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NON-FERMI-LIQUID BEHAVIOR IN THE FLUCTUATING GAPMODEL: FROM THE POLE TO A ZERO OF THE GREEN'SFUNCTIONE. Z. Kuhinskii, M. V. Sadovskii *Institute for Eletrophysis, Russian Aademy of Sienes620016, Ekaterinburg, RussiaReeived February 17, 2006We analyze the non-Fermi-liquid (NFL) behavior of the �utuating gap model (FGM) of pseudogap behaviorin both one and two dimensions. A detailed disussion of the quasipartile renormalization (Z-fator) is given,demonstrating a kind of �marginal� Fermi-liquid or Luttinger-liquid behavior and topologial stability of the�bare� Fermi surfae (the Luttinger theorem). In the two-dimensional ase, we disuss the e�etive piture ofthe Fermi surfae �destrution� both in �hot spot� model of dieletri (AFM, CDW) pseudogap �utuations andfor the qualitatively di�erent ase of superonduting d-wave �utuations, re�eting the NFL spetral densitybehavior and similar to that observed in ARPES experiments on opper oxides.PACS: 71.10.Hf, 71.27.+a, 74.72.-h1. INTRODUCTIONPseudogap formation in the eletroni spetrumof underdoped opper oxides is an espeially strikinganomaly of the normal state of high-temperature super-ondutors [1℄. Disussions on the nature of the pseu-dogap state ontinue within two main �senarios� � ofsuperonduting �utuations, leading to Cooper pairformation above T, or of other order-parameter �u-tuations, in fat ompeting with superondutivity.We believe that the preferable senario for pseu-dogap formation is most likely based on the model ofstrong sattering of the harge arriers by short-rangeantiferromagneti (AFM, SDW) spin �utuations [1℄.In momentum representation, this sattering transfersmomenta of the order of Q = (�=a; �=a) (where a isthe lattie onstant of a two-dimensional lattie). Thisleads to the formation of strutures in the one-partilespetrum that are preursors of the hanges in the spe-tra due to a long-range AFM order (period doubling).Within this spin-�utuation senario, a simpli�edmodel of the pseudogap state was studied [1�3℄ underthe assumption that the sattering by dynami spin�utuations an be redued for high enough tempera-tures to a stati Gaussian random �eld (quenhed disor-*E-mail: sadovski�iep.uran.ru

der) of pseudogap �utuations. These �utuations arede�ned by a harateristi sattering vetor from theviinity of Q, with a width determined by the inverseorrelation length of the short-range order � = ��1.Atually, a similar model (formalism) an also be ap-plied to the ase of pseudogaps of a superondutingnature [3℄.These models originated from the earlier one-dimensional model of pseudogap behavior [4, 5℄, theso-alled �utuating gap model (FGM), whih is ex-atly solvable in the asymptoti limit of large orrela-tion lengths of pseudogap �utuations � = ��1 ! 0 [4℄,and �nearly exatly� solvable in the ase of �nite �,where we an take all Feynman diagrams of perturba-tion series into aount, albeit using an approximateansatz for higher-order ontributions [5℄.Non-Fermi-liquid behavior of the FGM model wasalready disussed in one [4; 6�8℄ and two dimensions[1�3℄. However, some interesting aspets of this modelare still under disussion [9℄. Below, we analyze di�er-ent aspets of this anomalous behavior in both one-and two-dimensional versions, mainly in the ase ofAFM (SDW) or CDW pseudgap �utuations, and also,more briel�y, in the ase of superonduting �utua-tions, demonstrating a kind of �marginal� Fermi-liquidbehavior and the qualitative piture of Fermi surfae477



E. Z. Kuhinskii, M. V. Sadovskii ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006�destrution� and formation of �Fermi ars� in two di-mensions, similar to those observed in ARPES experi-ments on opper oxides.2. POSSIBLE TYPES OF GREEN'S FUNCTIONRENORMALIZATIONWe start with a qualitative disussion of possiblemanifestations of the NFL behavior. The Green's fun-tion of the interating system of eletrons is expressedvia the Dyson equation (in the Matsubara representa-tion, with "n = (2n+ 1)�T and �p = vF (p� pF )) as1)G("n; �p) = 1i"n � �p ��("n; �p) : (1)In what follows, we use a rather unusual de�nition ofthe renormalization (�residue�) Z-fator, introduing itas [9℄G("n; �p) = Z("n; �p)G0("n; �p) = Z("n; �p)i"n � �p (2)orZ("n; �p) = i"n � �pi"n � �p ��("n; �p) == (i"n � �p)G("n; �p): (3)We note that Z("n; �p) is in general omplex andatually determines the full renormalization of thefree-eletron Green's funtion G0("n; �p) due to inter-ations. At the same time, it is in some sense similarto the standard residue renormalization fator used inthe Fermi-liquid theory.We onsider possible alternatives for the Z("n; �p)behavior. A. Fermi-liquid behaviorIn a normal Fermi liquid, we an perform the usualexpansion (lose to the Fermi level and in the obviousnotation) assuming the absene of any singularities in�("n; p):�("n; �p) � �(0; 0) + i"n ��("n; �p)�(i"n) ����0 ++ �p ��("n; �p)��p ����0 + : : : (4)1) Despite our use of the Matsubara representation, we regard"n as a ontinuous variable below.

