	1.57	0.24	0.026	0.115	0.009
Частицы латекса, $x = 5$	3.18	1.58	0.25	0.030	0.130	0.013
x = 10	3.23	1.59	0.23	0.029	0.109	0.016
Капли воды, $x = 5$	3.08	1.61	0.29	0.048	0.154	0.021
x = 10	3.02	1.69	0.34	0.083	0.192	0.036
Cloud 1	2.90	1.71	0.38	0.091	0.266	0.052

Таблица 2. Параметры основных поляризационных мод в асимптотическом режиме

 $(\sigma_a \gg \sigma_{tr})$ поглощения — для нахождения состояния поляризации рассеянного света можно воспользоваться аналитическими вычислениями.

6.1. Слабое поглощение. Пространственная диффузия

При слабом ($\sigma_a \ll \sigma_{tr}$) поглощении происходит диффузия излучения через среду [31,43]. Угловое распределение интенсивности излучения $I_{scal}(z,\mu)$ на глубинах, превышающих транспортную длину упругого рассеяния l_{tr} , оказывается в этом случае близким к изотропному, и в разложении $I_{scal}(z,\mu)$ по полиномам Лежандра можно ограничиться двумя первыми членами. В этом приближении из первых двух уравнений (46) (с l = 0 и l = 1) следует уравнение пространственной диффузии излучения. Что касается циркулярно поляризованной моды $V(z, \mu)$, то к ней аналогичный подход применим, если выполнено условие слабого «эффективного» поглощения, $\sigma_a + \sigma_{dep} \ll \sigma_{tr}$. В приближении пространственной диффузии выражения для $I_{scal}(z,\mu)$ и $V(z, \mu)$ в асимптотическом режиме имеют вид

$$I_{scal}^{(as)}(z,\mu) = \frac{C_I}{4\pi} \left(1 + \alpha_I \mu\right) \exp\left(-\epsilon_I z\right),\tag{66}$$

$$V^{(as)}(z,\mu) = \frac{C_V}{4\pi} (1 + \alpha_V \mu) \exp(-\epsilon_V z).$$
 (67)

Собственные значения $\epsilon_{I,V}$ и входящие в разложения (66), (67) коэффициенты $\alpha_{I,V}$ в этом приближении равны

$$\epsilon_I \approx \sqrt{3(\sigma_{tr} + \sigma_a)\sigma_a}, \quad \alpha_I \approx \sqrt{\frac{3\sigma_a}{\sigma_{tr} + \sigma_a}}, \quad (68)$$

12 ЖЭТФ, вып. 2

$$\begin{aligned} \epsilon_V &\approx \sqrt{3(\sigma_{tr}^{(2)} + \sigma_{dep} + \sigma_a)(\sigma_a + \sigma_{dep})}, \\ \alpha_V &\approx \sqrt{\frac{3(\sigma_a + \sigma_{dep})}{\sigma_{tr}^{(2)} + \sigma_{dep} + \sigma_a}}, \end{aligned} \tag{69}$$

где

$$\sigma_{tr}^{(2)} = \sigma(a_2(0) - a_2(1)), \quad \sigma_{dep} = \sigma(1 - a_2(0)).$$
(70)

В разложении (49) линейно поляризованной моды $W(z, \mu)$ в ряд по сферическим гармоникам в случае слабого поглощения также можно ограничиться (см. табл. 2) несколькими первыми членами (явные выражения для $P_{22}^l(\mu)$ приведены в Приложении А). Однако уравнения (50) для коэффициентов W(z, l) отличаются по своей структуре от уравнений (46), (47). Достаточно удержать всего одно слагаемое в разложении (49), чтобы получить удовлетворительное описание затухания $W(z, \mu)$ в асимптотическом режиме. В этом приближении

$$W^{(as)}(z,\mu) = \frac{5C_W}{16\pi} (1+\mu)^2 \exp\left(-\epsilon_W^{(0)} z\right), \qquad (71)$$

где

$$\epsilon_W^{(0)} = \frac{3}{2} \left[\sigma (1 - a_+(2)) + \sigma_a \right] \tag{72}$$

и, в соответствии с (65), $C_W = 64/43$. Погрешность расчета ϵ_W по формуле (72) не превышает 10 %. Более точные результаты дает учет двух членов в разложении (50). В этом приближении

$$W^{(as)}(z,\mu) = \frac{5C_W}{16\pi} (1+\mu)^2 \times (1+\alpha_W(3\mu-2)) \exp(-\epsilon_W z), \quad (73)$$

$$\begin{aligned} \epsilon_W &= \frac{7}{6} \left\{ 3(\sigma + \sigma_a) - 2\sigma a_+(3) - \sigma a_+(2) - \right. \\ &- \left[(3(\sigma + \sigma_a) - 2\sigma a_+(3) - \sigma a_+(2))^2 - \frac{36}{7} \times \right. \\ &\times \left. (\sigma + \sigma_a - \sigma a_+(3))(\sigma + \sigma_a - \sigma a_+(2)) \right]^{1/2} \right\}, \end{aligned} \tag{74}$$

$$\alpha_W &= \frac{21}{5} \left(\frac{\sigma + \sigma_a - \sigma a_+(2)}{\epsilon_W} - \frac{2}{3} \right),$$

где коэффициенты $a_+(2)$, $a_+(3)$ вычисляются по формуле (51). Формула (74) определяет ϵ_W с практически исчерпывающей точностью (см. табл. 1).

Малыми параметрами, которые позволяют построить метод последовательных приближений в уравнениях (46), (47), являются, соответственно, величины

$$\frac{\sigma_a}{3\sigma_{tr}}, \quad \frac{\sigma_a + \sigma_{dep}}{3\sigma_{tr}^{(2)}}.$$

Для уравнения (50) малым параметром является величина ($\epsilon_W - \epsilon_W^{(0)}$)/ ϵ_W , где $\epsilon_W^{(0)}$ определяется по формуле (72). Как следует из наших расчетов, для непоглощающих сред с крупными неоднородностями эта величина оказывается намного меньше, чем малый параметр в уравнении для моды V.

Численные значения интегральных параметров матрицы рассеяния, которые входят в формулы (68)–(74), приведены в табл. 3.

В приближении основных мод степень поляризации циркулярно и линейно поляризованных пучков определяется соотношениями

$$P_{circ} = \frac{\sqrt{Q^2 + V^2}}{I} \approx \frac{V}{I_{scal}},\tag{75}$$

$$P_{lin} = \frac{\sqrt{Q^2 + U^2}}{I} \approx \frac{W}{I_{scal}}.$$
 (76)

В асимптотическом режиме распространения света через слабопоглощающую среду

$$P_{circ} \approx \frac{V}{I_{scal}} \approx \frac{C_V}{C_I} \left(1 + \mu(\alpha_V - \alpha_I) + \dots\right) \exp\left(-z\left(\epsilon_V - \epsilon_I\right)\right), \quad (77)$$

$$P_{lin} \approx \frac{5C_W}{4C_I} (1+\mu)^2 \left((1-2\alpha_W) + \mu (3\alpha_W - \alpha_I) + \dots \right) \times \\ \times \exp\left(-z \left(\epsilon_W - \epsilon_I\right)\right). \quad (78)$$

