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It is demonstrated that in photoabsorption of the 4d'° subshell of a Xe atom in molecular Xe@Cgg, the 4d giant
resonance that characterizes the isolated Xe atom is distorted significantly. The reflection of photoelectron
waves by the Cgo shell leads to profound oscillations in the photoionization cross section such that the Xe giant
resonance is transformed into four strong peaks. Similarly, the angular anisotropy parameters, both dipole and
nondipole, are also modified. The method of calculation is based on the approximation of the Cgo shell by an
infinitely thin bubble potential that leaves the sum rule for the 4d-electrons almost unaffected, but noticeably

modifies the dipole polarizability of the 4d-shell.
PACS: 32.80.Fb, 32.80.Hd

1. INTRODUCTION

Giant resonances are universal features of the exci-
tation of finite many-fermion systems: nuclei, atoms,
fullerenes, and clusters. They represent collective,
coherent oscillations of many particles and manifest
themselves most prominently in photon absorption
cross sections. In a nucleus, giant resonances repre-
sent the excitation of coherent oscillatory motion of all
protons relative to all neutrons [1], while in all the other
objects mentioned above, they represent the coherent
motion of all electrons of at least one many-electron
shell (in atoms) and all collective electrons in metallic
clusters and fullerenes. Giant resonances are manifes-
tations of plasmon-type or Langmuir excitations in a
homogeneous electron gas [2] or the so-called «zeros»
sound in a Fermi liquid [3].

The universal nature of the giant resonances (GRs)
was recently emphasized [4]. In photoabsorbtion cross
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sections, GRs are represented as a function of pho-
ton energy by huge, almost symmetric broad maxima.
They have very large so-called oscillator strengths,
which are determined by the total integrated area of
the photoabsorption cross-section curves. The similar-
ity of GRs in different objects is amazing, because when
plotted on the same relative scales, GRs in nuclear Ph,
4d' subshell in atomic Xe and in fullerene Cgo look
alike [4]. It is important to emphasize that the ratio of
the resonance width I" that characterizes its lifetime 7,
T ~ 1/T, to the frequency € is almost the same for the
above-mentioned objects,
1/5<T/Q < 1/4.

It is obvious that the absolute values of the resonance
energies and cross sections differ in these objects by
orders of magnitude, particularly when we compare
the values for the 4d'° subshell in atomic Xe and nu-
clear Pb.

At first glance, a GR represents an immanent, in-
ner feature of an object. However, it is of interest to
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understand whether at all and under what conditions
GRs could be modified. From [2-4], it is clear that
the frequency of GRs could be modified by altering
the density of collective electrons in atoms and multi-
atomic objects or nucleons in nuclei. Needless to say,
it is practically impossible to do. Hence, the direct
verification of the theories developed in [2] and [3] con-
cerning GRs is impossible. Collecting large numbers of
Fermi atoms in a trap at low temperature can create a
semi-natural object for studies of GRs’ dependence on
the density as well as of the universality of GRs. It is
reasonable to expect such experiments in the not too
distant future.

However, one can imagine another way of altering
the GR’s frequency, structure, and even their very ex-
istence. It seems that this can be achieved by placing
objects possessing GRs into a cage that resonates. In-
deed, the recently discovered endohedral atoms present
the possibility of creating such an object: viz., an atom
of Xe that has a GR in its 4d'? subshell placed inside a
Cgo shell, Xe@Cgg. One can argue that in Xe@Cgg, it
is not the GR that is modified, but its observable man-
ifestation. We believe, however, that the possibility to
affect such a decisively important manifestation as the
photoabsorption cross section is both of interest and of
importance.

The photoionization of endohedral atoms, A@QCgg,
was studied in a number of papers [5-8]. The physical
reason for the modification of the total cross sections
and angular distributions, both dipole and nondipole, is
in the reflection of the relatively slow photoelectron by
the Cgg shell. The effect of Cgg rapidly disappears with
the growth of the photoelectron energy. This is why
giant autoionization resonances, e.g., those in Eu [9],
remain unaffected by the Cgp shell, because relatively
fast photoelectrons are emitted after their excitation.

