ZKQT®, 2007, rom 131, Boim. 1, cTp. 155-163

© 2007

LASER-INDUCED CONDUCTIVITY OF SEMICONDUCTORS
AT LOW TEMPERATURES
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We consider the negative conductivity of electrons in semiconductors excited by a picosecond laser pulse at
low temperatures, due to the inelastic electron—phonon collisions. For the first time, the dependence of the
deformation potential on the phonon wave number is taken into account. This dependence significantly changes
the region of negative electron conductivity as a function of the phonon temperature.

PACS: 76.75.+i, 72.20.-i, 72.20.My, 72.40.+w

1. INTRODUCTION

The possibility of the absolute negative conductiv-
ity of a small number of conducting electrons produced
in some dielectrics and semiconductors by an exter-
nal source was discussed previously [1,2] (see also re-
view [3]). In the case of diamond, the frequency of
inelastic collisions with longitudinal acoustic phonons
should increase near

m*c?/2 =16 K,

where m* is the electron effective mass and ¢ is the
speed of sound. If the electron speed is less than the
speed of sound ¢, the phonon production is forbidden
by the energy conservation law. It should be noted that
in the case of Si, the quantity

m*c?/2 =0.85 K

is very small. Therefore, it is impossible in practice
to observe the negative conductivity in Si, because the
scattering of charge carriers on impurities resulting in
positive conductivity dominates at very small tempera-
tures. The absolute negative conductivity was observed
experimentally only in gases [4]. For semiconductors,
the negative mobility was observed for minor carriers
due to their entrainment by the flow of major carriers in
heterostructures [5] and for a two-dimensional electron
gas in a strong external magnetic field. The goal of this
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paper is a theoretical investigation of the conductivity
and mobility in semiconductors at low temperatures ir-
radiated by an ultra-short laser pulse.

2. IONIZATION OF SEMICONDUCTORS BY
THE FIELD OF AN INTENSE PICOSECOND
LASER PULSE

We consider the production of carriers in semicon-
ductors induced by an intense laser pulse with the pulse
duration t ~ 1 ps. It is well known that the threshold
intensity for plasma production in most of the species
at this pulse duration is of the order 10'* W /cm? [6].
Hence, the total destruction of the crystal structure oc-
curs at this laser intensity. We therefore suggest using
the value of the peak laser intensity one order less, i.e.,
I = 10'° W/em?. 1In the case of a typical Nd:glass
laser, the photon energy is equal to

E =hw=1.17¢V.

We further consider the example of a diamond sam-
ple. For ionization of diamond with the band gap
E, = 5.4 eV, the absorption of at least 5 photons is
required (Fig. 1). Conducting electrons are produced
with the initial energy about 1.17 -5 — 5.4 = 0.45 eV.
The initial energy spectrum of conducting electrons is
close to the Dirac delta-function distribution. This en-
ergy rapidly decreases close to the relaxation processes
up to a value about tens K. The relaxation time with
respect to the electron energy due to collisions of a
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Fig.1. Scheme of photon absorption at the ionization
of diamond

high-energy electron with acoustical phonons is well
known [7, Eq. (8.23)],

_ 21h? pc?
- —o l/2°
(2m*)3/2T=2E,)/

Tr

where Z is the deformation potential, T is the temper-
ature of the crystal lattice, £, is the electron kinetic
energy, p is the mass density of a crystal, ¢ is the speed
of sound, amd m* is the effective mass of the carrier.
The electron energy decreases to several hundreds of K
during 100-1000 ps. About 100 collisions are needed
for the total energy relaxation of an electron with the
kinetic energy 100 K. This channel results in a large
relaxation time due to quite elastic collisions of high-
energy electrons with phonons.

The second channel for the relaxation is related to
the production of the Wannier — Mott excitons with the
binding energy

P2 e’
2(mj + mj) © 2R2en?

E, +

where n = 1,2,3,... is the principal quantum num-
ber, m; and mj are the respective effective masses of
an electron and a hole, u is the reduced mass of the re-
combining electron and hole, ¢ is the dielectric constant
of matter, and p is the exciton linear momentum. The
radius of the exciton is large compared to the lattice
constant. The decay of these excitons with emission of
a spontaneous photon with the energy E., = cp occurs
within 1-10 ps. Channels with additional emission or
absorption of phonons are also possible.