In the absene of the stati impurity sattering, �(0; 0)is real and just renormalizes the hemial potential. Wean then rewrite (1) asG(") = 1i"n�1� ���(i"n)�0 � �p�1 + ����p�0 �� ~Zi"n � ~�p ; (5)where we have introdued the usual renormalizedresidue at the pole,~Z = 11� ���(i"n) ����0 ; ~Z�1 = 1� ���(i"n) ����0 ; (6)and the spetrum of quasipariles~�p = ~Z �1 + ����p�0 �p: (7)The usual analyti ontinuation to real frequenies nowyields the standard expressions of the normal Fermi-liquid theory [10, 11℄ with real 0 < ~Z < 1, onservingthe quasipartile pole of the Green's funtion.In the speial ase where �p = 0, i.e., at the Fermisurfae, whih is not renormalized by interations inaordane with the Landau hypothesis and Luttingertheorem, we have G("n; �p) = ~Zi"n ; (8)i.e., ~Z oinides with the limit of Z("n ! 0; �p = 0)de�ned by (2) and (3), and we have the usual poleas "n ! 0. Similarly, for "n = 0, we haveZ("n = 0; �p ! 0) � ~Z.In general, this behavior is preserved not only inthe ase of �("n; �p) possessing a regular expansion atsmall "n and �p, but also for �("n; �p) � max("�n; ��p )with any � � 1.B. Impure Fermi liquidIn the ase of low onentration of random statiimpurities, we have �("n ! 0; �p ! 0) ! onst, withRe�(0; 0) again giving a shift of the hemial potential,while Im�(0; 0) � , where  is the impurity satteringrate. For the Green's funtion, we haveG("n; �p) = ~Zi"n � ~�p + i "nj"nj (9)478



ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006 Non-Fermi-liquid behavior in the �utuating gap model : : :and hene the renormalization fator de�ned by (3) isgiven by Z("n; �p) = ~Z i"n � �pi"n � ~�p + i "nj"nj : (10)For �p = 0, we haveZ("n; �p = 0) = ~Z i"ni"n + i "nj"nj �� j"nj ! 0 as j"nj ! 0 (11)and for j"nj � j�pj,Z("n ! 0; �p) = ~Z �p�p � i "nj"nj �� �p sign "n ! 0 as �p ! 0; (12)i.e., impurity sattering leads to the vanishing of theZ-fator at the Fermi surfae, just removing the usualFermi-liquid pole singularity and produing a �nite dis-ontinuity of the Green's funtion at "n = 0. This be-havior is due to the loss of translational invariane ofthe Fermi liquid theory (momentum onservation) be-ause of impurities. In fat, Green's funtion (9) is ob-tained after averaging over the impurity position, whihformally restores translational invariane, leading to akind of (trivial) non-Fermi-liquid (NFL) behavior. Wenote that this behavior is observed for j"nj; j�pj � ,while in the opposite limit, we obviously have a �niteZ(";�p) � ~Z.C. Superondutors and Peierls and exitoniinsulatorsWe now onsider the ase of an s-wave superon-dutor. The normal Gorkov Green's funtion is givenby G("n; �p) = i"n + �p(i"n)2 � �2p � j�j2 ; (13)where � is the superonduting gap. The normalGreen's funtion also takes this form in an exitonior Peierls insulator, where � denotes the appropriateinsulating gap in the spetrum [11℄. ThenZ("n; �p) = (i"n)2 � (�p)2(i"n)2 � �2p � j�j2 �� max("2n; �2p)j�j2 ! 0 for "n; �p ! 0; (14)

i.e., we have the NFL behavior with the pole of theGreen's funtion at the Fermi surfae replaed by azero, due to the Fermi surfae being �losed� by thesuperonduting (or insulating) gap.Again, Fermi-liquid-type behavior with a �niteZ-fator is �restored� for j"nj; j�pj � j�j.But the omplete desription of the superondu-ting (exitoni, Peierls) phase is ahieved only after theintrodution of the anomalous Gorkov funtion. Theexitation spetrum on both sides of the phase transi-tion is determined by di�erent Green's funtions withdi�erent topologial properties [9℄.D. Non-Fermi-liquid behavior due tointerationsNon-Fermi-liquid behavior of Green's funtion dueto interations may also our in the ase of the singu-lar behavior �("n; �p)!1 as "n ! 0 and �p ! 0, e.g.,a power-like divergene2) of �("n; �p) � max("��n ; ���p )with � > 0. Obviously, Z("n ! 0; �p ! 0) ! 0 in thisase, and we again have a zero of the Green's funtionat the Fermi surfae.Another possibility is a singular behavior of deriva-tives of the self-energy in (4), e.g., in the ase where�("n; �p) � max("�n ; ��p ) with 0 < � < 1, leading to thepole singularity of the Green's funtion at the Fermisurfae being weaker than usual.Both types of behavior are realized within the To-monaga �Luttinger model in one dimension [12℄, wherethe asymptoti behavior of G(i"n; �p) in the region ofsmall �p � "n an be expressed asG("n � �p) � 1"1�2�0n (15)with �0 < 1=2. For �0 > 1=2,G("n � �p) � A+B"2�0�1n : (16)For 3=2 > �0 > 1,G("n � �p) � A+B"n + C"2�0�1n ; (17)et., with the value of �0 determined by the interationstrength.A speial ase is given by the so-alled �marginal�Fermi-liquid behavior assumed [13℄ for the interpreta-tion of the eletroni properties of CuO2 planes of op-per oxides. It is given by�("n; �p) � �i"n ln max("n; �p)! ; (18)2) An additional logarithmi divergene an also be presenthere!479



