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POLARIZATION EFFECTS INDUCED BY A MAGNETIC FIELDIN INTRINSICALLY GRANULAR SUPERCONDUCTORSS. Sergeenkov *Centro de Físia das Interaç~oes Fundamentais, Instituto Superior Ténio1049-001, Lisboa, PortugalLaboratory of Theoretial Physis, Joint Institute for Nulear Researh141980, Dubna, Mosow Region, RussiaSubmitted 3 June 2005Based on the previously suggested model of nanosale disloation-indued Josephson juntions and their arrays,we study the magneti-�eld-indued eletri polarization e�ets in intrinsially granular superondutors. Inaddition to a new phenomenon of hemomagnetoeletriity, the model also predits a few other interestinge�ets, inluding harge analogues of Meissner paramagnetism (at low �elds) and a ��shtail� anomaly (at high�elds). The onditions under whih these e�ets an be experimentally measured in nonstoihiometri high-Tsuperondutors are disussed.PACS: 74.25.Ha, 74.50.+r, 74.81.-g1. INTRODUCTIONBoth granular superondutors and arti�ially pre-pared arrays of Josephson juntions (JJAs) proved use-ful in studying the numerous quantum (harging) ef-fets, inluding blokade of Cooper pair tunneling [1℄,Bloh osillations [2℄, propagation of quantum ballistivorties [3℄, spin-tunneling related e�ets with speiallydesigned SFS-type juntions [4, 5℄, novel Coulomb ef-fets in SINIS-type nanosale juntions [6℄, and reentlyobserved geometri quantization phenomena [7℄ (see,e.g., Ref. [8℄ for a reent review on harge and spine�ets in mesosopi two-dimentional Josephson jun-tions).More reently, it was realized that JJAs an alsobe used as quantum hannels to transfer quantum in-formation between distant sites [9�11℄ through the im-plementation of the so-alled superonduting qubits,whih involve both harge and phase degrees of free-dom (see, e.g., Ref. [12℄ for a review on quantum-stateengineering with Josephson-juntion devies).At the same time, imaging of the granular struturein underdoped Bi2Sr2CaCu2O8+Æ rystals [13℄ revealedan apparent harge segregation of its eletroni stru-ture into superonduting domains (of the order of a*E-mail: ssa�thsun1.jinr.ru

few nanometers) loated in an eletronially distintbakground. In partiular, it was found that at low lev-els of hole doping (Æ � 0:2), the holes beome onen-trated at ertain hole-rih domains. Tunneling betweensuh domains leads to intrinsi granular superondu-tivity in high-T superondutors (HTS). As was shownearlier [14℄, granular superondutivity based phenom-ena an shed some light on the origin and evolutionof the so-alled paramagneti Meissner e�et (PME)whih manifests itself in both high-T and onventionalsuperondutors [15, 16℄.In this paper, within a previously suggested [14℄model of JJAs reated by a regular two-dimentionalnetwork of twin-boundary disloations with strain�elds ating as an insulating barrier between hole-rihdomains in underdoped rystals, we address anotherlass of interesting phenomena that are atually dualto the hemomagneti e�ets desribed in Ref. [14℄.Spei�ally, we disuss a possible existene of a nonzeroeletri polarization P (B; Æ) (hemomagnetoeleti ef-fet) and the related hange of the harge balane in anintrinsially granular nonstoihiometri material underthe in�uene of an applied magneti �eld. In partiular,we predit an anomalous low-�eld magneti behavior ofthe e�etive juntion harge Q(B; Æ) and onomitantmagnetoapaitane C(B; Æ) in paramagneti Meissner1054



ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005 Polarization e�ets indued by a magneti �eld : : :phase and a harge analog of a ��shtail�-like anomalyat high magneti �elds.2. THE MODELWe reall that the regular two-dimentional disloa-tion networks of oxygen depleted regions with the sized0 of a few Burgers vetors, observed in HTS singlerystals [13; 17�20℄, an provide quite a realisti possi-bility for the existene of a two-dimentional Josephsonnetwork within the CuO plane [21, 22℄. In this regard,it is also important to mention the pioneering works byKhaikin and Khlyustikov [23�25℄ on twinning-induedsuperondutivity in disloated rystals.At the same time, in underdoped rystals, there isa realisti possibility to failitate oxygen transport viathe so-alled osmoti mehanism [14, 19, 20, 26℄, whihrelates the loal value of the hemial potential�(x) = �(0) +r� � xwith the loal onentration of point defets as(x) = exp(��(x)=kBT );and allows expliitly inorporating the oxygen de�-ieny parameter Æ into our model by relating it tothe exess oxygen onentration of vaanies v � (0)as Æ = 1� v:Assuming the relation between the variation of mehan-ial and hemial properties of planar defets,�(x) = K
0�(x);where �(x) = �0 exp(�jxj=d0)is the sreened strain �eld produed by tetragonal re-gions in a d-wave orthorhombi YBCO rystal, 
0 isan e�etive atomi volume of the vaany, and K isthe bulk elasti modulus), we an study the proper-ties of twin-boundary indued JJs under the intrin-si hemial pressure r� (reated by the variation ofthe oxygen doping parameter Æ). More spei�ally, asingle SIS-type juntion (omprising a Josephson net-work) is formed around the twin-boundary due to aloal depression of the superonduting order param-eter �(x) / �(x) over distane d0, thus produing aweak link with the Josephson ouplingJ(Æ) = �(x)J0 = J0(Æ) exp(�jxj=d0);where J0(Æ) = �0J0 = (�v=K
0)J0

