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ELECTRON SPECTRUM IN HIGH-TEMPERATURECUPRATE SUPERCONDUCTORSN. M. Plakida *a;b, V. S. Oudovenko a;aJoint Institute for Nulear Researh, Dubna, RussiabMax-Plank-Institut für Physik Komplexer Systeme, Dresden, GermanyRutgers University, New Jersey, USAReeived 7 July 2006A mirosopi theory for the eletron spetrum of the CuO2 plane within an e�etive p�d Hubbard model isproposed. The Dyson equation for the single-eletron Green's funtion in terms of the Hubbard operators isderived and solved self-onsistently for the self-energy evaluated in the nonrossing approximation. Eletronsattering on spin �utuations indued by the kinemati interation is desribed by a dynamial spin susepti-bility with a ontinuous spetrum. The doping and temperature dependene of eletron dispersions, spetralfuntions, the Fermi surfae, and the oupling onstant � are studied in the hole-doped ase. At low doping,an ar-type Fermi surfae and a pseudogap in the spetral funtion lose to the Brillouin zone boundary areobserved.PACS: 74.20.Mn, 71.27.+a, 71.10.Fd, 74.72.-h1. INTRODUCTIONReent high-resolution angle-resolved photoemis-sion spetrosopy (ARPES) studies revealed a ompli-ated harater of the eletroni struture and quasi-partile (QP) spetra in opper oxide superondutors.In partiular, a pseudogap in the eletron spetrum andan ar-type Fermi surfae (FS) at low hole onentra-tions were revealed, a substantial wave-vetor and en-ergy dependent renormalization of the Fermi veloityof QP (�kinks" in the dispersion) was observed (see,e.g., [1�3℄ and the referenes therein). As was origi-nally pointed out by Anderson [4℄, strong eletron or-relations in uprates play an essential role in explainingtheir normal and superonduting properties.A onventional approah to desribing strong ele-tron orrelations is based on the Hubbard model [5℄.The model has some advantages in omparison withthe t�J model, whih an be derived from the Hub-bard model in the limit of strong orrelations. Namely,the Hubbard model allows studying a moderate or-relation limit observed experimentally in uprates andmore onsistently aounts for the two-subband har-*E-mail: plakida�theor.jinr.ru

ater of the eletron struture, in partiular, a weighttransfer between subbands with doping.Various methods were proposed to study the ele-tron struture within the Hubbard model. But an un-biased method based on numerial simulations for �-nite lusters (see, e.g., [6℄ for a review) does not al-low studying subtle features of QP spetra due to poorenergy and wave-vetor resolutions in small-size lus-ters. In analyti alulations of spetra, mean-�eld-type approximations are often used (see [7, 8℄ for areview), whih annot reprodue the above-mentionede�ets aused by the self-energy ontributions. In thedynamial mean-�eld theory (DMFT) (see [9, 10℄ fora review), the self-energy is treated in the single-siteapproximation, whih is also unable to desribe wave-vetor-dependent phenomena. To overome this �awof DMFT, various types of the dynamial luster the-ory were developed (see [11, 12℄ for a review). In thesemethods, only a restrited wave-vetor and energy res-olutions an be ahieved, depending on the size of thelusters, while the physial interpretation of the ori-gin of an anomalous eletroni struture in numerialmethods is not straightforward.To eluidate the pseudogap formation mehanism,259 5*