E. Z. Kuhinskii, M. V. Sadovskii ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006where � is some dimensionless interation onstant and! is a harateristi ut-o� frequeny. If we formallyuse (6) at �nite "n, we obtain~Z("n; �p) � 11� � ln max("n; �p)! : (19)In this ase, the �residue at the pole� of the Green'sfuntion (Z-fator)3) tends to zero at the Fermi sur-fae itself, and, again, quasipartiles are just not de-�ned there at all! However, everywhere outside a nar-row (logarithmi) region lose to the Fermi surfae,we have a more or less �usual� quasipartile ontribu-tion: quasipartiles (lose to the Fermi surfae) are just�marginally� de�ned. At present, there are no generallyaepted mirosopi models of the �marginal� Fermi-li-quid behavior in two dimensions.3. FLUCTUATING GAP MODELThe physial nature of the FGM was extensivelydisussed in the literature [1�8; 11℄. The model basedon the piture of an eletron propagating in the (stati!)Gaussian random �eld of (pseudogap) �utuations,leading to sattering with the harateristi momen-tum transfer from a lose viinity of some �xed sat-tering vetor Q. These �utuations are desribed bytwo basi parameters: the amplitude � and the or-relation length (of short-range order) ��1, determiningthe e�etive width � = ��1 of the sattering vetordistribution.In one dimension, the typial hoie of the sat-tering vetor is Q = 2pF (the �utuation region ofthe Peierls transition) [4, 5℄, while in two dimensions,we usually mean the so-alled �hot spot� model withQ = (�=a; �=a) [2, 3℄. These models assume the �di-eletri� (CDW, SDW) nature of pseudogap �utua-tions, but essentially the same formalism an be usedin the ase of superonduting �utuations [3℄.The ase of superonduting (s-wave) pseudo-gap �utuations in higher dimensions is atually de-sribed by the same one-dimensional version of theFGM [3; 4; 9℄.An attrative property of the models under disus-sion is the possibility of an exat solution ahieved bythe omplete summation of the whole Feynman dia-gram series in the asymptoti limit of large orrelation3) We note that (19), stritly speaking, annot give the or-ret de�nition of the �residue�, beause standard expression (6)is de�ned only at the Fermi surfae itself, where (19) just doesnot exist. In what follows, we therefore prefer the rather unusualde�nition in (2).

lengths � ! 1 [4, 6℄. In the ase of �nite orrelationlengths, we an also perform summation of all Feyn-man diagrams for the single-eletron Green's funtionusing an approximate ansatz for higher-order ontribu-tions in both one [5℄ and two dimensions [2, 3℄. Similarmethods of diagram summation an also be applied inalulations of the two-partile Green's funtions (ver-tex parts) [2�4; 7; 11; 14℄.Our aim is to demonstrate that nearly all aspetsof the NFL behavior disussed above an be niely de-sribed within di�erent variants of the FGM.A. One dimensionWe limit ourselves here to the ase of inommensu-rate pseudogap (CDW) �utuations [4, 5℄. The om-mensurate ase [6, 5℄ an be analyzed similarly. Wenote that the same expressions also apply in the aseof superonduting (s-wave) �utuations in all dimen-sions.In the limit of the in�nite orrelation length of pseu-dogap �utuations, we have the exat solution for asingle-eletron Green's funtion [4, 11℄ given byG("n; �p) = 1Z0 d� e�� i"n + �p(i"n)2 � �2p � ��2 == i"n + �p�2 exp "2n + �2p�2 !Ei "2n + �2p�2 ! �� i"n + �p�2 ln 0 "2n + �2p�2 !as "n ! 0; �p ! 0; (20)where Ei(�x) denotes the integral exponential funtionand we use the asymptoti behavior Ei(�x) � ln(0x)as x ! 0 (ln 0 = 0:577 is the Euler onstant). Then,using (3), we immediately obtainZ("n; �p) = �"2n + �2p�2 ln 0 "2n + �2p�2 !! 0as "n ! 0; �p ! 0: (21)Preisely the same result is obtained if, for �nite "n and�p, we de�ne ~Z("n; �p) = 11� ��("n; �p)�(i"n) (22)480



ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006 Non-Fermi-liquid behavior in the �utuating gap model : : :similarly to (6). We note that beause j"nj � � andj�pj � �, we obviously have Z > 0, but the usual poleof the Green's funtion at the Fermi surfae (�point�) ofthe �normal� system is here transformed into a zero dueto pseudogap �utuations. Beause of the topologialstability [9℄, the singularity of the Green's funtion atthe Fermi surfae is not destroyed: the zero is also asingularity (with the same topologial harge) as thepole. But the FGM atually gives an expliit exampleof a kind of Luttinger or �marginal� Fermi liquid witha very strong renormalization of the singularity at theFermi surfae.We onsider the self-energy orresponding toGreen's funtions (20):�("n; �p) = i"n � �p �� 24 1Z0 d� e�� i"n + �p(i"n)2 � �2p � ��235�1 : (23)

Taking �p = 0 for simpliity and "n ! 0, we obtain�("n ! 0; �p = 0) = 1i"n 24 1Z0 d� e�� 1"2n + ��235�1 �� ��2i"n 1ln�0 "2n�2� !1; (24)i.e., the divergene of the type disussed above.In the ase of �nite orrelation lengths � = ��1 ofpseudogap �utuations, we use the ontinuous-frationrepresentation of single-eletron Green's funtion de-rived in Ref. [5℄ to obtain the renormalization fator as("n > 0)Z("n; �p) = i"n � �pi"n � �p � �2i"n + �p + ivF�� �2i"n � �p + 2ivF�� 2�2i"n + �p + 3ivF�� : : : ; (25)
whih an be studied numerially.In Fig. 1, we show typial dependenes of the renor-malization fator Z("n; �p). In all ases, it tends to zeroat the (�bare�) Fermi surfae and the pole of the Green'sfuntion disappears. Essentially, this strong renormal-ization starts on the sale of the pseudogap width, i.e.,for j"nj < � and j�pj < �, re�eting a non-Fermi-liquidbehavior due to pseudogap �utuations.However, the role of �nite orrelation lengths � (�-nite �) is qualitatively similar to stati impurity sat-tering4), and a more detailed alulation shows that theZ-fator behaves at small �n � vF� and j�pj � vF�(with "n > 0) asZ(�n; �p) � � �vF�� ���n + i�p� �! 0as "n ! 0; �p ! 0; (26)with �(vF�=�) ! 0 as � ! 0, as seen from Fig. 2.In terms of the Green's funtion, this behavior orre-sponds to

G("n; �p) � 1�� �vF�� � "n + i�pi"n � �p == �i 1���vF�� � : (27)Therefore, for �nite �, the Green's funtion has no zeroat �n = 0 and �p = 0 and remains �nite as in an impuresystem.The vanishing of the renormalization fatorZ("n; �p) at the �bare� Fermi surfae is in orres-pondene with the general topologial stability argu-ments [9℄: in the absene of stati impurity-like sat-tering, the pole singularity of the Green's funtion isreplaed by a zero. In the presene of this additionalsattering, this zero is replaed by a �nite disontinuity,and the singularity therefore persists.B. �Hot spot� model in two dimensionsIn two dimensions, we introdue the so-alled �hotspot� model. We onsider a typial Fermi surfae ofeletrons moving in the CuO2 plane of opper oxides asshown in Fig. 3. If we neglet �ne details, the observed(e.g., in ARPES experiments) Fermi surfae (and also4) This is due to our approximation of the stati nature ofpseudogap �utuations.7 ÆÝÒÔ, âûï. 3 (9) 481
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�
(�; �)

Q = (�; �)
Fig. 3. Fermi surfae in the Brillouin zone and the�hot spot� model. The magneti zone appears, e.g.,in the presene of the antiferromagneti long-range or-der. �Hot spots� orrespond to intersetions of themagneti zone borders with the Fermi surfae andare onneted by the sattering vetor of the order ofQ = (�=a; �=a)Phase transition to the antiferromagneti state in-dues lattie period doubling and leads to the appear-ane of an �antiferromagneti� Brillouin zone in inversespae, as is also shown in Fig. 3. If the spetrum ofarriers is given by (28) with t0 = 0 and we onsiderthe half-�lled ase, the Fermi surfae beomes just asquare oiniding with the borders of the antiferro-magneti zone and we have a omplete �nesting�: �atparts of the Fermi surfae math eah other after thetranslation by the vetor of antiferromagneti orderingQ = (��=a;��=a). In this ase and for T = 0, theeletron spetrum is unstable, the energy gap appearseverywhere on the Fermi surfae, and the system be-omes an insulator, due to the formation of an antifer-romagneti spin density wave (SDW)5). In the ase ofthe Fermi surfae shown in Fig. 3, the appearane of theantiferromagneti long-range order, in aordane withthe general rules of the band theory, leads to the ap-pearane of disontinuities of isoenergeti surfaes (e.g.,the Fermi surfae) at rossing points with boundariesof a new (magneti) Brillouin zone due to gap openingat points onneted by the vetor Q.In the most part of the underdoped region of theuprate phase diagram, the antiferromagneti long-range order is absent, but a number of experiments sup-5) Analogous dieletrization is also realized in the ase of theformation of the similar harge density wave (CDW).482



ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006 Non-Fermi-liquid behavior in the �utuating gap model : : :port the existene of well-developed �utuations of theantiferromagneti short-range order that satter ele-trons with the harateristi momentum transfer of theorder of Q. Similar e�ets may appear due to CDW�utuations. These pseudogap �utuations are againonsidered to be stati and Gaussian, and harater-ized by two parameters: the amplitude � and orrela-tion length � = ��1 [1℄. In this ase, we an obtain arather omplete solution for the single-eletron Green'sfuntion via summation of all Feynman diagrams of theperturbation series desribing sattering by these �u-tuations [1�3℄. This solution is again exat in the limitas � ! 1 [2℄, and apparently very lose to the exatsolution in ase of �nite � [15℄. Generalizations of thisapproah to two-partile properties (vertex parts) arealso quite feasible.We start again with an exat solution for � ! 1(or � = 0) [2℄. We �rst introdue the (normal) Green'sfuntion for the SDW (CDW) state with long-rangeorder (see, e.g., [11℄):G("n; �p) = i"n � �p�Q(i"n � �p)(i"n � �p�Q)�W 2 ; (29)where W denotes the amplitude of the SDW (CDW)periodi potential and �p = "(p) � �. Then we anwrite the appropriate Z fator asZ("n; �p) = (i"n � �1)(i"n � �2)(i"n � �1)(i"n � �2)�W 2 ; (30)where we set �p = �1 and �p�Q = �2 for brevity. Inwhat follows, we are mainly interested in the limit as"n ! 0 and �1 ! 0, i.e., in the viinity of the �bare�Fermi surfae. We note that �2 = 0 de�nes the so-alled�shadow� Fermi surfae. We have �1 = �2 = 0 preiselyat the �hot spots�. It is onvenient to introdue theomplex variablez = (i"n � �1)(i"n � �2); (31)whih beomes small as "n; �1; �2 ! 0.1. Inommensurate ombinatorisIn the ase of inommensurate (CDW) pseudogap�utuations, an exat solution for the Green's funtionof the FGM in the limit as � !1 takes a form similar

to (20) [1, 2℄ and we obtain (averaging (30) with theRayleigh distribution for W )Z(z) = 1Z0 dW 2W�2 e�W 2=�2 zz �W 2 == 1Z0 d��2 e��=�2 zz � � = z�2 e�z=�2Ei � z�2 � : (32)Then, as z ! 0 we obtainZ(z ! 0) � z�2 hln�0 z�2�� i�i : (33)At the �bare� Fermi surfae, we have �1 = 0, and welimit ourselves to "n > 0 in what follows. From (33), wean then easily �nd the limit behavior of Z(z). Someof the results are as follows.1. For "n � j�2j, we haveReZ("n � j�2j; �1 = 0) � �2 "nj�2j�2 ; (34)i.e., the �impure�-like linear behavior in "n.2. For "n � j�2j (i.e., also at the �hot spot�, where�2 = 0), we haveReZ("n � j�2j; �1 = 0) �� � "2n�2 ln�0 "2n�2�+ 12 �22�2 ; (35)i.e., for �2 = 0, the NFL behavior similar to the one-dimensional ase.We note that we always have ImZ = 0 at �2 = 0,i.e., at the �shadow� Fermi surfae and in partiular atthe �hot spot� itself.2. Spin-fermion ombinatorisWe now onsider the spin-fermion (Heisenberg)model for pseudogap (SDW) �utuations [2℄. In thisase, we again obtain the FGM, but with the gap distri-bution di�erent from the Rayleigh distribution; insteadof (32), we haveZ(z) = 2p2� 1Z0 dW W 2��23 �3=2 �� exp0BB�� W 22��23 �1CCA zz �W 2 =
483 7*



E. Z. Kuhinskii, M. V. Sadovskii ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006= 1p2� 1Z0 d� p���23 �3=2 exp0BB�� �2��23 �1CCA �z � � == �(3=2)p2� (�z)3=2��23 �3=2 exp2664� z2��23 �3775�� �0BB��12;� z2��23 �1CCA : (36)Hene, as z ! 0, we obtainZ(z) � 2�(3=2)p� �� 26664� z2��23 � + ���12�0BB�� z2��23 �1CCA3=237775 : (37)On the �bare� Fermi surfae (�p = 0), we then haveZ("n ! 0; �2; �1 = 0) = 2�(3=2)p� 26664� "n("n + i�2)2��23 � ++ ���12�0BB��"n("n + i�2)2��23 � 1CCA3=237775 : (38)In partiular, for �2 = 0, we have ImZ = 0 andZ("n ! 0; �2 = �1 = 0) == ReZ("n ! 0; �2 = �1 = 0) = �(3=2)p� "2n��23 � ; (39)and we thus obtain the quadrati NFL behavior of theZ fator. We again present some results on the limitbehavior.1. For "n � j�2j, we haveReZ("n � j�2j; �1 = 0) = 2�(3=2)p� �� 26664 "2n2��23 � +p2�0BB� "nj�2j2��23 �1CCA3=237775 ; (40)