(here, J0 / �0=Rn, with Rn being the resistane ofthe juntion). We note that in aordane with the ob-servations, for a stoihiometri situation (when Æ � 0),the Josephson oupling J(Æ) � 0 and the system losesits expliitly granular signature.To desribe the in�uene of hemomagneti e�etson harge balane of an intrinsially granular super-ondutor, we use the model of two-dimentional over-damped Josephson juntion array based on the well-known HamiltonianH = NXi;j Jij(1� os�ij) + NXi;j qiqj2Cij : (1)We introdue a short-range (nearest-neighbor) intera-tion between N juntions (whih are formed aroundoxygen-rih superonduting areas with phases �i), ar-ranged in a two-dimensional lattie with oordinatesxi = (xi; yi). The areas are separated by oxygen-poorinsulating boundaries (reated by twin-boundary strain�elds �(xij)) produing a short-range Josephson ou-pling Jij = J0(Æ) exp(�jxij j=d):Thus, typially for granular superondutors, theJosephson energy of the array varies exponentially withthe distane xij = xi � xj between neighboring jun-tions (with d being the average juntion size). As usual,the seond term in the right-hand side of Eq. (1) a-ounts for Coulomb e�ets, where qi = �2eni is thejuntion harge with ni being the pair number oper-ator. Naturally, the same strain �elds �(xij) are alsoresponsible for dieletri properties of oxygen-depletedregions via the Æ-dependent apaitane tensorCij(Æ) = C[�(xij)℄:If, in addition to the hemial pressurer�(x) = K
0r�(x);the network of superonduting grains is under the in-�uene of an applied frustrating magneti �eld B, thetotal phase di�erene through the ontat is given by�ij = �0ij + �w�0 (xij ^ nij) �B+ r� � xij t~ ; (2)where �0ij is the initial phase di�erene (see below),nij = XijjXij j ; Xij = xi + xj2 ;and w = 2�L(T ) + l;1055



S. Sergeenkov ÆÝÒÔ, òîì 128, âûï. 5 (11), 2005with �L being the London penetration depth of thesuperonduting area and l the insulator thikness(whih, within the senario disussed here, is simplyequal to the twin-boundary thikness [26℄).As usual, to safely neglet the in�uene of theself-�eld e�ets in a real material, the orrespondingJosephson penetration length�J =s �02��0jwmust be larger than the juntion size d. Here, j is theritial urrent density of the superonduting (hole-rih) area. As we see below, this ondition is ratherwell satis�ed for HTS single rystals.3. CHEMOMAGNETOELECTRICITYIn what follows, we are interested in the beha-vior of the magneti-�eld-indued eletri polariza-tion (hemomagnetoeletriity) in hemially induedgranular superondutivity desribed by a two-dimen-tional JJA. We reall that a onventional (zero-�eld)pair polarization operator within the model under dis-ussion is given by [27, 28℄p = NXi=1 qixi: (3)In view of Eqs. (1)�(3) and the usual �phase�number�ommutation relation[�i; nj ℄ = iÆij ;it an be shown that the evolution of the pair polariza-tion operator is determined by the equation of motiondpdt = 1i~ [p;H℄ = 2e~ NXi;j Jij sin�ij(t)xij : (4)Solving this equation, we obtain the net value of themagneti-�eld-indued longitudinal eletri polariza-tion P (Æ;B) � hpx(t)i(along the x axis) and the orresponding e�etive jun-tion hargeQ(Æ;B) = 2eJ0~�d �Z0 dt tZ0 dt0 �� Z d2xS sin�(x; t0)x exp(�jxj=d); (5)