Источниками в уравнениях (53)–(55) для дополнительных мод Q_W , Q_{un} и w являются основные моды I_{scal} и W. В асимптотическом режиме основной вклад в разложение дополнительных мод по сферическим функциям дают первые слагаемые соответствующих рядов (l = 2, см. (52)), которые с помощью соотношений (53)–(55) легко выражаются через соответствующие коэффициенты разложений I_{scal} и W. В результате для Q_W , Q_{un} и w получаем

$$Q_W(z,\mu) \approx \frac{5C_W}{4\pi} \frac{\sigma b_1(2)}{\sigma + \sigma_a - \sigma a_1(2)} \times P_{20}^2(\mu) \exp\left(-\epsilon_W z\right), \quad (79)$$

$$Q_{un}(z,\mu) \approx \frac{5C_I}{2\pi} \frac{\sigma_a}{\sigma + \sigma_a - \sigma a_1(2)} \times \frac{\sigma b_1(2)}{\sigma + \sigma_a - \sigma a_+(2)} P_{20}^2(\mu) \exp\left(-\epsilon_I z\right), \quad (80)$$

$$w(z,\mu) \approx \frac{5C_W}{4\pi} \frac{\sigma a_-(2)}{\sigma + \sigma_a - \sigma a_+(2) + \frac{2}{3}\epsilon_W} \times P_{2-2}^2(\mu) \exp\left(-\epsilon_W z\right). \quad (81)$$

Выражения для входящих в формулы (79)–(81) сферических функций приведены в Приложении А. Содержащие $b_1(2)$ и $a_-(2)$ безразмерные множители в (79)–(81),

$$\frac{\sigma b_1(2)}{\sigma + \sigma_a - \sigma a_1(2)}, \quad \frac{\sigma b_1(2)}{\sigma + \sigma_a - \sigma a_+(2)},$$
$$\frac{\sigma a_-(2)}{\sigma + \sigma_a - \sigma a_+(2) + 2\epsilon_W/3},$$

для сред с крупномасштабными неоднородностями оказываются малыми. Их зависимость от размера рассеивателей показана на рис. 5. Для модели Cloud 1, в которой частицы распределены по размеру, эти множители равны соответственно 0.05, -0.02, 0.08. Это согласуется с нашим исходным предположением о малом вкладе недиагональных элементов матрицы рассеяния (22) в решение векторного уравнения переноса.

С учетом «обертонов» параметры Стокса $I,\,Q$ иU приобретают вид

$$\begin{pmatrix} I\\Q\\U \end{pmatrix} = \begin{pmatrix} I_{scal} + Q_W \cos 2\varphi\\(W+w)\cos 2\varphi + Q_{un}\\(-W+w)\sin 2\varphi \end{pmatrix}.$$
 (82)

Вклады «обертонов» в интенсивность I и третий параметр Стокса U всегда малы. Вклад Q_{un} во второй

	$\frac{\sigma_{tr}}{\sigma}$	$\frac{\sigma(1-a_+(2))}{\sigma}$	$\frac{\sigma(1-a_+(3))}{\sigma}$	$\frac{\sigma_{dep}}{\sigma}$	$\frac{\sigma_{tr}^{(2)}}{\sigma}$
	0 0 10-2				
Кварцевые частицы, $x = 5$	$9.2 \cdot 10^{-2}$	0.94	3.0	0.26	0.72
x = 10	$2.9 \cdot 10^{-2}$	0.96	3.3	0.17	0.83
Частицы латекса, $x = 5$	$1.1 \cdot 10^{-1}$	0.89	2.9	0.16	0.80
x = 10	$7.0 \cdot 10^{-2}$	0.86	2.5	0.15	0.84
Капли воды, $x = 5$	$1.5 \cdot 10^{-1}$	0.84	2.3	0.22	0.74
x = 10	$2.9 \cdot 10^{-1}$	0.79	1.8	0.29	0.67
Cloud 1 [34]	$1.5 \cdot 10^{-1}$	0.79	1.9	0.34	0.58

Таблица 3. Интегральные параметры диагональных элементов матрицы рассеяния

Рис. 5. Зависимости отношений $\sigma b_1(2)/(\sigma - \sigma a_1(2))$ (кривые 1), $\sigma b_1(2)/(\sigma - \sigma a_+(2))$ (кривые 2), $\sigma a_-(2)/(\sigma + \sigma_a - \sigma a_+(2) + 2\epsilon_W/3)$ (кривые 3) от радиуса рассеивающих частиц. Сплошные кривые водная суспензия частиц латекса, штриховые — водная суспензия частиц кварца, пунктирные — частицы воды в воздухе

параметр Стокса Q становится заметным на больпих глубинах, когда мода W затухает и падающий пучок забывает свою исходную поляризацию. Степень поляризации многократно рассеянного света, отвечающая результату (82), определяется выражением

$$P_{lin} \approx \frac{1}{I_{scal}} \times \left\{ W^2 + 2Ww \cos 4\varphi + 2WQ_{un} \cos 2\varphi + Q_{un}^2 \right\}^{1/2} \times \left\{ \left(1 - \frac{Q_W}{I_{scal}} \cos 2\varphi \right) \right\}.$$
(83)

Согласно (83), пока $W \gg Q_{un}$, вклад «обертонов» определяет зависящие от азимута поправки к полученной выше формуле (76),

$$P_{lin} \approx \frac{W}{I_{scal}} \times \\ \times \left(1 + \frac{w}{W} \cos 4\varphi + \frac{Q_{un}}{W} \cos 2\varphi - \frac{Q_W}{I_{scal}} \cos 2\varphi\right). \quad (84)$$

С ростом z падающий свет полностью деполяризуется $(Q_{un} \gg W)$ и значение степени поляризации P_{lin} стремится к пределу, отвечающему неполяризованному падающему пучку, $P_{lin} \rightarrow P_{un} = Q_{un}/I_{scal}$.

6.2. Сильное поглощение. Малоугловое многократное рассеяние

В случае сильного поглощения ($\sigma_a > \sigma_{tr}$) волны, рассеянные на относительно большие углы, дают малый вклад в интенсивность прошедшего излучения. В результате угловое распределение интенсивности многократно рассеянного излучения остается резко анизотропным — вытянутым в направлении вперед — на любых глубинах [46–48]. Примерами сильно поглощающих сред могут служить биологические ткани и морская вода (для нее отношение σ_{tr}/σ_a не превышает 0.30–0.35).