N. M. Plakida, V. S. Oudovenko ÆÝÒÔ, òîì 131, âûï. 2, 2007the sattering of harge arriers by short-range (stati)antiferromagneti (AF) spin �utuations was onsid-ered in several analyti semi-phenomenologial stud-ies (see [2℄ for a review). More reently, with an ad-ditional momentum-dependent omponent of the self-energy originating from short-range AF (or harge) or-relations inluded into the DMFT sheme, the spin-�utuation senario of the pseudogap formation [13℄and the ar-type FS [14℄ were supported (see [15℄ for areview). At the same time, it is important to study thee�ets of the harge arrier sattering by the dynamialspin �utuations, whih are believed to be responsiblefor the kink phenomenon [3℄. This an be done byonsidering the Dyson equation for the single-partileGreen's funtion (GF) within the Hubbard model inthe limit of strong orrelations. For instane, alu-lation of the eletron spetrum within the �rst-orderperturbation theory for the self-energy has reproduedthe quantum Monte Carlo results quite aurately [16℄,while appliation of the inremental luster expansionfor the self-energy has enabled observing a kink stru-ture in the QP spetrum [17℄.The aim of the present paper is to develop a mi-rosopi theory for the eletron spetrum in stronglyorrelated systems, suh as uprates, whih onsis-tently takes the e�ets of eletron sattering by dy-namial spin �utuations into aount. For this, weonsider an e�etive Hubbard model redued form thep�d model for the CuO2 plane in uprates. Applyingthe Mori-type projetion tehnique for the thermody-nami GF [18℄ in terms of the Hubbard operators, wederive an exat Dyson equation, as was elaborated inour previous publiations [19�21℄. The Dyson equa-tion with the self-energy evaluated in the nonrossingapproximation (NCA) beyond the perturbation theoryapproah is then solved self-onsistently.This allows us to alulate the dispersion and spe-tral funtions of single-partile exitations, the FS, andthe eletron oupation numbers. In partiular, westudy the hole-doped ase at various hole onentra-tions. At low doping, the FS reveals an ar-type shapewith a pseudogap in the (�; 0) region of the Brillouinzone (BZ). A strong renormalization e�ets of the dis-persion lose to the Fermi energy (�kinks") are observeddue to eletron sattering by dynamial AF spin �u-tuations indued by the kinematial interation generifor the Hubbard operators. Eletron oupation num-bers show only a small drop at the Fermi energy. Forhigh temperature or large hole onentrations, AF or-relations beome weak and a rossover to a Fermi-liquid-like behavior is observed.In the next setion, we brie�y disuss the model

and the derivation of the Dyson equation, and the self-energy alulation in the NCA. The results of numer-ial solution of the self-onsistent system of equationsfor various hole onentrations and a disussion are pre-sented in Se. 3. Conlusions are given in Se. 4.2. GENERAL FORMULATION2.1. E�etive Hubbard model and DysonequationFollowing the ell-luster perturbation theory (see,e.g., [19, 22, 23℄) based on a onsideration of the orig-inal two-band p�d model for the CuO2 layer [24℄, weonsider an e�etive two-dimensional Hubbard modelfor holes with the HamiltonianH = "1Xi;� X��i +"2Xi X22i + Xi6=j;��t11ij X�0i X0�j ++ t22ijX2�i X�2j + 2�t12ij (X2��i X0�j +H::)	; (1)where Xnmi = jinihimj are the Hubbard operators(HOs) for the four states n;m = j0i; j�i; j2i = j "#i,� = �1=2 = ("; #), �� = ��. Here, "1 = "d � � and"2 = 2"1 + Ueff , where � is the hemial potential.The e�etive Coulomb energy in Hubbard model (1) isthe harge-transfer energy Ueff = � = �p � �d. Therespetive supersripts 2 and 1 refer to the two-holep�d singlet subband and the one-hole subband. A-ording to the ell-luster perturbation theory, we antake similar values for the hopping parameters in (1):t22ij = t11ij = t12ij = tij . We determine the bare eletrondispersion de�ned by the hopping parameter tij by theonventional equationt(k) = 4t(k) + 4t00(k) + 