i.e., the NFL �zero� behavior.2. For "n � j�2j (i.e., also at the �hot spot�, where�2 = 0), we haveReZ("n � �2; �1 = 0) = �(3=2)p� "2n��23 � ; (41)whih is again the NFL �zero� behavior.In the general ase of �nite orrelation lengths� = ��1, we have to perform numerial analysis us-ing the reursive relations proposed in Refs. [2, 3℄. Weagain use the basi de�nition of the Z fator in (3). Toalulate the self-energy �("n; �p) of an eletron mov-ing in the quenhed random �eld of (stati) Gaussianspin �utuations with dominant sattering momentumtransfers from the viinity of the harateristi vetorQ, we use the reursive proedure [2, 3℄ in whih allFeynman diagrams desribing the sattering of ele-trons by this random �eld are taken into aount. Thesought self-energy is given by�("n; �p) = �k=1("n; �p) (42)with �p = �(p)� � (f. (28)) and�k("n; �p) == �2 s(k)i"n + �� �k(p) + invk���k+1("n; �p) : (43)The quantity � again haraterizes the energy saleof pseudogap �utuations and � = ��1 is the inverseorrelation length of short-range SDW �utuations,�k(p) = �(p+Q) and vk = jvxp+Qj + jvyp+Qj for oddk, while "k(p) = "(p) and vk = jvxpj + jvypj for even k.The veloity projetions vxp and vyp are determined bythe usual momentum derivatives of the �bare� eletronenergy dispersion �(p) given by (28). Finally, s(k) is aombinatorial fator, withs(k) = k (44)for ommensurate harge (CDW type) �utuationswith Q = (�=a; �=a) [5℄. For inommensurate CDW�utuations [5℄, we �nds(k) = 8>><>>: k + 12 for odd k;k2 for even k: (45)For the spin-fermion model in Ref. [2℄, the om-binatoris of diagrams beomes more ompliated.Spin-onserving sattering proesses obey ommensu-rate ombinatoris, while spin-�ip sattering is de-sribed by diagrams of the inommensurate type484
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E. Z. Kuhinskii, M. V. Sadovskii ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006GR("; �p) = "� �2("+ iÆ � �1)("� �2 + iÆ)�W 2 == "� �2("� �1)("� �2)�W 2 + iÆ(2"� �1 � �2) (47)and therefore the spetral density in the ase of along-range (CDW, SDW) order is given byAW ("; �p) = � 1� ImGR("; �p) == ("��2)Æ[("��1)("��2)�W 2℄ sign(2"��1��2): (48)Aordingly, for the FGM with the orrelation length� !1, we haveA("; �p) = 1Z0 dWPWAW ("; �p); (49)where PW is the distribution funtion of gap �utua-tions, depending on the ombinatoris of diagrams andleading to the following separate ases, already onsid-ered (or mentioned) above.1. Inommensurate ombinatorisIn the ase of inommensurate CDW-like pseudogap�utuations, we havePW = 2W�2 exp��W 2�2 � ; (50)whih is the Rayleigh distribution [4, 11℄. From (49),we then obtainA("; �p) = "� �2�2 exp�� ("� �1)("� �2)�2 ��� �[("� �1)("� �2)℄ sign(2"� �1 � �2): (51)For " = 0, we haveA(" = 0; �p) == �2�2 exp���1�2�2 � �[�1�2℄ sign(�1 + �2): (52)For �1 ! �0, we obtainA(" = 0; �p ! �0; �2) = � �2�2 �(��2); (53)and therefore A(" = 0; �p) is nonzero within the Bril-louin zone only in the spae between the �bare� Fermisurfae and the �shadow� Fermi surfae. This quali-tative result is on�rmed below, for all other ombina-toris, in the ase of the �pure� FGM with ��1 = � = 0.