Вытянутость углового распределения интенсивности излучения в направлении вперед позволяет воспользоваться приближением малых углов θ . При малых θ в значения сумм (45), (49) основной вклад дают члены с большими l. Поэтому сферические функции в разложениях (45) и (49) можно заменить их асимптотическим выражением при малых θ и больших l,

$$P_l(\cos\theta) \approx P_{22}^l(\cos\theta) \approx J_0(l\theta),$$

 12^{*}

и заменить в формулах (45), (49) суммирование по l интегрированием. В дополнение к этому выделим в выражениях для I_{scal} , V, W множитель $\exp(-\sigma_a z)$, определяющий основное затухание в поглощающей среде, и, считая l большим числом, разложим все входящие в уравнения (46), (47), (50) величины в ряд по 1/l. В результате вместо общих формул (45)–(50) получим их малоугловое представление:

$$I_{scal}(z,\theta) = \exp(-\sigma_a z) \int_0^\infty \frac{l \, dl}{2\pi} J_0(l\theta) \tilde{I}_{scal}(z,l), \quad (85)$$

$$V(z,\theta) = \exp(-\sigma_a z) \int_0^\infty \frac{l \, dl}{2\pi} J_0(l\theta) \tilde{V}(z,l), \qquad (86)$$

$$W(z,\theta) = \exp(-\sigma_a z) \int_0^\infty \frac{l \, dl}{2\pi} J_0(l\theta) \tilde{W}(z,l), \qquad (87)$$

где величин
ы $\tilde{I}_{scal}(z,l),\,\tilde{V}(z,l),\,\tilde{W}(z,l)$ удовлетворяют уравнениям

$$\left(\frac{\partial}{\partial z} + \sigma(1 - a_1(l)) - \frac{\sigma_a}{2}\Delta_l\right)\tilde{I}_{scal}(z, l) = 0, \quad (88)$$

$$\left(\frac{\partial}{\partial z} + \sigma(1 - a_1(l)) - \frac{\sigma_a}{2}\Delta_l + \Xi^{dyn}(l)\right)\tilde{V}(z,l) = 0, \quad (89)$$

$$\begin{pmatrix} \frac{\partial}{\partial z} + \sigma (1 - a_1(l)) - \frac{\sigma_a}{2} \Delta_l + \hat{\Xi}^{geom}(l) + \frac{1}{2} \Xi^{dyn}(l) \end{pmatrix} \times \\ \times \tilde{W}(z, l) = 0.$$
 (90)

В приведенных выше уравнениях функция $a_1(l)$ есть малоугловое представление интеграла (48),

$$a_{1}(l) = 2\pi \int_{0}^{\infty} \gamma d\gamma J_{0}(l\gamma) a_{1}(\gamma), \qquad (91)$$
$$\Delta_{l} = \frac{1}{l} \frac{\partial}{\partial l} l \frac{\partial}{\partial l},$$

$$\Xi^{dyn}(l) = \sigma(a_2(l) - a_1(l)),$$

$$\hat{\Xi}^{geom}(l) = \frac{\sigma}{2l} \frac{\partial}{\partial l} \left(\frac{\partial a_1(l)}{\partial l} \frac{\partial}{\partial l} \right).$$
(92)

Дополнительные члены в уравнениях (89) и (90) (по сравнению с уравнением (88)) описывают деполяризацию света за счет геометрического и динамического механизмов. За геометрическую деполяризацию в уравнении (90) отвечает член, пропорциональный $\hat{\Xi}^{geom}(l)$. Этот член соответствует малоугловому представлению слагаемого $a_1(\exp(2i(\chi_+-\psi))-1)$, входящего в сумму (33). Динамическая деполяризация обусловлена разностью $a_1(l) - a_2(l)$. В борновском приближении с учетом соотношений (7), (11) получаем

$$\Xi^{dyn}(l) \approx -\frac{\sigma}{8} \Delta_l^2 a_1(l).$$
(93)

В уравнении (90) мы пренебрегли слагаемым, отвечающим за совместное действие геометрического и динамического механизмов, как слагаемым более высокого порядка малости по 1/l.

Малоугловое представление соотношений для «обертонов» выглядит следующим образом. Суммы (52) с учетом асимптотических формул для сферических гармоник при малых θ и больших l,

$$P_{20}^{l}(\cos\theta) \approx J_{2}(l\theta), \quad P_{2-2}^{l}(\cos\theta) \approx J_{4}(l\theta)$$

заменяются интегралами

$$Q_W(z,\theta) = \exp(-\sigma_a z) \int_0^\infty \frac{l \, dl}{2\pi} J_2(l\theta) \tilde{Q}_W(z,l), \quad (94)$$

$$Q_{un}(z,\theta) = \exp(-\sigma_a z) \int_0^\infty \frac{l \, dl}{2\pi} J_2(l\theta) \tilde{Q}_{un}(z,l), \quad (95)$$

$$w(z,\theta) = \exp(-\sigma_a z) \int_0^\infty \frac{l \, dl}{2\pi} J_4(l\theta) \tilde{w}(z,l), \qquad (96)$$

где величины $\tilde{Q}_W(z,l), \; \tilde{Q}_{un}(z,l), \; \tilde{w}(z,l)$ удовлетворяют уравнениям

$$\left[\frac{\partial}{\partial z} + \sigma(1 - a_1(l)) - \frac{\sigma_a}{2} \left(\Delta_l - \frac{4}{l^2}\right)\right] \tilde{Q}_W(z, l) = \\ = \Xi(l)\tilde{W}(z, l), \quad (97)$$

$$\left[\frac{\partial}{\partial z} + \sigma(1 - a_1(l)) - \frac{\sigma_a}{2} \left(\Delta_l - \frac{4}{l^2}\right)\right] \tilde{Q}_{un}(z, l) = \\ = \Xi(l) \tilde{I}_{scal}(z, l), \quad (98)$$

$$\left[\frac{\partial}{\partial z} + \sigma(1 - a_1(l)) - \frac{\sigma_a}{2} \left(\Delta_l - \frac{16}{l^2}\right)\right] \tilde{w}(z, l) = \\ = \Xi_w(l) \tilde{W}(z, l). \quad (99)$$

Входящие в уравнения (97)–(99) функции $\Xi(l)$ и $\Xi_w(l)$ выражаются через малоугловые представления интегралов (56) для $b_1(l)$ и $a_-(l)$ и в борновском приближении равны

$$\Xi(l) = -\frac{\sigma l^2}{2} \left(\frac{1}{l} \frac{\partial}{\partial l}\right)^2 a_1(l), \qquad (100)$$

$$\Xi_w(l) = \frac{\sigma l^4}{16} \left(\frac{1}{l} \frac{\partial}{\partial l}\right)^4 a_1(l).$$
 (101)

При нормальном падении плоской волны на поверхность среды граничное условие для уравнения (88) имеет вид

$$\tilde{I}_{scal}(z=0,l) = 1.$$
 (102)

Аналогичному граничному условию должны удовлетворять решения уравнений (89) и (90) в случаях, соответственно, циркулярной и линейной поляризации падающего излучения. Что касается решений уравнений для «обертонов», то при z = 0 они подчиняются нулевым граничным условиям.

Уравнения (88), (89) и (90) по своему виду совпадают с нестационарным уравнением Шредингера с двумерным аксиально-симметричным потенциалом. Для аналитического решения этих уравнений необходимо конкретизировать зависимость от l функции $a_1(l)$, через которую выражается соответствующий «потенциал» в (88), (89) и (90).

При многократном рассеянии предполагаются выполненными неравенства

$$\sigma z \gg 1, \quad \theta \gg \gamma_0, \tag{103}$$

где γ_0 — характерный угол однократного рассеяния (γ_0 можно оценить, например, как $\gamma_0 \sim \sim \sqrt{1 - \langle \cos \gamma \rangle}$). Применительно к разложению решения уравнения переноса в интеграл Бесселя второе неравенство означает

$$l \ll \frac{1}{\gamma_0}.$$
 (104)

В связи с этим нас будут интересовать решения уравнений (88)–(90) и (97)–(99) в области значений *l*, ограниченных неравенством (104).

Поведение функции $a_1(l)$ в области, определяемой (104), зависит от того, насколько быстро убывает дифференциальное сечение рассеяния с ростом угла рассеяния γ [42].