4t0000(k); (2)where t, t0, and t00 are the respetive hopping pa-rameters for the nearest-neighbor (n.n.) (�ax;�ay),next-nearest-neighbor (n.n.n.) �(ax � ay), and�2ax;�2ay sites and (k) = (os kx + os ky)=2,0(k) = os kx os ky, and 00(k) = (os 2kx+os 2ky)=2(the lattie onstants ax = ay are equal to unity). Toobtain a physially reasonable value for the harge-transfer gap for the onventional value t � 0:4 eV, wetake � = Ueff = 8t � 3:2 eV. The bare bandwidthis W = 8t � Ueff , whih shows that the e�etivep�d Hubbard model (1) orresponds to the strong-orrelation limit. In what follows, the energy ismeasured in units of t with "d = 0 in "1. The hemial260



ÆÝÒÔ, òîì 131, âûï. 2, 2007 Eletron spetrum in high-temperature : : :potential � depends on the average hole oupationnumber n = 1 + Æ = *X� X��i + 2X22i + : (3)The HOs entering (1) obey the ompleteness relationX00i +X""i +X##i +X22i = 1, whih rigorously preservesthe onstraint of no double oupany of any quantumstate jini at eah lattie site i. Due to the projetedharater of the HOs, they have ompliated ommuta-tion relations hX��i ; XÆj i� = Æij �Æ�X�Æi � ÆÆ�X�i �,whih results in the so-alled kinematial interation.The upper sign here refers to the Fermi-like HOs suhasX0�i and the lower sign is for the Bose-like HOs, suhas the spin or number operators.To disuss the eletroni struture within the modelin (1), we introdue a thermodynami matrix Green'sfuntion [18℄Ĝij�(t� t0) = hhX̂i�(t) jX̂yj�(t0)ii == �i�(t� t0)hfX̂i�(t); X̂yj�(t0)gi; (4)in terms of the two-omponent operatorsX̂i� =  X�2iX0��i ! and X̂yi� = (X2�i X ��0i ). To al-ulate GF (4), we apply the Mori-type projetiontehnique by writing equations of motion for theHeisenberg operators asẐi� = [X̂i� ; H ℄ =Xj "̂ij�X̂j� + Ẑ(ir)i� ; (5)where the irreduible Ẑ-operator is determined by theorthogonality onditionhfẐ(ir)i� ; X̂yj�gi = hẐ(ir)i� X̂yj� + X̂yj� Ẑ(ir)i� i = 0 : (6)This de�nes the frequeny matrix"̂ij = hf[X̂i� ; H ℄; X̂yj�giQ̂�1; (7)where Q̂ = hfX̂i� ; X̂yi�gi =  Q2 00 Q1 !. Theweight fators Q2 = hX22i + X��i i = n=2 andQ1 = hX00i +X ����i i = 1 �Q2 in a paramagneti statedepend only on the hole oupation number (3). Fre-queny matrix (7) determines the QP spetra withinthe generalized mean-�eld approximation (MFA). Theorresponding zero-order GF in the MFA is given byĜ 0� (k; !) = �!�̂0 � "̂(k)��1Q̂; (8)

where �̂0 is the unity matrix and we introdue the fre-queny matrix (7) in the k-representation "̂(k). By dif-ferentiating the many-partile GF hhẐirri� (t) j X̂yj�(t0)iiwith respet to the seond time t0 and applying thesame projetion proedure as in (5), we derive theDyson equation as [19℄Ĝ�(k; !)�1 = Ĝ 0� (k; !)�1 � �̂�(k; !): (9)The self-energy matrix �̂�(k; !) is here determined bya proper part (whih has no single zero-order GF) ofthe many-partile GF as�̂�(k; !) = Q̂�1hhẐ(ir)� j Ẑ(ir)y� ii(prop)k;! Q̂�1: (10)Equations (8)�(10) provide an exat representation forGF (4). However, to alulate it, we have to use anapproximation for self-energy matrix (10), whih de-sribes the inelasti sattering of eletrons on spin andharge �utuations.It is important to point out that in the Hubbardmodel in (1), the eletron interation with spin- orharge �utuations is indued by the kinematial inter-ation with the oupling onstants equal to the originalhopping parameters, as has been already pointed outby Hubbard [5℄. For instane, the equation of motionfor the operator X�2i is given byidX�2i =dt = [X�2i ; H ℄ = ("1 +�)X�2i ++ Xl6=i;�0 �t22il B22i��0X�02l � 2�t21il B21i��0X0��0l ���Xl6=i X02i �t11il X�0l + 2�t21il X2��l � ; (11)where B��i��0 are Bose-like operators desribing thenumber (harge) and spin �utuations:B22i��0 = (X22i +X��i )Æ�0� +X���i Æ�0�� == �Ni2 + Szi � Æ�0� + S�i Æ�0�� ;B21i��0 = �Ni2 + Szi � Æ�0� � S�i Æ�0�� : (12)Therefore, in ontrast to spin-fermion models, wherethe eletron interation with spin or harge �utuationsis spei�ed by �tting oupling onstants [3℄, this inter-ation is �xed by the hopping parameters in Hubbardmodel (1).2.2. Mean-Field approximationThe single-partile exitations in the MFA are de-�ned by frequeny matrix (7). Using equations of mo-261