2. Commensurate ombinatorisIn the ase of ommensurate CDW-like pseudogap�utuations, we have [6℄PW = 1p2�� exp��W 22�2� ; (54)whih is the Gaussian distribution. From (49), we thenobtainA("; �p) = 1p2� "� �2�p("� �1)("� �2) �� exp�� ("� �1)("� �2)2�2 ��� �[("� �1)("� �2)℄ sign(2"� �1 � �2); (55)with the same qualitative onlusions as in the inom-mensurate ase.3. Spin-fermion ombinatorisIn the ase of SDW-like pseudogap �utuations ofthe (Heisenberg) spin-fermion model [2℄, we have thegap distributionPW = 2� W 2��23 �3=2 exp0BB�� W 22��23 �1CCA : (56)From (49), we then obtainA("; �p) = 1p2� p("� �1)("� �2)��23 �3=2 �� exp0BB�� ("� �1)("� �2)2��23 � 1CCA �[("� �1)("� �2)℄�� sign(2"� �1 � �2); (57)again with the same qualitative onlusions as in theinommensurate ase.In the general ase of �nite orrelation lengths� = ��1, spetral densities an be diretly omputedusing analyti ontinuation of reursive relations (42)and (43) to real frequenies [2, 3℄.Atually, two-dimensional ontour plots ofA(" = 0; �p) (whih diretly orrespond to ARPESintensity plots) an be used for a �pratial� de�nitionof the renormalized Fermi surfae and provide a486
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Fig. 6. Intensity plots of the spetral density A(" = 0; �p) in the Brillouin zone for the �hot spots� model (t0 = �0:4t and� = �1:3t) in the ase of in�nite orrelation length ��1 = � = 0 and for a �nite orrelation length ��1a = �a = 0:01(the spin-fermion ombinatoris of diagrams) with di�erent values of the pseudogap amplitude. The �bare� Fermi surfae isshown by a dashed linequalitative piture of its evolution in the FGM withhanged model parameters6).In Fig. 6, we show typial intensity plots of the spe-tral density A(" = 0; �p) in the Brillouin zone for the�hot spot� model both in the ase of the in�nite orre-lation length ��1 = � = 0 and for a �nite (large!) or-relation length ��1a = �a = 0:01 (for the spin-fermionombinatoris of diagrams; in other ases, the behavioris quite similar) and for di�erent values of the pseudo-gap amplitude �. We see that these spetral densityplots give a rather beautiful qualitative piture of the6) We note that for free eletrons, A(" = 0; �p) = Æ(�p), andtherefore the appropriate intensity plot diretly reprodues the�bare� Fermi surfae.

�destrution� of the Fermi surfae in the viinity of �hotspots� for small values of �, with formation of typial�Fermi ars� as � grows, whih qualitatively resemblestypial ARPES data for opper oxides [16, 17℄.D. Superonduting d-wave �utuationsAs noted above, the ase of superonduting s-wave pseudogap �utuations simply redues to the one-dimensional FGM. Muh more interesting is the aseof superonduting d-wave �utuations in two dimen-sions.To obtain exat results in the ase of the in�niteorrelation length ��1 = � = 0, we have only to makesimple replaements in the above expressions for the487



E. Z. Kuhinskii, M. V. Sadovskii ÆÝÒÔ, òîì 130, âûï. 3 (9), 2006�hot spot� model with inommensurate ombinatoris:�2 ! ��1 = ��p and � ! �p, where �p de�nes theamplitude of �utuations with the d-wave symmetry:�p = 12� [os(pxa)� os(pya)℄ ; (58)where � now haraterizes the energy sale of pseudo-gap �utuations.Equation (31) then redues to z = �("2n + �2p) andwe immediately obtain an expression for the Z fator,similar to (21):Z("n; �p) = �"2n + �2p�2p exp �"2n + �2p�2p !�� Ei �"2n + �2p�2p ! � �"2n + �2p�2p �� ln 0 "2n + �2p�2p !! 0 as "n ! 0; �p ! 0; (59)again replaing the pole singularity by a zero at the�bare� Fermi surfae, exept for the �nodal� point at thediagonal of the Brillouin zone, where �p = 0 (f. (58)).Instead of (51), we obtain the spetral density asA("; �p) = "+ �p�2p exp �"2 � �2p�2p !�� �("2 � �2p) sign "; (60)whih is nonzero only for j�pj < ". As a result, at " = 0,we have A(" = 0; �p) = 0 for �p 6= 0, and it is di�erentfrom zero only at the intersetion of the Brillouin zonediagonal with the �bare� Fermi surfae, where �p givenby (58) is zero. At the Fermi surfae itself, we haveA("; �p = 0) = j"j�2p exp�� "2�2p� ; (61)with two maxima at " = ��p=p2.Considering the general ase of �nite orrelationlengths � = ��1, we again perform numerial analy-sis based on the reursive relations introdued for thisproblem in Ref. [3℄, using the basi de�nition of the Zfator in (3). To alulate the self-energy �("n; �p) ofan eletron sattered by stati �utuations of the super-onduting order parameter with the d-wave symmetry,we use the following relation (similar to (43)) slightlygeneralizing relations derived in Ref. [3℄:�k("n; �p) == �2ps(k)i"n�(�1)k�p+ik�(jvxpj+jvypj)��k+1("n; �p) ; (62)where s(k) is de�ned in (45).
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Fig. 8. Intensity plots of the spetral density A(" = 0; �p) in the Brillouin zone (t0 = �0:4t and � = �1:3t) in the aseof superonduting (d-wave) pseudogap �utuations. The orrelation length is ��1a = �a = 0:1 (with the spin-fermionombinatoris of diagrams) for two di�erent values of the pseudogap amplitude � = 0:3t and � = t4. CONCLUSIONWe analyzed the rather unusual (NFL) behavior ofthe �utuating gap model of pseudogap behavior inboth one and two dimensions. We studied the quasipar-tile renormalization (Z fator) of the single-eletronGreen's funtion, demonstrating a kind of �marginal�Fermi-liquid or Luttinger-liquid behavior (i.e., the ab-sene of well-de�ned quasipartiles lose to the Fermisurfae) and also the topologial stability of the �bare�Fermi surfae (the Luttinger theorem). This re�etsstrong renormalization e�ets leading to the replae-ment of the usual pole singularity of the Green's fun-tion in a Fermi liquid by a zero, thus e�etively repla-ing the Fermi surfae of poles by the Luttinger surfaeof zeroes [20℄. In the presene of stati impurity-likesattering due to the e�ets of �nite orrelation lengthsof pseudogap �utuations, this singularity is replaedby a �nite disontinuty.In the two-dimensional ase, we disussed thee�etive piture of the Fermi surfae �destrution�both in the �hot spot� model of dieletri (AFM,CDW) pseudogap �utuations and in the qualitativelydi�erent ase of superonduting d-wave �utuations,re�eting the NFL spetral density behavior and simi-lar to that observed in ARPES experiments on opperoxides. Intensity plots obtained in the ase of AFM(CDW) �utuations, in our opinion, are more similarto the ARPES intensity data obtained in experiments