Finally, an electron can recombine with a hole di-
rectly. The excess energy of this process (the so-called
Auger recombination) is transferred to another con-
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ducting electron. This channel is significant at a high
number density of carriers.

In practice, recombination is mainly produced by
impurities even at the negligibly small concentration
of impurities. Conducting electrons and holes are cap-
tured by the levels of impurities.

We note that the Maxwell distribution of carriers
is not established even during nanoseconds, because it
is determined by electron—electron collisions and their
collision frequency is small due to the small number
density of conducting electrons.

The Keldysh parameter [8] is

wy/2E,

1
ja >

Tk =
(atomic units are used, with the electron charge and
effective mass and the Planck constant equal to unity)
for the above values of the parameters. Here, w is the
laser frequency. Thus, there is no tunneling ioniza-
tion, but we have a 5-photon ionization process. The
laser field strength is very small compared to the above-
threshold field strength; therefore, there is no above-
threshold ionization [9]. The peak laser field strength
is F'=2.7-10% V/em at the intensity 10 W/em?. Of
course, we must check that the diamond temperature
does not exceed 600 °C in air and 1800 °C in a vacuum.
This is just realized at the short laser pulse durations
of the order of 1 ps.

We now consider the value of the generalized cross
section for the 5-photon ionization. It is determined
mainly by the ionization potential of the considered
matter. There is no such data for diamond and
other semiconductors, and we therefore used the known
data [9] for Na atoms (the ionization potential is equal
to 5.14 V) and Ba atoms (the ionization potential is
equal to 5.21 V). According to the experimental data
in [9], the generalized cross section is

o5 & 10710 ¢m !0 . g4,

The cross section for K-photon ionization is related to
the corresponding ionization rate as

OK IK

(hw) &’

(K)

w

where [ is the peak laser intensity. With the above
value of the laser peak intensity, we obtain

w® ~ 4000 s 1.

Hence, the fraction of atoms ionized during the pulse
duration is
w®r ~4-107°,
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The values of the mass density p and the number den-
sity of atoms n in diamond are well known:

p=351g/em®, n=175-10** ecm?.
Hence, the number density of conducting electrons and
holes after the ionization process is

ne =7-10" cm™3.

At the normal incidence of a linearly polarized laser
pulse to the surface of diamond, the field inside the
matter is equal to the field in the vacuum. But at the
oblique incidence of a linearly polarized laser beam to
the diamond surface, the laser field inside the matter
decreases due to a sufficiently large value of the di-
electric constant of diamond, ¢ = 5.7. Hence, at the
oblique incidence, the number of conducting electrons
is less than the above value.

Diamond is an anisotropic matter, with the electron
effective mass given by

mﬁ = 1.50m,
along the (100) direction [10] and
m’ = 0.26m,

along the (010) direction (m, is the vacuum electron
mass). Therefore, the ionization depends on the types
of charge carriers. We discuss the dependence of the
generalized cross section for multiphoton ionization on
the effective mass of the carrier. The dipole matrix
element for the 5-photon transition is given by [11]

20)

ZmlRlpZpsZstctn

Z (Eim—w)(Epm —2w)(Esm—3w) (Epm—4w)’

l,p,s,t

where z,,; is the usual dipole matrix element for the
transition between atomic states m and [, and Ej,, are
differences of energies between these states. The de-
pendence of the dipole matrix element on the effective
mass and on the energy gap can be estimated in the
hydrogen-like approximation as

Zim X a X ———
2m*E,

where a is the corresponding effective Bohr radius.
Thus, the dependence of the 5-photon ionization rate
on the effective mass is

1
(m*)®

w® o |z1m]? x
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It is seen that the 5-photon ionization rate increases
sharply with decreasing the effective electron (or hole)
mass. Thus, ionization is produced mainly in (010) di-
rection of the diamond crystal. For this reason, the
ionization rate of a diamond sample is larger than that
of Na and Ba atoms by one to two orders of magnitude
at the same value of laser intensity.