N. M. Plakida, V. S. Oudovenko ÆÝÒÔ, òîì 131, âûï. 2, 2007tion like (11), we obtain the energy spetrum for holesin two subbands as"1;2(k) = 12[!2(k) + !1(k)℄� 12�(k);�(k) = f[!2(k) � !1(k)℄2 + 4W (k)2g1=2; (13)where the original exitation spetra in the Hubbardsubbands and the hybridization parameter are!1(k) = 4t�1(k) + 4t0�10(k) � �;!2(k) = 4t�2(k) + 4t0�20(k) + �� �;W (k) = 4t�12(k) + 4t0�120(k); (14)where we omitted the t00 ontribution in (2) and intro-dued the renormalization parameters�1(2) = Q1(2) "1+ C1Q21(2)# ; �1(2) = Q1(2) "1+ C2Q21(2)# ;�12 =pQ1Q2 �1� C1Q1Q2 � ;and �12 =pQ1Q2 �1� C2Q1Q2 � :As in the Hubbard I approximation, we neglet thenumber �utuations hÆNiÆNji(i6=j) but take the ontri-butions from the spin orrelation funtions for the n.n.and the n.n.n. sites into aount:C1 = hSiSi�ax=ay i; C2 = hSiSi�ax�ay i: (15)The renormalization of QP spetra (13) and (14)aused by strong spin orrelations in the underdopedregion results in a suppression of the n.n. hopping,whih hanges the shape of the spetra and redues thebandwidth. For instane, if we onsider the limit aseof the long-range AF Néel state with the n.n. orrela-tion funtion C1 � �1=4 at half-�lling, Q1 = Q2 = 1=2,we obtain �1(2) = 0. This results in the omplete sup-pression of the n.n. hopping and the transformationof spetra (14) into the n.n.n. hopping / t00(k), aswas disussed in [19℄.For the diagonal omponents of the zero-order GFin (8), we haveG 011(22)(k; !) = Q1(2) [1� b(k)℄! � "1(2)(k) + Q1(2) b(k)! � "2(1)(k) ; (16)where the parameterb(k) = "2(k)� !2(k)"2(k) � "1(k) = 12 � !2(k) � !1(k)2�(k) (17)determines the ontribution due to hybridization.

2.3. Self-energy orretionsDyson equation (9) for the GF an be onvenientlywritten asĜ�(k; !) = �!�̂0 � "̂(k)� ~��(k; !)��1 Q̂; (18)where the self-energy is given by~��(k; !) = hhẐ(ir)� j Ẑ(ir)y� ii(prop)k;! Q̂�1: (19)In self-energy matrix (19), to make the problemtratable, we an neglet the o�-diagonal omponents~�12;�(k; !) in omparison with the hybridization pa-rameters W (k) in (14). This enables us to write thediagonal omponents of the full GF in (18) in the formsimilar to (16):Ĝ11(22)(k; !) = Q1(2) [1� b(k)℄! � "1(2)(k) � ~�11(22)(k; !) ++ Q1(2) b(k)! � "2(1)(k)� ~�22(11)(k; !) ; (20)where the hybridization parameters b(k) are deter-mined by the formula similar to (17), whih gives anaurate approximation for low doping at n � 1.We now alulate self-energy (19) in the nonrossingapproximation (NCA) or the self-onsistent Born ap-proximation (SCBA) by negleting vertex renormaliza-tion. As follows from equation of motion (11), the Ẑ(ir)�operators determined by (5) are essentially a produtof Fermi-like Xj(t) and Bose-like Bi(t) operators. Inthe SCBA, these exitations of di�erent types in themany-partile GF in (19) are assumed to propagateindependently of eah other. Therefore, they an bedeoupled in the time-dependent orrelation funtionsfor lattie sites (i 6= j; l 6= m) ashBi(t)Xj(t)BlXmi � hXj(t)XmihBi(t)Bli: (21)Using the spetral representation for these orrelationfuntions, we obtain the following formula for the di-agonal self-energy omponents ~�11(22)(k; !) = �(k; !)(whih are the same for two subbands):�(k; !) = 1N Xq +1Z�1dzK(!; zjq;k� q)��� 1� Im[G1(q; z) +G2(q; z)℄: (22)The orresponding subband GFs are given byG1(2)(q; !) = 1! � "1(2)(q) ��(q; !) : (23)262