In this paper, we calculate the photoionization
cross section and the angular anisotropy parameters of
Xe@Cgg, representing the Cgg by a delta-type poten-
tial. The range of validity of this approximate potential
is discussed at length in a recent paper [10]. Contrary
to photon absorption, photon scattering is not accom-
panied by a strong reflection of the emitted object by
the Cgg shell. In order to see how the latter affects the
photon scattering in the GR region, we calculate the
dipole polarizability of Xe@Cgq and also check the sum
rule of the GR in Xe and Xe@Cgq.

2. SOME DETAILS OF CALCULATIONS

The description of the interaction of electromag-
netic radiation with fullerene-like molecules A@QCygq is a
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very complicated theoretical problem, an order of mag-
nitude more complex than the calculation for an iso-
lated atom. Therefore, to analyze the influence of the
fullerene shell encapsulating an endohedral atom, con-
siderable simplifications are almost inevitable. These
simplifications can be introduced because the geomet-
rical size of a fullerene cage is significantly larger than
the radius of any subshell of the encapsulated atom.
Therefore, to a good approximation, the initial state
wave function of an endohedral atom AQCgy is the
same as the wave function of the isolated atom A. The
surrounding carbon atoms of Cgg need to be taken into
account only to describe the final state of the photoion-
ization process, the molecular continuum wave func-
tion.

Further, for a low-energy photoelectron with the
wavelength A ~ 1/k (k being the photoelectron mo-
mentum in atomic units) of the order of or larger than
the distance between the C atoms forming the fullerene
cage, the real Cgp potential can be approximated quite
well by the potential of a spherical shell formed by the
smeared-on-the-sphere carbon atoms. Even for higher
energy (momentum) photoelectrons, the spherical shell
potential is not a bad approximation at all (see [10] and
the references therein). In any case, for the descrip-
tion of the photoionization of the atom A in molecu-
lar A@Cgp, the real potential of the fullerene cage is
replaced by a spherically symmetric phenomenological
potential V (r) concentrated on the surface of the cage
with parameters defined by the experimental data for
an empty fullerene cage.

If the photoelectron wavelength is of the order of
the bond length between the C atoms, it is clearly
larger than the thickness of the spherical shell where
V(r) # 0. We therefore approximate the spherical shell
as the one of zero thickness. This allows the determina-
tion of the continuum wave function by matching the
inner and outer solutions of the Schrodinger equation
at the boundary. The situation here is similar to nu-
clear physics, where low-energy nucleon scattering can
be described by a logarithmic derivative of the wave
function at » = 0. This derivative, in turn, is defined
by the nucleon binding energy [11]. In our case, the
boundary condition for the photoelectron wave func-
tion is imposed not at zero but on the sphere of the
radius R. This method of defining the wave function
is equivalent to representing the shell potential as a
bubble potential

Vi(r)

Vod(r — R).

Here, R is the fullerene radius known from experimen-
tal data and Vj is the d-potential effective strength,
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determined by the electron affinity of an «empty» Cgg
molecule.

As in any simplification, the bubble potential has its
limited domain of validity. But its application is rea-
sonable for the description of the electronic processes
involving Cgo for which the details of the wave function
inside the spherical layer (where the C atoms are con-
centrated) are insignificant. Among these processes are
photo-detachment of the negative Cg ions [12], elastic
scattering of slow electrons by fullerenes [13], confine-
ment resonances in the photoionization of endohedral
atoms A@QCg [10], etc. In this paper, we use the bubble
potential to model the actual potential and describe the
dipole #(w) and nondipole v(w) parameters in the pho-
toelectron angular distribution from endohedral atoms
XQ@CGU.