3. THE DEFORMATION POTENTIAL

Due to thermal motion of atoms in a crystal lattice,
each element of the crystal volume is shifted by a small
value u(r,t) with respect to its unshifted position r.
In the harmonic approximation, this shift can be ex-
pressed via the operators aI and ay of production and
destruction of a longitudinal acoustic phonon (which is

an independent oscillation of the lattice) as

1
VW

ex {axexp[i(k - r — wit)] +

R

+a) exp[—i(k T — wkt)]},

(1)

where IV is the number of atoms in the crystal sample,
M 1is the mass of the atom, ey is the unit polarization
vector for the longitudinal phonon, i.e., the unit vector
along the phonon wave vector k (we see in what follows
that the transverse acoustic phonons do not contribute
to the crystal conductivity), and wy is the phonon fre-
quency, which is related to the wave number k (in the
approximation of small wave numbers, i.e., large wave-
lengths in comparison with the lattice constant) as

wi = ck,

(2)

with ¢ being the longitudinal speed of sound. The up-
per limit of the acoustic oscillations corresponds to the
lattice temperature about 100-300 K.

The small perturbation of the potential for a con-
ducting electron produced by surrounding atoms in the
crystal lattice because of the lattice deformation is

Ur)=V()-V(+u)~—-u-VV. (3)

The conducting electron wave function is the Bloch

function normalized by the number of these elect-
rons N:

1

r.t)=— r)expi(p-n — Ept)], 4

Up(r, 1) \/pr() pli(p pt)],  (4)

where p is the electron momentum, Ey is its energy,

vp(r) is the periodic function with the period of the
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lattice, and n is the coordinate of a node of the crys-
tal lattice. We note that because the number density
of conducting electrons is small, we neglect the inter-
action between the produced conducting electrons and
the screening effects.

In the first order of the quantum mechanical pertur-
bation theory in interaction (3), the electron transition
amplitude from the state with a momentum p to a state
with a momentum p’ due to the lattice deformation is

i% _ /¢;;,(r,t)U(r,t)¢p(r,t) dr.  (5)

The matrix elements of the phonon operators of a har-
monic oscillator are well known:

<Nk - 1|ak|Nk> = \/Nk,
(N + 1ag [Nie) = /N + 1,
where Ny is the number of acoustic longitudinal
phonons with the wave vector k.
Substituting Eq. (4) in Eq. (5), we obtain that the
integral in Eq. (5) factors into the product of an inte-

gral over one lattice cell and a sum over all nodes of
the crystal lattice. This sum is of the form

> expli(p—p' +k)-n] =N,

(6)

(7)
p =p=tk.

We thus obtain the momentum conservation law,
Eq. (7), at the absorption or emission of a phonon of
the crystal lattice by an electron.

The integration over one lattice cell in Eq. (5) can
be carried out by parts,

* . oV
I= —ek/gopmppVVdr = —/gopmppgdr

:/V%(@@p)dr, (8)

where the coordinate s corresponds to the direction of
the polarization vector ex. To calculate the integral
in Eq. (8), we consider the Schrédinger equation for a
conducting electron in the potential V' of surrounding
atoms:

Atpp +2(Ep — V)ihp = 0. (9)

The electron effective mass is here set equal to unity.

Substituting Eq. (4) in Eq. (9), we rewrite this equation
as

App+2i(p - Veop)=p*0p+2(Ep=V)pp = 0. (10)

Using the conjugate expression in which we substitute
p — p’, we obtain

Aps, =2i(p - Vi ) —p*ph +2(Ey —V)@h = 0. (11)
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Multiplying Eq. (10) by d¢y,/0s and Eq. (11) by

Opp/0s, we add both equations and then integrate the

sum over r, simultaneously using integration by parts:
dy

i) [ )

Oppy a .,
s gopdr—/Vg(gop,gop)dr—O. (12)

s
2 2

BT ppdr+
S

<Ep—Ep, -

X

The second term in this expression can be neglected
compared to the first term, because their ratio is of
the order of the electron momentum p times the lattice
constant a. This product is small compared to unity
because of the small population of the conduction band
by electrons at ionization.