ÆÝÒÔ, òîì 131, âûï. 2, 2007 Eletron spetrum in high-temperature : : :The kernel of integral equation (22) has the formK(!; zjq;k� q) = jt(q)j2 12� +1Z�1 d
! � z �
 ���th z2T + th 
2T � Im�s(k� q;
); (24)where the interation is de�ned by the hopping param-eter t(q) in (2). The spetral density of bosoni exi-tations is determined by the dynami suseptibility ofthe Bose-like operators Bi(t) in (21) � the spin andnumber (harge) �utuations:�s(q; !) = � �hhSqjS�qii!+14 hhÆNqjÆN�qii!� ; (25)where we introdue the ommutator GF for the spinSq and the number ÆNq = Nq � hNqi operators.We thus obtain a self-onsistent system of equationsfor GFs (23) and self-energy (22). A similar system ofequations was obtained within the omposite-operatormethod [16℄. In Hubbard model (1), we have two on-tributions to self-energy (22) determined by the twoHubbard subbands, while in the t�J model studied byus in [20℄, only one subband is onsidered. However,depending on the position of the hemial potential, asubstantial ontribution to the self-energy omes onlyfrom the GF of the subband that is lose to the Fermienergy. The ontribution from the GF of the other sub-band, whih is far from the Fermi energy, is suppresseddue to a large harge-transfer energy � in the denom-inator of those GF. Negleting the latter ontribution,we obtain a self-onsistent system of equations for oneGF lose to the Fermi energy and the orrespondingself-energy funtion similar to that in the t�J model[20℄. 3. RESULTS AND DISCUSSION3.1. Self-onsistent system of equationsTo solve the system of equations for self-energy (22) and GFs (23), we must speify amodel for the spin-harge suseptibility (25). Be-low, we take only the spin-�utuation ontribution�s(q; !) = �hhSq j S�qii! into aount, for whih weadopt a model suggested in numerial studies [25℄:Im�s(q; ! + i0+) = �s(q) �00s (!) == �01 + �2(1 + (q)) th !2T 11 + (!=!s)2 : (26)

Stati spin orrelation funtions (29), the oe�ientC(�) in (30), and the AF orrelation length � in (26)at various hole onentrations n = 1 + ÆÆ0.03 0.05 0.10 0.15 0.20 0.30C1 �0:36 �0:26 �0:21 �0:18 �0:14 �0:10C2 0.27 0.16 0.11 0.09 0.06 0.04C(�) 22.0 5.91 3.58 2.67 1.93 1.40� 8.0 3.40 2.50 2.10 1.70 1.40The q-dependene in �s(q) is determined by the AForrelation length �, whose doping dependene is de-�ned below. The stati suseptibility �0 at the AFwave vetor Q = (�; �) is �xed by the normalizationonditionhS2i i = 1N Xi hSiSii == 1� 1Z�1 dzexp (z=T )� 1�00s (z) 1N Xq �s(q); (27)whih gives the following value for this onstant:�0 = 2!s hS2i i( 1N Xq 11 + �2[1 + (q)℄)�1 : (28)In (27), we introduehS2i i = 3hSzi Szi i = 34 h(1�X00i �X22i )i = 34(1�jÆj);where Æ � hX22i i at the hole doping and Æ � �hX00i iat the eletron doping.Spin orrelation funtions (15) in single-partile ex-itation spetra (13) in the MFA are de�ned by equa-tionsC1 = 1N Xq Cq (q); C2 = 1N Xq Cq 0(q): (29)The stati orrelation funtion Cq an be alulatedfrom the same model (26) asCq = hSqS�qi = C(�)1 + �2[1 + (q)℄ ; (30)where C(�) = �0 (!s=2).To speify the doping dependene of the AF orre-lation length �(Æ) at low temperature, we �t the orre-lation funtion C1 alulated from (29) to the numer-ial results of an exat diagonalization for �nite lus-ters [26℄. The values of the AF orrelation length, the263