The formulas used in this paper have been derived
in Ref. [7], and we therefore present only the main re-
sults here. For an atom A located at the center of a
Cgo cage, the problem of calculating the wave function
of an electron in the continuum is, in the one-electron
approximation, reduced to solving the one-dimensional
Schrédinger equation, in which the bubble potential is
added to the potential of an isolated atom A. It is evi-
dent that the solutions of this equation inside and out-
side the sphere of radius R are the wave functions of the
isolated atom A. Therefore, inside the potential bub-
ble, the continuum wave function differs only by a nor-
malization factor dependent on the photoelectron en-
ergy from the regular solution ug; (r) of the Schrodinger
equation for a free atom, i.e.,

Xkt (r) = Ty(k)up (r),

with [ being the electron angular momentum. Outside
the d-sphere, the function yg(r) is a linear combina-
tion of the regular ug (r) and irregular vy (r) solutions
of this equation. The coefficients of the linear combina-
tion are defined by the matching conditions of the wave
functions on the spherical shell, i.e., at r = R. The ad-
ditional phase shift A;(k) of the wave function due to
electron scattering by the bubble potential and the co-
efficient T;(k) are defined by the matching conditions
atr = R as

_ up, (R)
tgAl(k)_ukl(R)vklk(lR)_k/ALv ( )
1
Ti(k) = cos Aj(k) |1 —tg Al(k)zzll((g))

where AL is the discontinuity of the logarithmic deriva-
tive of the wave function at » = R, related to the
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fullerene radius R and the electron affinity I of the
empty Cgo via

AL = —2Vy = —[1 + cth(BR)],

where 3 = /2I. Throughout the text, the atomic sys-
tem of units (A =m = e = 1) is used. We note that in
deriving Eq. (1), we take into account that the Wron-
skian of the radial Schrédinger equation is given by

Wi (r) = up(r)vg (r) = up (r)ou (r) = k #0.

As long as the «size» of the atomic subshell is
smaller than the size of Cgg, the matrix elements for
electron transitions to the continuum are formed near
atom A, i.e., well inside the Cgo-sphere. Therefore,
these amplitudes coincide with the amplitudes of the
corresponding transitions in the free atom except for
the multiplicative factor T;(k). Because of the coupling
between the oscillations of the wave functions inside
and outside this sphere, the coefficients have a reso-
nance character. Therefore, there are resonances in the
transition matrix elements for endohedral atoms that
translate into the so-called confinement resonances in
the total photoionization cross section [7, 10, 14], which
in the case of Xe@Cgq are superimposed on the 4d'°
Xe giant resonance. It is evident that for the same rea-
son, these new resonances also appear in the dipole and
nondipole asymmetry parameters.

The expressions for these parameters can be simply
obtained from the general expressions for the dipole
and nondipole asymmetry parameters derived for free
atoms [15-17], where it is only necessary to replace the
dipole d;+; and quadrupole ¢42,0 matrix elements by
Ti+1di+1 and Tj4s,0q42,0 respectively, and the corre-
sponding phase shifts of the photoelectron wave func-
tions for the free atom ;141 and ;12 by the sum of
the phases:

Oir1 +Aixr and G000 + Ajsoo.

We focus on the dipole parameter [, (w) defin-
ing the angular distribution in photoionization of the
atomic d-subshells and on the nondipole parameters
78 (w) and 6% (w). The angular distribution for iso-
lated atoms is given by the expression [15]

dopni(w)
dQ

— U"ifrw) [1 4 Bni(w)Ps(cosf) +

+ [0S (w) + 75 (w) cos® O] sinf cos @], (2)

where o, (w) is the total photoionization cross sec-
tion, B (w) is the dipole angular anisotropy parameter,
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75 (w) and 6 (w) are the nondipole asymmetry param-
eters, Py(cosf) is the Legendre polynomial, 8 is the
polar angle of the photoelectron velocity with respect
to the photon polarization vector e, and ¢ is the az-
imuthal angle defined by the projection of the electron
velocity in the plane perpendicular to e and containing
the photon propagation vector k.
The dipole parameter 44(w) is given by

B4d = M d%+6d§—18d1d3 COS(63—51)] . (3)
1 3

The nondipole asymmetry parameters 75 (w) and
6C (w) are related to 7n(w) and nm(w) introduced
in [18] and expressed there via the dipole d and
quadrupole ¢ matrix elements. Here, we are interested
in the case where n = 4, [ = 2. Therefore, we have

w
65 == (’74d + 774d> ;
¢ (4)
w
vy = —52774d7

where ¢ is the speed of light. The coefficients y44(w)
and n44(w) are given by

6
—_————— X
3522 + 3d2)