Then, substituting Eq. (12) in Eq. (8), we obtain

) oy ) oy
I=i(p-p') / a—;Vgopdr = :sz/ a—;Vgopdr =
=Fi /(engoi‘),)(k -Vp)dr. (13)

Because the longitudinal phonon vectors k and ey have
the same direction, integration over the angular vari-
ables of r can be carried out directly. With the angle
between the polarization vector of the phonon and the
vector r denoted by y, we find

(cos’x) =1/3

after the averaging. Moreover, an analogous averag-
ing procedure for both transverse phonons gives zero.
Thus, only the interaction with longitudinal phonons is
significant in the considered problem (we have already
made this assumption above). It follows from Eq. (13)
that

i

~ ;%k/ Vp|2dr = Fik=,

1
=3 [ Ve

According to experimental data, it depends slowly on
the electron momentum p. From the theoretical stand-
point, this slow dependence is the strong-coupling ap-
proximation for conducting electrons. This approxima-
tion is valid when the kinetic energy of the conducting
electron is less than the lattice temperature. We ne-
glect the overlap of the electron wave functions in dif-
ferent crystal cells.

The deformation potential is determined by the
change in the deformation energy of a crystal at the

(14)
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variation of its volume. Fitting the experimental data
on mobility of electrons and holes at the temperatures
in the range 100-1000 K allows finding the values of
the deformation potential; these data confirm its weak
dependence on the carrier energy.

The ground-state Hartree—Fock wave function of
the carbon atom is a product of single-particle wave
functions of four valence electrons, in 2s states (two
electrons) and 2p states (two filled and four empty sub-
states). In a crystal, this level spreads into a band filled
by electrons. During the dipole transition at the ion-
ization, an electron is transferred from the 2s to 2p
state. In a crystal, this excited state spreads into a
band that is partially filled with conducting electrons.
These electrons can tunnel from one crystal cell to an-
other. The lattice constant for diamond is a = 0.36 nm,
and therefore pa < h even at the initial electron en-
ergy 0.45 eV. Hence, most of the conducting electrons
are placed near the center of the Brillouin zone, and
the parabolic approximation is valid for their energies.
Also, the electron—phonon scattering resulting in the
transitions of an electron to the neighboring Brillouin
zones can be neglected.

We also substituted p’ — p in Eq. (14). The under-
lying assumption is very strong. At high temperatures,
when the electron speed is large in comparison with the
speed of sound ¢, the phonon energy is small compared
to the electron energy; therefore, electron energies be-
fore and after the phonon absorption or emission are
approximately equal to each other. Then the above as-
sumption is valid. But if the electron speed is about
of the speed of sound (inelastic processes), then this
approximation is incorrect.

The quantity
1
5/‘V99p‘2d1'

is the average kinetic energy of a conducting electron
inside the crystal cell [12]. Of course, it is not equal to

(15)

E, = p2/2m*,

because the electron wave function is similar to the
plane wave only for almost free electrons, whereas we
here have the opposite case of strong-coupled electrons.
Just the exponent in the Bloch function, Eq. (4), is re-
sponsible for the kinetic energy p? /2m* which is a small
part of the quantity in Eq. (15).

In the case of small values of p', it follows from the
Taylor expansion that

IVop | ~p'. (16)
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The final new expression for the quantity I follows from
Eqs. (13) and (16) as

!

I =7kl (17)
p

Because p’ < p, the variable deformation potential is
less than the constant deformation potential that is
used in typical calculations of the kinetics of carriers
in semiconductors. Of course, at high electron energies
(more than 1000 K), we have p' = p.

4. TRANSPORT COLLISION FREQUENCY

Substituting Eq. (17) in Eq. (5) and taking Eq. (6)
into account, we obtain the transition amplitudes
dC(p + k, 1)

[N
dt 2M Nuwy
x exp [i(Eptk — Ep — wi)t],
dCp-k,t) _k , | Npy+1
@t o pPVaMNe *
x exp [i(Eptk — Ep + wi)t].

_k
E—p
p

(18)

After the integration of temporal exponentials, we find

t
J = /exp [i(Ep+x — Ep + wk)t] dt =
0

_ exp[i(Fpyxe — Fp £ wi)t] = 1 (19)
i(Eptx — Ep + wk) ’

|J‘2 = 27Tt5(Ep+k - Ep + wk).