N. M. Plakida, V. S. Oudovenko ÆÝÒÔ, òîì 131, âûï. 2, 2007alulated values of C2, and the orrelation funtionC(�) = hSqS�qi at the AF wave vetor q = Q = (�; �)are given in the Table.To perform numerial alulations, we introdue theimaginary frequeny representation for GF (23):G1(2)(q; i!n) = 1i!n � "1(2)(q)��(q; i!n) ; (31)where i!n = i�T (2n+ 1), n = 0;�1;�2; : : : For self-energy (22), we obtain the representation�(k; i!n) = � TN Xq Xm [G1(q; i!m)+G2(q; i!m)℄�� �(q;k � q j i!n � i!m) : (32)The interation funtion is given here by the equation�(q;k � q j i!�) = �jt(q)j2 �s(k� q) Fs(i!�) (33)with the spetral funtionFs(!�) = 1� 1Z0 2xdxx2 + (!�=!s)2 11 + x2 th x!s2T : (34)We ompare the self-onsistent system of equationsfor GF (31) and self-energy (32) with the results ofother theoretial approahes. In our theory based onthe HO tehnique, we start from the two-subband rep-resentation for GF (4), whih rigorously takes strongeletron orrelations determined by the Coulomb en-ergy Ueff into aount. This results in the Mott gap atlarge Ueff (see below) as in the DMFT. On the otherhand, the kinematial interation, generi to HOs, in-dues the eletron sattering by spin (harge) dynami-al �utuations (25), whih are responsible for the pseu-dogap formation as in the two-partile self-onsistentapproah (TPSC) [12; 27℄ or the model of short-rangestati spin (harge) �utuations (the �k-model) [2℄.To prove this, we onsider the lassial limit forself-energy (32) by taking only the zero Matsubara fre-queny i!� = 0 into aount in the interation (33),whih gives i!m = i!n in (32). In the limit of a largeAF orrelation length � � 1, the stati spin susepti-bility �s(q) in (26) shows a sharp peak lose to the AFwave-vetor Q = (�; �) and an be expanded in thesmall wave vetor p = q�Q:�s(q) � �01 + �2 p2 � A�2 + p2 ; (35)where we introdue � = ��1 and take into aountthat the onstant in (28) is given by �0 � A�2 with

A = (8�=!s)hS2i i[ln(1+4� �2)℄�1 for the square lattie.In this limit, we obtain the equation for self-energy (32)�(k; i!n) � jg(k�Q)j2 TN Xp 1�2 + p2 ��[G1(k�Q�p; i!n)+G2(k�Q�p; i!n)℄ (36)with the e�etive interationjg(q)j2 = A jt(q)j2 Fs(0): (37)Expanding the QP energy "1(2)(k�Q� p) �� "1(2)(k�Q)�p � v1(2);k�Q, we obtain the represen-tation for the GFs in (36) asG1(2)(k�Q� p; i!n) � fi!n � "1(2)(k�Q) ++ p � v1(2);k�Q ��(k�Q; i!n)g�1: (38)The system of equations for GFs (38) and self-energy (36) is similar to the systems derived in theTPSC approah [27℄ and the �k-model [2℄, apartfrom the interation funtion and the two-subbandsystem of equations. In our approah, vertex (37)is determined by the hopping parameter jt(k�Q)j2,while in the TPSC and the �k-model, the oup-ling onstant is indued by the Coulomb satter-ing, e.g., g2 = U2(hni"ni#i=n2)hS2i i=3 in [15℄. How-ever, the values of these verties are lose: the valuehpjt(k)j2ik � 2t averaged over the BZ is omparable tothe oupling onstant g � 2t used in [13℄. In the spin-fermion model, the self-energy is also determined byspin �utuations (see, e.g., [3℄) with the oupling on-stant �tted from ARPES experiments g � 0:7 eV� 2t ofthe same order. As in the TPSC theory, in the limit as� ! 1, the AF gap �AF (k) / jt(k�Q)j2 emerges inthe QP spetra in the subband loated at the Fermi en-ergy. This result readily follows from the self-onsistentequations for GFs (31) with self-energy (36), wherein the right-hand side, the GF in (38) is taken atp = 0. Thus, the pseudogap formation is mediatedin our approah by the AF short-range order similar tothe TPSC theory and the model of short-range statispin �utuations in the generalized DMFT [15℄.In what follows, we onsider the results of self-onsistent alulations of GFs (31) and self-energy (32)in the hole-doped ase for various hole onentrationsÆ = n � 1 > 0. In Ses. 3.2�3.4, the alulations areperformed at the temperature T = 0:03t � 140 K andT = 0:3t for � = 8t, t � 0:4 eV, and t0 = �0:3t.Several results are reported for � = 4t; t0 = �0:13t,and t00 = 0:16t in Se. 3.5. For the spin-�utuation en-ergy in (26), we take !s = 0:4t. The AF orrelationlength �(Æ) and the stati orrelation funtions C1 andC2 in (15) are de�ned in the Table.264