Если функция $a_1(\gamma)$ очень быстро убывает с ростом γ (например, по гауссову закону [42]), то для величины $a_1(l)$ справедливо разложение по четным степеням l:

$$a_1(l) = 1 - \frac{\langle \gamma^2 \rangle l^2}{4} + \frac{\langle \gamma^4 \rangle l^4}{64} - \dots,$$
 (105)

где

$$\langle \gamma^{2n} \rangle = 2\pi \int_{0}^{\infty} \gamma \, d\gamma \, \gamma^{2n} a_1(\gamma).$$
 (106)

В рамках этой модели уравнения (88)–(90) и (97)–(99) приобретают достаточно простой вид. Уравнения (88)–(90) в первом приближении становятся эквивалентными уравнению Шредингера с осцилляторным потенциалом.

Если в уравнении (88) выполнить обратное преобразование Бесселя, получим уравнение переноса с интегралом упругих столкновений в приближении Фоккера-Планка (или в диффузионном приближении по угловой переменной) [46, 47]:

$$\left(\frac{\partial}{\partial z} + \frac{\sigma_a}{2}\theta^2\right)\tilde{I}_{scal}(z,\theta) = \\ = D\frac{1}{\theta}\frac{\partial}{\partial\theta}\theta\frac{\partial}{\partial\theta}\tilde{I}_{scal}(z,\theta), \quad (107)$$

где

$$\tilde{I}_{scal}(z,\theta) = \exp(\sigma_a z) I_{scal}(z,\theta),$$
$$D = \frac{1}{4}\sigma \langle \gamma^2 \rangle = \sigma \frac{\pi}{2} \int^{\infty} \gamma^3 d\gamma a_1(\gamma)$$
(108)

0

— коэффициент диффузии фотонов по угловой переменной. В рамках модели (105) между коэффициентом диффузии и транспортным коэффициентом рассеяния существует простая связь:

$$D = \frac{1}{2}\sigma_{tr}.$$
 (109)

Решение уравнения (107) имеет вид [46, 47]

$$\tilde{I}_{scal}(z,\theta) = \frac{1}{\pi A_0^{(I)}(z) A_1^{(I)}(z)} \times \exp\left(-\frac{\theta^2}{A_1^{(I)}(z)}\right), \quad (110)$$

где

$$A_0^{(I)}(z) = \operatorname{ch}\left(z\sqrt{\sigma_{tr}\sigma_a}\right),$$

$$A_1^{(I)}(z) = 2\sqrt{\frac{2D}{\sigma_a}}\operatorname{th}\left(z\sqrt{\sigma_{tr}\sigma_a}\right).$$
(111)

Из (111) следует, что средний квадрат угла многократного рассеяния на глубине *z* равен

$$\langle \theta^2 \rangle_z = A_1^{(I)}(z). \tag{112}$$

Характерный масштаб изменения интенсивности с глубиной есть

$$l_d = \left(\sqrt{\sigma_{tr}\sigma_a}\right)^{-1}.\tag{113}$$

На глубинах $z > l_d$ распределение интенсивности излучения по углам перестает зависеть от z и стремится к своему асимптотическому виду:

$$\tilde{I}_{scal}^{(as)}(z,\theta) = \frac{2}{\pi \langle \theta^2 \rangle_{\infty}} \exp\left(-\frac{z}{l_d} - \frac{\theta^2}{\langle \theta^2 \rangle_{\infty}}\right), \quad (114)$$

где

$$\langle \theta^2 \rangle_{\infty} = 2 \sqrt{\frac{\sigma_{tr}}{\sigma_a}} \tag{115}$$

— средний квадрат угла многократного рассеяния в асимптотическом режиме [42, 46, 47]. При сильном поглощении ($\sigma_a \gg \sigma_{tr}$) эта величина оказывается малой, $\langle \theta^2 \rangle_{\infty} \ll 1$, что оправдывает предположение о резкой анизотропии распределения интенсивности излучения по углам при любых z.

Если разложение (105) подставить в определения (92), (93), то в ведущем приближении получим

$$\Xi^{dyn}(l) = \sigma_{dep} = \frac{1}{8}\sigma\langle\gamma^4\rangle,$$

$$\hat{\Xi}^{geom}(l) = -\frac{\sigma_{tr}}{2}\Delta_l.$$
 (116)

В результате уравнения для циркулярно и линейно поляризованных мод будут отличаться от уравнения для интенсивности только «эффективным» поглощением. Решения этих уравнений можно выразить через выражение (110) для *I*_{scal}:

$$V(z,\theta) = \exp(-\sigma_a z)\tilde{V}(z,\theta) =$$

= $\exp(-(\sigma_a + \sigma_{dep})z)\tilde{I}_{scal}(z,\theta,\sigma_a), \quad (117)$

$$W(z,\theta) = \exp(-\sigma_a z)\tilde{W}(z,\theta) =$$

= $\exp\left(-\left(\sigma_a + \frac{\sigma_{dep}}{2}\right)z\right)\tilde{I}_{scal}(z,\theta,\sigma_a + \sigma_{tr}).$ (118)

Дополнительные к σ_a члены в (117), (118) отвечают за деполяризацию света. Слагаемые, пропорциональные σ_{dep} , обусловлены деполяризацией по динамическому механизму, добавка к коэффициенту поглощения в (118), равная σ_{tr} , описывает деполяризацию по геометрическому механизму.

Формулы (110) и (117), (118) позволяют вычислить степень поляризации циркулярно и линейно поляризованного света в рамках модели (105).

При сильном поглощении деполяризация света проявляется на больших глубинах, намного превышающих «асимптотическую» длину l_d (113). Поэтому при вычислении степени поляризации можно сразу воспользоваться асимптотиками решений (110) и (117), (118) при больших z. Деполяризация света, поляризованного по кругу, описывается законом (см. (75))

$$P_{circ} = \sqrt{\frac{V^2}{I^2} + P_{un}^2} \approx \frac{V}{I_{scal}} \approx \\ \approx \exp\left(-\frac{1}{8}\sigma\langle\gamma^4\rangle z\right). \quad (119)$$

Формула (119) справедлива, пока излучение полностью не деполяризовалось (т. е. пока $V/I_{scal} \gg P_{un}$).

Длина деполяризации, согласно (119), равна

$$l_{circ} = \left(\frac{1}{8}\sigma\langle\gamma^4\rangle\right)^{-1} \tag{120}$$

и намного превосходит l_d ,

$$\frac{l_{circ}}{l_d} \approx 8 \frac{\langle \gamma^2 \rangle}{\langle \gamma^4 \rangle \langle \theta^2 \rangle_{\infty}^2} \gg 1.$$
 (121)

Степень поляризации линейно поляризованного излучения при $z > l_d$ описывается выражением

$$P_{lin} = \frac{\sqrt{Q^2 + U^2}}{I} \approx \frac{W}{I_{scal}} \approx \\ \approx \exp\left(-\left(\frac{1}{16}\sigma\langle\gamma^4\rangle + \frac{1}{4}\sigma_{tr}\langle\theta^2\rangle_{\infty}\right)z\right), \quad (122)$$

из которого следует, что длина деполяризации есть

$$l_{lin} = \left(\frac{1}{4}\sigma_{tr}\langle\theta^2\rangle_{\infty} + \frac{1}{16}\sigma\langle\gamma^4\rangle\right)^{-1}.$$
 (123)

Согласно (122), (123) основной вклад в затухание P_{lin} дает геометрический механизм деполяризации $(\langle \gamma^4 \rangle \ll \langle \gamma^2 \rangle \langle \theta^2 \rangle_{\infty})$. Длина l_{lin} намного превышает l_d , но меньше, чем l_{circ} .