X |Tdy[qo cos(dg — 1) — g2 cos(d2 — 01)] +

Y4d =

+ 3d3 [QQ COS((SQ — (53) — 6q4 COS((S4 — 63)] N (5)

6

M= T3508 + 38)

X |2d;[qa cos(da — 01) — 6gq cos(dg4 — 1)] +
+ d3[7Q0 COS((SO — (53) — SQQ COS(52 - (53) +

+ 6q4 COS((S4 — 63)] . (6)
In these formulas, dy3 and ¢o24 are the dipole
and quadrupole matrix elements in the one-electron
Hartree — Fock approximation and §;(¢) are the photo-
electron’s elastic scattering phase shifts, € = w — I44,
with I;4 being the 4d-subshell ionization potential. The
matrix elements are defined as

oo

di3 = dadg 1,3 = /U4d(7“)7”uk1,3(7”) dr,

0
00
0

(7)

U4d(r)r2uk0,274(7') dr,

DO | =

q0,2,4 = q4d,k0,2,4 =
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where u4q(r) and wg(r) are the radial parts of the
Hartree — Fock one-electron wave functions. To obtain
the corresponding expressions for the parameters in
Eqs. (3), (5), and (6), we must perform the following
substitutions in them [16, 18]:

|di 3

2 12 "2
— Dy3 + Dy,

diqj cos(d;—6;) — <D2Q9+D;’Q;’> cos(8;—8;)—

- (DQQ}' - Dé'Q']’) sin(d; — 6;).  (8)

Here, D 3, Qg 2,4 and DY 3, Qg 5 4 are respectively the
real and imaginary parts of the corresponding matrix
elements. The presence of the bubble potential modi-
fies Eqs. (3), (5), and (6) to the respective equations

foy = 2
YT 5T24 + 3T242)

- 18T1T3d1d3 COS((53 + Ag — 51 — Al) s

Tid; + 6T5d; —

(9)

Tad = _35(2de§6+ 31242
x |TTydy [Toqo cos(do + Ag — 01 — Ay) —
—Taga cos(d2 + Ay — 61 — Aq)] +
+ 3T3d3[T>qs cos(da + Ay — 03 — Agz) —
— 6T4qq cos(dq + Ay — d3 — A3)]|, (10)
6
M= T350T2E 1 312d)
X |2T1dy [Taqa cos(da + Aoy — 6y — Ay) —
— 6T4qs cos(0s + Ag — 61 — Ay)] +
+ T5d3[TToqo cos(dp + Ag — 03 — Ag) —
— 8T2q2 cos(d2 + Az — 3 — Az)] +
+ 6T4qq cos(dg + Ay — 05 — A3z)]|.  (11)

Because the photoelectron angular distributions pa-
rameters involve interference among amplitudes of dif-
ferent angular momenta, rather than just the sum of
absolute squares that determines the total photoion-
ization cross section, one can expect more complicated
resonance structures in the energy dependence of these
parameters and, hence, in the photoelectron angular
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distributions than in the total photoionization cross
sections.

We use the general formulas in Eqgs. (1)—(11) to in-
vestigate the photoionization of the Xe@Cgo molecule,
with the Xe atom located at the center of the bubble
potential. The wave functions of the free Xe atom in
the 4d-state and in the continuum wug (r) were calcu-
lated in the one-electron Hartree —Fock approximation
using the computer codes ATOM [19]. The solutions
vg (1) irregular at r = 0 were calculated, as in Ref. [7,
10], using the relation

V(1) = gt (1) Wi (r) / 2d—r

gy (1) (12)

3. RESULTS OF CALCULATIONS

The calculated cross sections, dipole and nondipole
parameters for the photoionization, and dipole polar-
izability of the Xe atom encapsulated in a Cgg shell,
Xe@Cgg, are presented in Figs. 1-4. The corresponding
parameters for the free Xe atom are also given there.
Clearly, the fullerene shell qualitatively alters the de-
pendence of these parameters on the photoelectron en-
ergy. Very impressive is its effect on the cross section,
where the giant resonance in the isolated atom is trans-
formed into four well-pronounced maxima in Xe@Cg,
which is depicted in Fig. 1. The fifth maximum is very
small. As in the case of the 4d — ef giant resonance
in Ba atoms [20], the processes of reflection and refrac-
tion of p- and f-electronic waves by the fullerene shell
in Xe@Cgg also induce a resonance structure, and the
total photoionization cross section o44(w), as a func-
tion of the photon energy, oscillates around the atomic
«backgroundy.