The Dirac delta-function demonstrates the energy con-
servation law at the absorption or emission of a phonon
by an electron. It follows from Eqs. (18) and (19) that

IC(p+k,1)° =

_ :27rNkk2p’2

= MNuwyp?

Clp— k. 1)) =

o T(Ni + 1)k%p"?
M N wyp?

t6(Eptx — Ep — wk)

3

(20)

== t0(Ep+x — Ep + wi),
where the equilibrium population number of phonons
is given by the Bose distribution

. 1

= o) 1 @)

with 7" being the phonon (lattice) temperature (mea-
sured in energy units).
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Equation (20) can be rewritten in the form that
fixes the final electron momentum p’ and determines
the transition rate:

CRNE_ o
t T MNuwyp'?
X {Nk(;(Epr — Ep/,k - wk)+
+ (N +1)6(Ep — Epr i + wi) } -

U)ppr =

(22)

This expression allows us to derive the collision fre-
quency between electrons and phonons after integration
over angles; we multiply Eq. (22) by Vdk/(27)? (where
V' is the volume of the sample) and integrate over the
phonon wave vector. To obtain the transport collision
frequency, we additionally multiply Eq. (22) by the fac-
tor (p—p' cos@)/p, where 6 is the scattering angle (the
angle between the vectors p and p’):

Vph = /wpp’

Integrating over the angle ¥ between the vectors k and
p and taking the relation

p—p'cosh Vdk
p (2m)3

(23)

p—p' cosh = +kcosd (24)

into account gives the transport collision frequency as

m*

max(0;2p—2m™c/h)
=52
4mpch?p?
2m*ck

(Ni +1) x
(-5 (

2m™*c/h+2p

Vph
0

]{52
Ty

m*ck
h

) k2 dk —

) x
max(0;2m*c/h—2p)

< ( )

We here restored the Planck constant; p is the mass
density of matter. Knowing the collision frequency, we
can derive the electron mobility b. For this, we as-
sume 1) the validity of the relaxation-time approxima-
tion, 2) the delta-functional distribution of the carriers
(single-energy approximation), and 3) the cubic shape
of the crystal. Finally, we can write

). o

where £, = p*>/2m* is the electron energy and m* is
the electron (or hole) effective mass.

2m*ck
hp?

Ny, <1+

m*ck k_2
h 2

(25)

1

m*vyp

d

1

Vph

2¢ep

be, T) = 3m* de
Y4
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We must also take the elastic scattering of electrons
on the acceptor impurities into account (mainly boron
acceptor centers in the case of diamond with the ion-
ization potential 0.37 €V). Then the frequency vy, is to
be replaced in Eq. (26) with the sum

Vi = Vph + Vimp,

where the frequency of collisions of electrons with im-
purities is given by the simple expression

2ep (27)

Vimp = NimpOimp mr
Here, 04, is the cross section for scattering of elec-
trons on impurities and 7y, is the boron impurity
number density. In calculations, we use the values
Cimp = 10~ ¢m? and Nimp = 107 em—3.

Finally, the electric conductivity v can be related
to the mobility b as

v = nelelb, (28)

where n, is the number density of carriers.

5. RESULTS

The speed of sound in diamond is ¢ = 18.6 km/s.
The phonon temperature is chosen as 7' = 1, 10, 25,
and 100 K. The effective electron longitudinal mass
is m* = 1.5m,, and the effective light hole mass is
m* = 0.7m, [10].

The constants of the deformation potential were
chosen as = = 11.5 €V for holes and = = 4.1 eV for
electrons. We obtained these constants from the exper-
imental dependence b(T') in [13, 14] by fitting it with
the dependence

[ e exp(—< /1) e
0

0
In the range of lattice temperatures from 100 to 1000 K,
this dependence can be simplified:

2

b(T) 3T

et%exp (—¢/T) de

const

oT) =

where a = 1.5 for electrons and a = 3 for holes.
Computations were made both with the dependence

of the deformation potential on the phonon wave num-

ber k taken into account and in the approximation of a
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b,cm?/s-V
10° .