Отметим, что динамический механизм деполяризации линейно поляризованного света может быть преобладающим только на малых глубинах, когда деполяризация еще незначительна $(1 - P_{lin} \ll 1)$. При $z < l_d$ из (107), (118) следует, что

$$P_{lin} = 1 - \frac{1}{16} \sigma z \langle \gamma^4 \rangle - \frac{1}{6} (\sigma_{tr} z)^2 - \frac{1}{6} \sigma_{tr} z \theta^2 + \dots, \quad (124)$$

и динамический вклад оказывается главным при $z < l_{tr} \langle \gamma^4 \rangle / \langle \gamma^2 \rangle$. Этот предельный случай впервые обсуждался в работе [38].

В рамках модели (105)

$$\Xi(l) = -\frac{\sigma l^2}{16} \langle \gamma^4 \rangle, \quad \Xi_w(l) = -\frac{\sigma l^4}{3 \cdot 2^{11}} \langle \gamma^8 \rangle \qquad (125)$$

и для «обертонов» получаются следующие выражения:

$$Q_W(z,\theta) \approx -\frac{\sigma \langle \gamma^4 \rangle \theta^2}{4\sigma_a \langle \theta^2 \rangle_{\infty}^3} \times f_1 \left(z \sqrt{\sigma_a \sigma_{tr}} \right) W(z,\theta), \quad (126)$$

$$Q_{un}(z,\theta) \approx -\frac{\sigma \langle \gamma^4 \rangle \theta^2}{4\sigma_a \langle \theta^2 \rangle_{\infty}^3} \times f_1 \left(z \sqrt{\sigma_a \sigma_{tr}} \right) I_{scal}(z,\theta), \quad (127)$$

$$w(z,\theta) \approx \frac{1}{3 \cdot 2^{11}} \frac{\sigma \theta^4 \langle \gamma^8 \rangle}{\sigma_a \langle \theta^2 \rangle_{\infty}^5} \times f_2 \left(z \sqrt{\sigma_a \sigma_{tr}} \right) W(z,\theta), \quad (128)$$

где

$$f_1(\xi) = \frac{1}{\sinh^2 \xi} \left(\xi + \frac{1}{2} \operatorname{sh} 2\xi \right),$$

$$f_2(\xi) = \frac{1}{\sinh^4 \xi} \left(12\xi + 8 \operatorname{sh} 2\xi + \operatorname{sh} 4\xi \right).$$
(129)

В асимптотическом режиме $f_1(\xi \to \infty) = 1,$ $f_2(\xi \to \infty) = 8.$

Согласно (128), «обертон» w оказывается намного меньше Q_W и Q_{un} . Он имеет дополнительную малость

$$\frac{\theta^2 \langle \gamma^8 \rangle}{\langle \gamma^4 \rangle \langle \theta^2 \rangle_{\infty}^2}$$

и при вычислении степени поляризации рассеянного излучения (см. (83)) им можно пренебречь. Учет «обертонов» Q_W и Q_{un} приводит к слабой азимутальной зависимости степени поляризации P_{lin} линейно поляризованного света. С ростом z ($z > l_{lin}$) излучение деполяризуется, вклад Q_{un} становится больше W, и P_{lin} стремится к значению степени поляризации первоначально неполяризованного излучения P_{un} в асимптотическом режиме [42]:

$$P_{un}^{(as)}(\theta) = -\frac{\sigma \langle \gamma^4 \rangle}{4\sigma_{tr}} \frac{\theta^2}{\langle \theta^2 \rangle_{\infty}}.$$
 (130)

Как показано в работе [42], модель (105) дает качественную картину малоуглового многократного рассеяния, но не может претендовать на правильное количественное описание распространения света в реальных рассеивающих средах. Рассмотрим более реалистическую ситуацию.

Индикатрису рассеяния большими сферическими неоднородностями заданного радиуса можно аппроксимировать формулой вида [11, 48, 49]

$$a_1(\cos\gamma) = \frac{(1-g^2)^2}{4\pi(1+g^2-2g\cos\gamma)^2},$$
 (131)

Рис.6. Коэффициенты разложения индикатрисы рассеяния частиц латекса в воде (ka = 10) по полиномам Лежандра. Сплошная кривая — результаты расчета по формуле (133), $\gamma_0 = 0.18$; кружки — результаты расчета по формулам Ми

которая в области малых ($\gamma \ll 1$) углов выглядит следующим образом:

$$a_1(\gamma) = \frac{\gamma_0^2}{\pi (\gamma_0^2 + \gamma^2)^2},$$
(132)

где $\gamma_0 = 1 - g$ — характерный угол однократного рассеяния, $\gamma_0 \ll 1$. Для слабых борновских рассеивателей $(ka(n-1) \ll 1)$ величина $\gamma_0 \sim (ka)^{-1}$, в другом предельном случае $\gamma_0 = 2(n-1)$ [30]. Соответствующая (132) функция $a_1(l)$ определяется выражением

$$a_1(l) = l\gamma_0 K_1(l\gamma_0), (133)$$

где $K_1(x)$ — функция Макдональда первого порядка. Сопоставление результатов численного расчета $a_1(l)$ по формулам Ми со значениями, даваемыми формулой (133), показано на рис. 6.

В области относительно малых $l \ (l \ll 1/\gamma_0)$ для $a_1(l)$ справедливо разложение

$$a_1(l) = 1 - \frac{1}{4}\gamma_0^2 l^2 \left(\ln \frac{1}{\gamma_0^2 l^2} - 2C + 1 \right), \qquad (134)$$

где C = 0.577... — постоянная Эйлера.

Поскольку формула (134) отличается от (105) слабо зависящим от l логарифмическим множителем, результаты (110), (117), (118) можно рассматривать как справедливые с логарифмической точностью, а для более точного вычисления значения интенсивности I_{scal} и поляризационных мод V и Wв асимптотическом случае можно воспользоваться теорией возмущений [48, 50]. Выражение (134) перепишем в виде

$$a_{1}(l) = 1 - \frac{1}{4}l^{2}\langle\gamma^{2}\rangle + \frac{1}{4}l^{2}\gamma_{0}^{2}\left(\ln(4l^{2}) + 2C - 1\right), \quad (135)$$

где $\langle \gamma^2 \rangle = \gamma_0^2 \ln(4/\gamma_0^2)$ и, учитывая неравенство $\ln(1/\gamma_0) \gg \ln l$, будем рассматривать слагаемое

$$\frac{1}{4}l^2\gamma_0^2(\ln(4l^2)+2C-1)$$

как возмущение. Тогда для интенсивности в области малых углов θ ($\theta < \sqrt{\langle \theta^2 \rangle_{\infty}}$) получаем

$$\tilde{I}_{scal}(z,\theta) \approx \frac{2}{\pi \langle \theta^2 \rangle_{\infty}} \times \\ \times \exp\left(-\frac{z}{l_d}\right) \left(1 - \frac{\theta^2}{\langle \theta^2 \rangle_{\infty}} + \dots\right), \quad (136)$$