ÆÝÒÔ, òîì 131, âûï. 2, 2007 Eletron spetrum in high-temperature : : :3.2. Dispersion and spetral funtionsIn ARPES measurements and QMC sim-ulations, the spetrum of single-eletron exi-tations is determined by the spetral funtionA(el)(k; !) = A(h)(k;�!). The spetral funtion forholes an be written asA(h)(k; !) = � 1� Imhhak� j ayk�ii!+i0+ == [Q1 + P (k)℄A1(k; !) + [Q2 � P (k)℄A2(k; !); (39)where we de�ne the hole annihilation ak� and reationayk� operators in terms of the Hubbard operators asak� = X0�i +2�X ��2i and ayk� = X�0i +2�X2��i , and useall the four omponents of the matrix GF Ĝ��(k; !)in (18) with the diagonal omponents given by (20).In (39), we also introdue the one-band spetral fun-tions determined by GFs (23):A1(2)(k; !) = � 1� ImG1(2)(q; !):The hybridization e�ets are taken into aount by theparameterP (k) = (n� 1)b(k)� 2pQ1Q2W (k)�(k) :The dispersion urves given by maxima of spe-tral funtions (39) were alulated for the hole dopingÆ = 0:05�0:3. At the low hole doping Æ = 0:05; 0:1, thedispersion reveal a rather �at hole-doped band at theFermi energy (! = 0), as shown in the upper panel inFig. 1. The orresponding spetral funtion (the bot-tom panel) demonstrates weak QP peaks at the Fermienergy. With doping, the dispersion and the inten-sity of the QP peaks at the Fermi energy substantiallyinrease, as demonstrated in Fig. 2, although a �atband in the X(�; 0)! �(0; 0) diretion is still observedin agreement with ARPES measurements in the over-doped La1:78Sr0:22CuO4 [28℄. To study the in�uene ofAF spin orrelations on the spetra, we alulate thespetral funtions at the high temperature T = 0:3t forÆ = 0:1 by negleting spin orrelation funtions (15)in single-partile exitation spetra (13) in the MFAand taking the small AF orrelation length � = 1:0 inthe spin suseptibility (26). Figure 3 shows a stronginrease in the dispersion and the intensity of the QPpeaks at the Fermi energy as in the overdoped region,Æ = 0:3, whih proves a strong in�uene of the AFspin orrelations on the spetra. A rude estimationof the Fermi veloity from the dispersion urve in the
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formation on the FS for the large oupling onstant�sf = � = 2t and � = 10, while the FS determinedfrom (40) gives several solutions as in our Fig. 15 forUeff = 4 t in Se. 3.5.3.4. Self-energy and kinksThe energy dependene of the real and imaginaryparts of the self-energy �(k; !) for Æ = 0:1; 0:3 at the�(0; 0), S(�=2; �=2), and M(�; �) points is shown inFig. 9. These plots demonstrate a strong dependeneof the self-energy on the wave vetor and the hole on-entrations. With doping, the oupling onstant sub-stantially dereases, as an be seen by the derease inthe imaginary part and the slope of the real part at theFS rossing, whih determines the oupling onstant� = �(�Re ~�(k; !)=�!)!=0. As shown in Fig. 10, theoupling onstant in the �(0; 0) ! M(�; �) diretiondereases from � � 7:86 at Æ = 0:1 to � � 3:3 atÆ = 0:3. At large binding energies (greater than theboson energy responsible for the interation), the self-energy e�ets vanish and the eletron dispersion shouldreturn to the bare value, giving a sharp bend, the so-alled �kink� in the eletron dispersion. The amplitudeof the kink and the energy sale where it ours are re-lated to the strength of the eletron�boson interationand the boson energy, respetively. In ARPES experi-ments, the kink is observed as a hange in the slope ofthe intensity plot for the spetral funtion A(k; !) ina partiular