8-10°

—2.10°%} . i
10 100 1000
ep, K

Fig.2. The electron mobility in diamond as a func-

tion of the electron kinetic energy at various values of

the phonon temperature T =1 (1), 10 (2), 25 (3),

100 (4) K. The case of a constant deformation poten-
tial

constant deformation potential; the latter can be found
in Ref. [13]. In the case of a constant deformation po-
tential, instead of Eq. (25), we find the electron—phonon
collision frequency in the known form

max(0;2p—2m*c/h)
m*

== Nip+1
Uph 4mpeh?p? (Ni +1) x
0
(kR g -
h 2
2m*c/h+2p )
m*ck k
- Ng —— K%k ]|. (2
[ o (%) .

max(0;2m*c/h—2p)

The results of computations are presented in Figs. 2
and 3. It can be seen from these figures that the depen-
dence of the deformation potential on the phonon wave
number shifts the negative electron mobility region to
larger electron energies and reduces the value of the mo-
bility in this region. For example, at the lattice temper-
ature 7' = 10 K, the range of negative conductivity and
mobility is realized for electron energies between 60 and
200 K (Fig. 3). In the case of a constant deformation
potential (Fig. 2), this interval is shifted to 20-100 K.
We also show analogous results for holes in diamond
(Figs. 4 and 5). The role of acceptor impurities is sig-
nificant at very low temperatures, where they of course
produce positive mobility, which is much larger than

11 ZKBT®, Brm. 1

b,cm?/s -V
10° .

8-10°

6-10°

4-10°

10 100 1000
ep, K

Fig.3. The electron mobility in diamond as a func-

tion of the electron kinetic energy at various values of

the phonon temperature T =1 (1), 10 (2), 25 (3),

100 (4) K. The case of a variable deformation poten-
tial

b,em?/s-V
12-10° :

10 - 10°
8-10°
6-10°
4.10°

2.10°

—2-10°

—4.10° .
10 100 1000

ep, K

Fig.4. The hole mobility in diamond as a function

of the electron kinetic energy at various values of the

phonon temperature T = 1 (1), 10 (2), 25 (3),

100 (4) K. The case of a constant deformation po-
tential

the negative contribution from electron—phonon inelas-
tic collisions.

In Fig. 6, the mobility of holes in Si is presented
as a function of the electron temperature for a variable
deformation potential. It is seen that the negative-
mobility region occurs only at the lattice temperature
1 K and is small. This is explained by the small speed
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b,cm?/s-V
12-10° :

10 - 10°
8-10°
6-10°
4-10°

2.10°

10 100 1000
ep, K

Fig.5. The hole mobility in diamond as a function
of the electron kinetic energy at various values of the
phonon temperature 7' =1 (1), 10 (2), 25 (3), 100
(4) K. The case of a variable deformation potential

b,em?/s -V
-10° .

108
-10°
-10°
-10°
-10°
-10°
-10°

10°

N W kR OO 1 00 ©

—10° s
10 100 1000

€p, K

Fig.6. The electron mobility in Si as a function of the

electron kinetic energy at various values of the phonon

temperature T' =1 (1), 10 (2), 25 (3), 100 (4) K.
The case of a variable deformation potential

of sound in Si (9.35 km/s). The electron mobility in
Ge is shown in Fig. 7. It is positive for all values of the
parameters (the speed of sound in Ge is 5.56 km/s).
Scattering of carriers on impurities determines the mo-
bility. The electron—phonon interaction is negligibly
small in this case.

The energy spectrum of electrons and holes is
broadening during their relaxation. Describing this
process requires solving the kinetic equation. But the

b,cm?/s-V

22 10°
20 - 10°
18 - 10°
16 - 10°
14 -10°
12 -10°
10 -10°
8-10°
6-10° L
4-10°
2.10°

—2-10° s
10 100 1000

ep, K

Fig.7. Th hole mobility in Ge as a function of the

electron kinetic energy at various values of the phonon

temperature T =1 (1), 10 (2), 25 (3), 100 (4) K.
The case of a variable deformation potential

qualitative conclusion about negative conductivity at
low electron energies remains correct.
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