где

$$l_d = \left(\frac{\sigma_a}{2} \langle \theta^2 \rangle_\infty\right)^{-1}, \qquad (137)$$

$$\langle \theta^2 \rangle_{\infty} = 2 \sqrt{\frac{\sigma_{tr}}{\sigma_a} L_{\infty}}, \quad L_{\infty} = \frac{\ln \frac{2 \sqrt{\sigma_{tr}/\sigma_a}}{\gamma_0^2}}{\ln(4/\gamma_0^2)}.$$
 (138)

При относительно больших углах θ ($\theta > \sqrt{\langle \theta^2 \rangle_{\infty}}$) интенсивность многократно рассеянного излучения убывает по степенному закону [42]:

$$\tilde{I}_{scal}(z,\theta) \approx \frac{4\sigma\gamma_0^2 \exp\left(-z/l_d\right)}{\pi\sigma_a \theta^6}.$$
(139)

Степенная зависимость (139) от θ возникает из-за логарифмической особенности в разложении $a_1(l)$ при малых l, которая отвечает закону $1/\theta^4$ убывания сечения однократного рассеяния (см. (132)). Как показано в работах [42, 51], поведение функции $\tilde{I}_{scal}(z, \theta)$ при относительно больших углах всегда напрямую связано с угловой зависимостью сечения однократного рассеяния: разность показателей степеней убывания $\tilde{I}_{scal}(z, \theta)$ и $a_1(\gamma)$ равна двум.

Значения $\tilde{V}(z,\theta)$ и $\tilde{W}(z,\theta)$ также могут быть вычислены по теории возмущений. По сравнению с вычислениями, проделанными выше для $\tilde{I}_{scal}(z,\theta)$, в этом случае следует учесть как дополнительное возмущение члены, пропорциональные $\Xi^{dyn}(l)$ и $\hat{\Xi}^{geom}(l)$, в уравнениях (89), (90).

Угловые зависимости $V(z, \theta)$ и $W(z, \theta)$ мало отличаются в рассматриваемой области углов ($\theta \ll 1$) от

зависимости $I_{scal}(z, \theta)$ (см. (119) и (122)) — относительная величина отличия порядка θ^4 . Основное различие между поляризационными модами $V(z, \theta)$ и $W(z, \theta)$ и интенсивностью $I_{scal}(z, \theta)$ обусловлено различной скоростью их затухания с ростом глубины z. Поэтому выражения для поляризационных мод могут быть записаны в виде

$$V(z,\theta) = \exp(-\delta\epsilon_V)I_{scal}(z,\theta),$$

$$W(z,\theta) = \exp(-\delta\epsilon_W)I_{scal}(z,\theta),$$
(140)

где $\delta \epsilon_V$ и $\delta \epsilon_W$ в первом приближении теории возмущений по малому параметру $\sigma_{dep}/\sigma_a \ll 1$ равны

$$\delta \epsilon_V = l_{circ}^{-1} = \frac{1}{2} \sigma_{dep} \langle \theta^2 \rangle_{\infty}, \qquad (141)$$

$$\delta \epsilon_W = l_{lin}^{-1} = \frac{1}{4} \sigma_{dep} \langle \theta^2 \rangle_{\infty} + \frac{1}{4} \sigma_{tr} \langle \theta^2 \rangle_{\infty} L_{\infty}.$$
(142)

Динамический и геометрический механизмы деполяризации дают аддитивные вклады в величину $\delta\epsilon_W$, вклад геометрического механизма оказывается в $\sigma_{tr}L_{\infty}/\sigma_{dep}$ раз больше. С ростом поглощения значение $\langle \theta^2 \rangle_{\infty}$ уменьшается и, согласно (141), (142), сами величины $\delta\epsilon_V$ и $\delta\epsilon_W$ и различия между ними также становятся меньше. Эта закономерность проиллюстрирована на рис. 7, где приведены результаты расчета зависимости $\delta\epsilon_V$, $\delta\epsilon_W$ от поглощения в среде. Для вычисления $\delta\epsilon_V$, $\delta\epsilon_W$ использовались результаты теории возмущений (141), (142), а также численное решение уравнений (62) и (63) при $l_{max} = 9$.

В рассматриваемом случае значения функций $\Xi(l)$ и $\Xi_w(l)$ в уравнениях (97)–(99) существенно отличаются от значений (125):

$$\Xi(l) = -\frac{\sigma\gamma_0^2}{2}, \quad \Xi_w(l) = \frac{\sigma\gamma_0^2}{2l^2}, \quad (143)$$

поэтому выражения для обертонов Q_W , Q_{un} и w также будут сильно отличаться от (126)–(128). Выражения для обертонов Q_W , Q_{un} и w наиболее просто выглядят при малых углах, близких к направлению вперед ($\theta < \sqrt{\langle \theta^2 \rangle_{\infty}}$),

$$Q_W(z,\theta) \approx -\frac{\sigma \gamma_0^2 \theta^2}{\sigma_a \langle \theta^2 \rangle_\infty^2} \frac{\ln 2}{2} W(z,\theta), \qquad (144)$$

$$Q_{un}(z,\theta) \approx -\frac{\sigma \gamma_0^2 \theta^2}{\sigma_a \langle \theta^2 \rangle_\infty^2} \frac{\ln 2}{2} I_{scal}(z,\theta), \qquad (145)$$

$$w(z,\theta) \approx \frac{\sigma \gamma_0^2 \theta^4}{144 \sigma_a \langle \theta^2 \rangle_\infty^2} W(z,\theta).$$
(146)

Рис.7. Зависимости коэффициента затухания степени поляризации линейно (кривые 1) и циркулярно (кривые 2) поляризованного света от коэффициента поглощения в среде. Сплошные кривые — численное решение уравнений (58) и (59), $l_{max} = 9$; штриховые — расчет по теории возмущений (141), (142). Водная суспензия частиц латекса, ka = 10

По сравнению с (126)–(128) значения обертонов становятся больше: они содержат меньшую степень малой величины отношения угла однократного рассеяния к характерному углу многократного рассеяния в асимптотическом режиме. Как следует из формул (144)–(146), обертон w по сравнению с Q_W и Q_{un} имеет дополнительную малость θ^2 и в рассматриваемом случае многократного рассеяния на малые углы им можно пренебречь.

7. ЗАКЛЮЧЕНИЕ

Как показано выше, особенности поляризационных явлений при многократном рассеянии света в неупорядоченных средах с крупными неоднородностями обусловлены доминирующей ролью «геометрического» механизма деполяризации. «Динамический» механизм оказывается подавленным из-за того, что рассеяние на отдельной неоднородности происходит преимущественно вперед, где амплитуды рассеяния A_{\parallel} и A_{\perp} мало отличаются друг от друга. Именно на этом обстоятельстве основан развитый выше метод расцепления векторного уравнения переноса. С ростом размера рассеивателей приближение основных мод становится более точным, поскольку, как следует из наших расчетов (рис. 5), вклад дополнительных мод — «обертонов» — уменьшается.

В средах с крупномасштабными неоднородностя-

Рис.8. Зависимости отношения коэффициентов затухания поляризационных мод ϵ_V/ϵ_W от радиуса рассеивателей. Сплошная кривая — водная суспензия частиц латекса; штриховая — частицы кварца в воде; пунктирная — капли воды в воздухе; символами показаны данные [4] эксперимента (\circ) и статистического моделирования (+)

ми динамический механизм подавляется (рис. 3) и различия в деполяризации линенйно и циркулярно поляризованного света проявляются наиболее заметно. Этот эффект проиллюстрирован на рис. 8, на котором показана зависимость отношения коэффициентов затухания поляризационных мод V и W от радиуса рассеивателей. Для сравнения на рис. 8 приведены результаты эксперимента и численного моделирования [4].