k-wave vetor diretion below the Fermilevel ! � 0 (for eletrons). Two diretions are usu-ally studied: the nodal (� ! M) and the antinodal(X ! M) ones. Intensity plots for the spetral fun-tion A(k; !) at Æ = 0:1 are shown in Fig. 11 in the nodaldiretion (a) and the antinodal one (b). The same plotsat Æ = 0:3 are shown in Fig. 12 in the nodal diretion(a) and the X(�; 0) ! �(0; 0) diretion (b). A hangein dispersion is learly seen with inreasing the bindingenergy below the FS shown by dotted line. In the un-derdoped ase, the kink is larger than in the overdopedone. A rude estimation of the strength of the kinkfrom the ratio of the dispersion slope VF lose to theFS (! = 0) to V 0F at a large binding energy (! � 0:2t),V 0F =VF = (1 + �), gives the values (1 + �) � 7:6; 3:5at Æ = 0:1 for the nodal and antinodal diretions, re-spetively. In the overdoped ase, the nodal value ismuh smaller, while in the antinodal X(�; 0)! �(0; 0)diretion, it is still quite large: (1 + �) � 2:5. Theseestimations agree with the evaluation of the ouplingonstant � from the slope of the real part of the self-energy disussed above.It is important to stress that in our theory, the268
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alulations of the eletron oupation numbers shownin Fig. 17. We note that a pronouned hole poket inthe new set of the model parameters is aused by thet00 ontribution, whih results in a large dispersion inthe (�; 0) ! (0; �) diretion (/ t00(os 2kx + os 2ky)),disregarded in the previous set of the parameters. Aremarkable feature of these results is that the part ofthe FS lose to the �(0; 0) point in the nodal dire-tion in Fig. 15 does not shift muh with doping (ortemperature), being pinned to a large FS as observedin ARPES experiments (see, e.g., [29℄). In fat, onlythis part of the FS was deteted in the ARPES experi-ments, where the spetral funtion Ael(k; ! = 0) shownin Fig. 16 was measured.The self-energy e�ets and kinks are similar tothose for � = 8t and on�rm a strong in�ueneof spin orrelations on the QP spetra renormaliza-tion. As shown in Fig. 18, the oupling onstant� = �(�Re ~�(k; !)=�!)!=0, being large at small dop-ing, distintly dereases with overdoping at Æ = 0:3,whih is aompanied by suppression of the imaginarypart of the self-energy. In onlusion, the alternativeset of parameters with a moderate e�etive Coulombenergy Ueff = 4t in Hubbard model (1) on�rms theimportant role played by AF orrelations in the ele-troni struture of the system with a large single-siteCoulomb interation.4. CONCLUSIONWe have formulated the theory of eletron spetrain the strong-orrelation limit for Hubbard model (1)in a paramagneti state. Using the Mori-type proje-tion tehnique for the thermodynami GFs in termsof the Hubbard operators, we onsistently took hargearrier sattering by dynamial spin �utuations intoaount and derived the self-onsistent system of equa-tions for GFs (23) and self-energy (22) evaluated in theNCA, whih neglets the vertex orretions. Althoughthe eletron oupling to spin �utuations is not weakin Hubbard model (1), being of the order of the hop-ping parameter, the vertex orretions should not bevery important in this ase due to kinematial restri-tions imposed on the spin-�utuation sattering. Aswas shown for the t�J model [32℄, the leading two-looprossing diagram identially vanishes, while the nextthree-loop rossing diagram gives a small ontributionto the self-energy. In any ase, the NCA for the self-energy an be onsidered a starting approximation for amodel with strong oupling. As disussed at the end ofSe. 3.1, the self-onsistent systems of equations for the271
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