Figure 2 presents the result for the dipole param-
eter fB44(w). Here, we again see very significant mod-
ifications by the action of the Cgo shell; in fact, four
maxima are observed instead of the two in pure Xe,
including a very narrow one that appears just near the
threshold. The curve for f44(w) is modified stronger
than that for the cross section, because it includes a
product of d; and ds matrix elements along with a
sum of their moduli squared. Figure 3 depicts data
for both nondipole parameters 7{;(w) (Fig. 3a) and
6¢,(w) (Fig. 3b), and the usually measurable combina-
tion v{;(w) + 365,(w) (Fig. 3¢). Clearly, the Cgo shell
modifies all these parameters. Particularly notable is
the near-threshold modification of <, (w) resulting in
a high maximum instead of a minimum. The rest of
the curve is modified similarly to that of S44(w). The
640d (w) curve acquires a multi-maximum structure due

Total Xe 4d cross section, Mb
70 T T T T T T T T

60 .

50 .

40+ .

30+

20+ !

10+

10 11 12 13 14
Photon energy w, Ry

Fig.1.  Photoionization cross sections o44(w) of
4d-electrons in atomic Xe (dashed curve) and in
Xe@Cgo (solid curve) as functions of the photon en-

ergy w

64(1

2.0+

1.5+

1.01

0.5F

5 6 7 8 9 10 11 12
Photon energy w, Ry

Fig.2. Dipole angular anisotropy parameters 344(w)
of 4d-electrons in atomic Xe (dashed curve) and in
Xe@Cgo (solid curve) as functions of the photon en-

ergy w
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C
Yad
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0.05
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Photon energy w, Ry

3650+ V5a
010 T

0.05

10 11 12 13

7005 1 1 1 1

55 6.0 65 70 75 80 85 9.0

Photon energy w, Ry

to the combination of dipole and quadrupole matrix
elements that are modified differently by the Cgg shell.

To clarify the effect of the Cgg shell on the giant res-
onance, it is informative to compare dipole polarizabili-
ties ay‘d) (w) for Xe and Xe@Cg in the giant resonance

region 5.56Ry < w < 13.45 Ry. Using the formula
(13)

o4a(w) = 4#% Im a(d4d) (w)

we calculate the imaginary part of the polarizability.
To find the real part of ay‘d) (w), the dispersion rela-

0fa
0005 T T T T T T T
ol
—0.005 |
_0.0 L L L L L L L L
6 7 8 910111213
—0.010 1 1 1 1 1 1 1
55 6.0 65 70 75 80 85 9.0
Photon energy w, Ry
Fig.3.  Nondipole angular anisotropy parameters

y5a(w), 055 (w) and 7§, (w) + 355, (w) of 4d electrons in
atomic Xe (dashed curve) and in Xe@Cgg (solid curve)
as functions of the photon energy w: a — ~5(w),

b— 85u(w), ¢ — via(w) + 365, (w)

tion

7 (ad),
(ay, v 2 [wima, (W)
ReOéd (UJ) ~ ;/de =
I4q
_ oaa(w')
T 92 w2 — w2
L1

dw' (14)

has to be used. In Eq. (14), we have neglected the
contribution of discrete levels because their oscillator
strengths are small for 4d-electrons of either pure Xe
or Xe@QCgg. Figures 4a, b present the results for the
polarizability of both Xe and Xe@Cgo. The values of
Re ay‘d) (w) and Im ozl(fd) (w) are given in Fig. 4a and
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Re g, a. u.