Полученные выше результаты также хорошо согласуются с данными экспериментов [7, 17] и численных расчетов [13] абсолютных значений степени поляризации в асимптотическом режиме (рис. 9, 10). В работах [7, 13, 17] определялось значение степени поляризации линейно и циркулярно поляризованных пучков для направления вперед ($\mu = 1$) при прохождении через слой заданной толщины L. В качестве рассеивающей среды использовалась водная суспензия частиц латекса. Наши расчеты выполнены в приближении основных мод по формулам (75), (76). Для определения V и W использовались соотношения (67) и (73). Поскольку в работах [7, 13, 17] поглощение в среде практически отсутствовало, для интенсивности Iscal асимптотический режим не наступал (в отличие от V и W), и для расчета I_{scal} мы использовали результат диффузионного приближения для непоглощающей среды [31]:

$$I_{scal} = \frac{l_{tr} + z}{\pi (L + 2z_0)},$$

Рис. 9. Зависимости степени поляризации от толщины рассеивающего слоя. Водная суспензия частиц латекса (диаметр частиц 1.08 мкм, длина волны излучения в вакууме $\lambda = 632.8$ нм). Сплошная (P_{lin}) и штриховая (P_{circ}) кривые — результаты настоящей работы, символами показаны данные экспериментов [7] ($\Delta - P_{lin}$, $\circ - P_{circ}$) и [17] ($\blacktriangle - P_{lin}$, $\bullet - P_{circ}$)

Рис.10. Зависимости степени поляризации от толщины рассеивающего слоя. Водная суспензия частиц латекса (диаметр частиц 0.22 (1), 0.48 (2), 1.05 (3) мкм, длина волны излучения в вакууме $\lambda = 705$ нм). Сплошные (P_{lin}) и штриховые (P_{circ}) кривые — результаты настоящей работы, символы Δ (P_{lin}) и \circ (P_{circ}) — данные численного интегрирования векторного уравнения переноса методом дискретных ординат [13]

где $z_0 = 0.71 l_{tr}$ — экстраполированная длина [27, 31]. Как следует из рис. 9, 10, при $ka \gg 1$ наблюдается заметное различие в скорости деполяризации линейно и циркулярно поялризованного света. При $ka \sim 1$ нельзя говорить о преобладающей роли одного из механизмов и скорости деполяризации практически совпадают (см. также рис. 8).

Отметим, что для поглощающих сред различия в деполяризации линейно и циркулярно поляризованного света могут быть еще более заметными. Согласно (141), (142), в поглощающей среде отношение длин деполяризации $l_{circ}/l_{lin} \sim \sigma_{tr} L_{\infty}/\sigma_{dep}$ превышает соответствующее отношение в отсутствие поглощения, $l_{circ}/l_{lin} \sim \sqrt{\sigma_{tr}/\sigma_{dep}}$. Физически это связано с тем, что в поглощающей среде угловое распределение интенсивности излучения становится более вытянутым в направлении вперед и, соответственно, дополнительно подавляется вклад динамического механизма деполяризации.

Полученные в настоящей работе результаты подтверждают представления о двух разных механизмах деполяризации линейно и циркулярно поляризованного света, предложенных в работе [24] для объяснения наблюдаемых на опыте закономерностей.

Мы благодарны А. Боровому, А. Кохановскому, В. Маринюку и В. С. Ремизовичу за интерес к работе и полезные обсуждения. Работа выполнена при частичной финансовой поддержке Министерства образования РФ (грант № Е02-3.2-203), программы Министерства образования и науки РФ «Развитие научного потенциала высшей школы» (грант РНП.2.1.1.1972), гранта Президента РФ для поддержки ведущих научных школ (НШ-320.2006.2).

приложение а

Обобщенные сферические функции $P_{mn}^l(z)$ выражаются через полиномы Якоби $P_s^{(\alpha,\beta)}(z)$ [45] следующим образом:

$$P_{mn}^{l}(\cos\gamma) = \frac{(-i)^{\alpha}}{2^{(\alpha+\beta)/2}} \sqrt{\frac{\left(l - \frac{\alpha+\beta}{2}\right)! \left(l + \frac{\alpha+\beta}{2}\right)!}{\left(l + \frac{\alpha-\beta}{2}\right)! \left(l - \frac{\alpha-\beta}{2}\right)!}} \times (1 - \cos\gamma)^{\alpha/2} (1 + \cos\gamma)^{\beta/2} P_s^{(\alpha,\beta)}(\cos\gamma), \quad (147)$$

где

$$P_s^{(\alpha,\beta)}(z) = \frac{(-1)^n}{2^n n!} (1-z)^{-\alpha} (1+z)^{-\beta} \times \frac{d^n}{dz^n} \left[(1-z)^{n+\alpha} (1+z)^{n+\beta} \right].$$
(148)

Входящие в выражения (147) параметр
ы $s,\,\alpha$ и β равны

$$s = l - \frac{1}{2}(|m+n| + |m-n|), \quad \alpha = |m-n|, \quad \beta = |m+n|.$$

Явные выражения для нескольких первых обобщенных функций P_{mn}^l выглядят следующим образом

$$P_{22}^{2}(\mu) = \frac{1}{4}(1+\mu)^{2},$$

$$P_{22}^{3}(\mu) = \frac{1}{4}(1+\mu)^{2}(3\mu-2),$$

$$P_{22}^{4}(\mu) = \frac{1}{4}(1+\mu)^{2}(1-7\mu+7\mu^{2}),$$

$$P_{20}^{2}(\mu) = -\frac{\sqrt{6}}{4}(1-\mu^{2}),$$

$$P_{2-2}^{2}(\mu) = \frac{1}{4}(1-\mu)^{2}.$$
(149)

Разложение для матрицы рассеяния $\hat{d}(\mathbf{n}, \mathbf{n}')$ (22) по обобщенным сферическим функциям $(m, n = 0, \pm 2)$ [1] имеет вид

$$d_{mn}(\mathbf{n}, \mathbf{n}') = \sum_{l=0}^{\infty} \sum_{s=-l}^{s=l} (-1)^s \frac{2l+1}{4\pi} d_{mn}^l \times P_{ms}^l(\mu) P_{sn}^l(\mu') \exp(is(\varphi - \varphi')). \quad (150)$$

приложение в

Решение скалярного уравнения переноса (26) может быть записано в следующем виде [52]:

$$I_{scal}(z,\mu) = \sum_{n=0}^{\infty} C_I^{(n)} \Phi_I^{(n)}(\mu) \exp\left(-\epsilon_I^{(n)} z\right), \quad (151)$$

где $\epsilon_I^{(n)}$ и $\Phi_I^{(n)}(\mu)$ — *n*-е собственное значение и соответствующая ему собственная функция. В асимптотическом режиме вклад в сумму (151) дает слагаемое с n = 0.