on opper oxides. We note that this e�etive piturewas also diretly generalized to the ase of stronglyorrelated metals or doped Mott insulators [18℄ usingthe so-alled DMFT +�k approah in Ref. [19℄.The authors are gratefull to G. E. Volovik for hisinterest and very useful disussions, whih, in fat, ini-tiated this work.This work was supported in part by the RFBR(grant � 05-02-16301) and programs of the Presidiumof the Russian Aademy of Sienes (RAS) �Quantummarophysis� and of the Division of Physial Sienesof the RAS �Strongly orrelated eletrons in semion-dutors, metals, superondutors, and magneti mate-rials�. REFERENCES1. M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001);E-print arhives, ond-mat/0408489.2. J. Shmalian, D. Pines, and B. Stojkovi, Phys. Rev.B 60, 667 (1999).3. E. Z. Kuhinskii and M. V. Sadovskii, Zh. Eksp. Teor.Fiz. 115, 1765 (1999).4. M. V. Sadovskii, Zh. Eksp. Teor. Fiz. 66, 1720 (1974);Fiz. Tverd. Tela 16, 2504 (1974).489



E. Z. Kuhinskii, M. V. Sadovskii ÆÝÒÔ, òîì 130, âûï. 3 (9), 20065. M. V. Sadovskii, Zh. Eksp. Teor. Fiz. 77, 2070 (1979).6. W. Wonneberger and R. Lautenshlager, J. Phys. C 9,2865 (1976).7. M. V. Sadovskii and A. A. Timofeev, J. Mosow. Phys.So. 1, 391 (1991).8. R. H. MKenzie and D. Sarratt, Phys. Rev. 54,R12709 (1996).9. G. E. Volovik, E-print arhives, ond-mat/0505089;ond-mat/0601372.10. A. B. Migdal, Theory of Finite Fermi Systems and Ap-pliations to Atomi Nulei, Intersiene Publishers,New York (1967); Nauka, Mosow (1983).11. M. V. Sadovskii, Diagrammatis, World Sienti�, Sin-gapore (2006).12. I. E. Dzyaloshinskii and A. I. Larkin, Zh. Eksp. Teor.Fiz. 65, 411 (1973).13. C. M. Varma, P. B. Littlewood, S. Shmitt-Rink,E. Abrahams, and A. E. Rukenstein, Phys. Rev. Lett.63, 1996 (1989).

14. M. V. Sadovskii and N. A. Strigina, Zh. Eksp. Teor.Fiz. 122, 610 (2002).15. M. V. Sadovskii, Physia C 341�348, 811 (2000).16. M. R. Norman, H. Ding, M. Randeria, J. C. Cam-puzano, T. Yokoya, T. Takeuhi, T. Takahashi,T. Mohiku, K. Kadowaki, P. Guptasarma, andD. G. Hinks, Nature 392, 157 (1998).17. A. A. Kordyuk, S. V. Borisenko, M. S. Golden, S. Leg-ner, K. A. Nenkov, M. Knupfer, J. Fink, H. Berger,L. Forro, and R. Follath, Phys. Rev. B 66, 014502(2002).18. E. Z. Kuhinskii, I. A. Nekrasov, and M. V. Sadovskii,Pis'ma v Zh. Eksp. Teor. Fiz. 82, 217 (2005).19. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuhinskii,Th. Prushke, and V. I. Anisimov, Phys. Rev. B 72,155105 (2005).20. I. E. Dzyaloshinskii, Phys. Rev. B 68, 085113 (2003).

490