20 T T T T T T T T
a
10} 1
0_ u
14
—10F 4
12+ 1
10F 1
—20+ sk 14
6 4
—30} 4r 14
2+ 4
0 1 1 1 1 1 4 1
—40r 6 7 8 9 10 11 12 13 -
6 7 8 9 10 11 12 13

Photon energy w, Ry

c

10 11 12 13
Photon energy w, Ry

Fig.4. Dipole polarizabilities avg;(w) of 4d-electrons in atomic Xe (dashed curve) and in Xe@Cgo (solid curve) as functions
of the photon energy w. a — Real and imaginary parts of a{;(w), b — absolute value of the polarizability af;(w)

the rather informative \ozl(fd) (w)] is depicted in Fig. 4b.
We note that although the absolute value of ay‘d) (w)
for Xe@Cgq in the frequency region of interest is deter-
mined to a large extent by the sixty carbon atoms in-
stead of a single Xe, they provide only a slowly decreas-
ing contribution with increasing w. The rapid variation
of the polarizabilities must come from the Xe atom.
Therefore, the results of our calculation for the polar-
izability can in principle be verified experimentally.

Physically, the origin of the new resonances is easy
to understand. The photoelectron can escape from the
atom directly, or scatter from the Cgq shell on its way
out. When the waves representing these two «path-
ways» are in phase, constructive interference, a res-
onant enhancement, results. When they are out of
phase, destructive interference occurs. The decrease
in the resonance structure with increasing photoelec-
tron energy arises because, with increasing the energy,
the Cgg sphere becomes more and more transparent
to the photoelectron, thereby decreasing the reflec-
tion and, thus, interference. In the general sense, the
physical origin of these confinement resonances is the
same as the cause of EXAFS in the photoabsorption
of condensed matter, and the similar phenomenon in
diatomic (and other) molecules.
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It is interesting to note that while the cross section
is strongly modified, the area under the curves for Xe
and Xe@Cgo within the giant resonance frequency re-
gion 5.56 Ry < w < 13.45 Ry are almost the same.
Indeed, the contribution of the 4d-electrons to the sum

rule
o0

- / O1a(w) do

Syy =
4d o2

La

is equal to 10.61 and 10.53 for free Xe and Xe@Cgg,
respectively. These values are remarkably close to each
other, emphasizing that the Cgg shell causes redistri-
bution of the 4d cross section leaving its total power
unaltered. The calculated values are very close to the
total number of electrons in the 4d-shell, as expected.
We note that with the increase of w,

Re g — —S4d/w2

as w — 00.

We checked this relation and found that the asymptotic
value is reached relatively slowly. The Table illustrates
this.

Finally, we note that the dramatic modification of
the cross section and the dipole and nondipole angu-
lar anisotropy parameters, presented herein for Xe in
Xe@Cygq, will not be observed in the other endohedral
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Asymptotic behavior of the real part of the polarizabil-
ities for Xe and Xe@Cgo

kE |w=T+k%* Ry | w?Reaxe | w? Reaxeacy,
10 —105 —11.83 —11.74

20 —405 —10.90 —10.83

30 —905 —10.74 —10.66

50 —2505 —10.65 —10.58
150 —22505 —10.61 —10.54

atom Eu@Cgo. The reason is that for the latter, the
4d'0 giant resonance decays by emission of the outer
subshell, i.e., relatively fast electrons that are not af-
fected by the Cgq shell.

4. CONCLUSION

According to the above calculation, the existence
of the Cgg shell in molecular Xe@QCgq leads to strong
distortions of both the total photoionization cross
section and the dipole and nondipole asymmetry
parameters within the 4d giant resonance regime. This
is a vivid manifestation of the resonance nature of
the Cgp cage that acts as a resonator surrounding
the ionized atom. We strongly urge the initiation
of experimental investigations of this new effect to
establish its existence, which could have important
implications for the interpretation of molecular and
condensed-matter photoelectron studies. Particularly
interesting and relevant is the possibility of preparing
a series of Cgg fullerenes encapsulating either atoms
or small molecules using the recent novel molecular
surgery method [21] and performing photoabsorption
measurements.
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