С учетом граничного условия

$$I_{scal}(z=0,\mu) = \begin{pmatrix} \frac{1}{2\pi}\delta(1-\mu), & \mu > 0, \\ R(\mu,\mu_0=1), & \mu < 0, \end{pmatrix}$$
(152)

T	а	бл	٦И	ц	а	4	•
---	---	----	----	---	---	---	---

σ/σ_{tot}	0.6	0.8	0.9	0.95	0.99
σ_a/σ_{tr}	3.2	1.6	0.9	0.4	0.08
$C_{I}^{0)}$ (154)	2.50	2.64	2.82	3.02	3.46
$C_{I}^{(0)}$ [27]	2.52	2.66	2.86	3.12	3.82

где $R(\mu, 1)$ есть интенсивность отраженного от среды излучения, и ортогональности собственных функций [52] получаем следующее равенство:

$$\begin{split} \Phi_{I}^{(0)}(\mu = 1) &+ 2\pi \int_{-1}^{0} \mu d\mu (R(\mu, 1) \Phi_{I}^{(0)}(\mu) = \\ &= 2\pi C_{I}^{(0)} \int_{0}^{1} \mu d\mu \left(\Phi_{0}^{(0)}(\mu) \right)^{2} + \\ &+ 2\pi C_{I}^{(0)} \int_{-1}^{0} \mu d\mu \left(\Phi_{0}^{(0)}(\mu) \right)^{2}. \end{split}$$
(153)

Предполагая, что в поглощающей среде «отражательные» вклады в правой и левой частях (153) компенсируют друг друга, находим

$$C_{I}^{(0)} = \frac{\Phi_{0}^{(0)}(\mu = 1)}{2\pi \int_{0}^{1} \mu d\mu \left(\Phi_{0}^{(0)}(\mu)\right)^{2}}.$$
 (154)

Сравнение с результатами численных расчетов [27] показывает, что максимальная погрешность, которая следует из равенства (154), не превышает 20%. Для $\sigma_a > 0.1\sigma_{tr}$ ошибка составляет менее 10% (см. табл. 4). Результаты [27], представленные в табл. 4, получены путем численного интегрирования уравнения переноса для случая индикатрисы Хеньи–Гринстейна со средним косинусом угла рассения, равным (соз γ) = 0.875.

ЛИТЕРАТУРА

- M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles, Cambridge Univ. Press, Cambridge (2006).
- F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
- J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, Appl. Opt. 31, 6535 (1992).

- 4. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
- S. G. Demos and R. R. Alfano, Appl. Opt. 36, 150 (1997).
- 6. В. В. Тучин, УФН 167, 517 (1997).
- V. Sankaran, M. J. Everett, D. J. Maitland et al., Opt. Lett. 24, 1044 (1999).
- E. P. Zege and L. I. Chaikovskaya, J. Quant. Spectrosc. Radiat. Transfer 66, 413 (2000).
- W. Cai, M. Lax, and R. R. Alfano, Phys. Rev. E 63, 016606 (2000).
- 10. A. A. Kokhanovsky, J. Opt. Soc. Amer. A 18, 883 (2001).
- M. Moscoso, J. B. Keller, and G. Papanicolaou, J. Opt. Soc. Amer. A 18, 948 (2001).
- A. D. Kim and M. Moscoso, Phys. Rev. E 64, 026612 (2001); Opt. Lett. 27, 1589 (2002).
- A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, Appl. Opt. 40, 5495 (2001).
- 14. N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, Opt. Comm. 222, 93 (2003).
- X. Ni, Q. Xing, W. Cai, and R. R. Alfano, Opt. Lett. 28, 343 (2003).
- 16. D. A. Zimnyakov, J.-T. Oh, Y. P. Sinichkin, V. A. Trifonov, and E. V. Gurianov, J. Opt. Soc. Amer. A 21, 59 (2004).
- 17. N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, Phys. Rev. E 70, 066607 (2004).
- S. Mujumdar and H. Ramachandran, Opt. Comm. 241, 1 (2004).
- 19. G. Yao, Opt. Comm. 241, 255 (2004).
- 20. X. Ni and R. R. Alfano, Opt. Lett. 29, 2773 (2004).
- 21. M. Xu and R. R. Alfano, Phys. Rev. 72, 065601 (2005).
- 22. M. Xu and R. R. Alfano, Phys. Rev. Lett. 95, 213901 (2005).
- 23. S. A. Kartazayeva, X. Ni, and R. R. Alfano, Opt. Lett.
 30, 1168 (2005).
- 24. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Письма в ЖЭТФ 68, 21 (1998).
- **25**. С. М. Рытов, ДАН СССР **18**, 263 (1938).
- **26**. С. Чандрасекар, *Перенос лучистой энергии*, Изд-во иностр. лит., Москва (1953).
- 27. H. C. van de Hulst, Multiple Light Scattering, Acad. Press, New York (1980).
- 28. H. Domke, Astrophys. Space Sci. 10, 379 (1974).

- 29. I. Kuscer and M. Ribaric, Optica Acta 6, 42 (1959).
- 30. Р. Ньютон, Теория рассеяния волн и частиц, Мир, Москва (1969).
- А. Исимару, Распространение и рассеяние волн в случайно-неоднородных средах, Мир, Москва (1981).
- A. A. Kokhanovsky, Polarization Optics of Random Media, Praxis Publ. (2003).
- 33. Л. Д. Ландау, Е. М. Лифшиц, Теория поля, Наука, Москва (1988).
- D. Deirmendjian, Electromagnetic Scattering of Spherical Polydispersions, Elsevier, New York (1969).
- E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).
- 36. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, IRS 2000: Current Problems in Atmospheric Radiation, ed. by W. L. Smith and Yu. M. Timofeev, A. Deepak Publ. Hampton, Virginia (2001), p.287.
- 37. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Опт. и спектр. 94, 300 (2003).
- 38. Ю. А. Кравцов, Изв. вузов. Радиофизика 13, 281 (1970).
- 39. Ю. А. Кравцов, Ю. И. Орлов, Геометрическая оптика неоднородных сред, Наука, Москва (1980).
- 40. В. И. Татарский, Изв. вузов. Радиофизика 10, 1762 (1967).
- Г. Корн, Т. Корн, Справочник по математике, Наука, Москва (1968), с. 475.
- **42**. Е. Е. Городничев, Д. Б. Рогозкин, ЖЭТФ **107**, 209 (1995).
- **43**. В. В. Соболев, *Рассеяние света в атмосферах планет*, Наука, Москва (1972).
- 44. R. D. M. Garcia and C. E. Siewert, J. Quant. Spectrosc. Radiat. Transfer 36, 401 (1986).
- 45. И. М. Гельфанд, Р. А. Минлос, З. Я. Шапиро, Представления группы вращений и группы Лоренца, Физматгиз, Москва (1958).
- 46. Л. С. Долин, ДАН СССР 260, 1344 (1981).
- 47. В. С. Ремизович, Д. Б. Рогозкин, М. И. Рязанов, Изв. вузов. Радиофизика 24, 891 (1982).
- 48. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, ЖЭТФ 115, 769 (1999).
- 49. E. Amic, J. M. Luck, and Th. M. Nieuwenhuizen, J. Phys. A: Math. Gen. 29, 4915 (1996).
- 50. D. I. Bolgov, V. S. Remizovich, and D. B. Rogozkin, Laser Phys. 8, 462 (1998).
- 51. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Опт. и спектр. 82, 1188 (1997).
- 52. К. Кейз, П. Цвайфель, Линейная теория переноса, Мир, Москва (1972).