where S = 2�d2 is the properly de�ned normalizationarea, � is a harateristi time (see Disussion), and wemade a usual substitution1N Xi;j Aij(t)! 1S Z d2xA(x; t)valid in the long-wavelength approximation [28℄.To apture the very essene of the superondut-ing analog of the hemomagnetoeletri e�et, we as-sume for simpliity in what follows that a stoihio-metri sample (with Æ � 0) does not have any spon-taneous polarization at zero magneti �eld, that is,P (0; 0) = 0. Aording to Eq. (5), this ondition im-plies that �0ij = 2�m for the initial phase di�erenewith m = 0;�1;�2; : : :Choosing the applied magneti �eld along the  axis(and normal to the CuO plane), that is, B = (0; 0; B),we �nally obtainQ(Æ; B) = Q0(Æ) 2~b+ b(1� ~b2)(1 + b2)(1 + ~b2)2 (6)for the magneti �eld behavior of the e�etive juntionharge in hemially indued granular superondutors.Here, Q0(Æ) = e�J0(Æ)=~with J0(Æ) de�ned earlier,b = B=B0; ~b = b� b�;and b� = B�=B0 � (kBT�=~)Æ;where B�(Æ) = (�v�=~)B0is the hemially indued ontribution (whih disap-pears in optimally doped systems with Æ � 0), andB0 = �0=wdis a harateristi Josephson �eld.Figure 1 shows hanges of the initial (stoihiomet-ri) e�etive juntion harge Q (solid line) with theoxygen de�ieny Æ. We note a sign hange of Q (dot-ted and dashed lines) driven by nonzero values of Æ atlow magneti �elds (a harge analog of a hemially in-dued PME). Aording to Eq. (6), the e�etive hargehanges its sign as soon as the hemomagneti ontri-bution B�(Æ) exeeds the applied magneti �eld B (seeDisussion).At the same time, Fig. 2 presents a true hemo-eletri e�et with the onentration (de�ieny) in-dued e�etive juntion harge Q(Æ; 0) in zero magneti1056
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Fig. 1. The e�etive juntion harge Q(Æ;B)=Q(Æ; 0)(hemomagnetoeletri e�et) as a funtion of the ap-plied magneti �eld B=B0, aording to Eq. (6), for dif-ferent values of the oxygen de�ieny parameter: Æ � 0(solid line), Æ = 0:1 (dashed line), and Æ = 0:2 (dottedline)�eld. We note that Q(Æ; 0) exhibits a maximum aroundÆ � 0:2 (in agreement with the lassial perolativebehavior observed in nonstoihiometri YBa2Cu3O7�Æsamples [17℄).It is also of interest to onsider the magneti �eldbehavior of the onomitant e�etive �ux apaitaneC � � dQ(Æ; B)d� ;whih, in view of Eq. (6), is given byC(Æ; B) = C0(Æ)1� 3b~b� 3~b2 + b~b3(1 + b2)(1 + ~b2)3 ; (7)where � = SB; C0(Æ) = �Q0(Æ)=�0:Figure 3 depits the behavior of the e�etive �uxapaitane C(Æ; B) in an applied magneti �eld for dif-ferent values of the oxygen de�ieny parameter: Æ � 0(solid line), Æ = 0:1 (dashed line), and Æ = 0:2 (dottedline). We note a derease of the magnetoapaitaneamplitude and its peak shifting with inrease of Æ and
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Fig. 2. Chemially indued e�etive juntion hargeQ(Æ; 0)=Q(Æ; 0) in zero applied magneti �eld (truehemoeletri e�et)a sign hange at low magneti �elds, whih is anothermanifestation of the harge analog of a hemially in-dued PME (f. Fig. 1).4. CHARGE ANALOG OF THE �FISHTAIL�ANOMALYSo far, we negleted a possible �eld dependene ofthe hemial potential �v of oxygen vaanies. We re-all, however, that in su�iently high applied magneti�elds B, the �eld-indued hange of the hemial po-tential ��v(B) � �v(B) � �v(0)beomes tangible and should be taken into aount [14,29, 30℄. As a result, we obtain a superonduting ana-log of the so-alled magnetoonentration e�et [14℄with �eld-indued reation of oxygen vaaniesv(B) = v(0) exp(���v(B)=kBT );whih in turn leads to a ��shtail�-like behavior of thehigh-�eld hemomagnetization (see Ref. [14℄ for moredetails).12 ÆÝÒÔ, âûï. 5 (11) 1057
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Fig. 3. The e�etive �ux apaitane C(Æ;B)=C(Æ; 0)as a funtion of the applied magneti �eld B=B0, a-ording to Eq. (7), for di�erent values of the oxygen de-�ieny parameter: Æ � 0 (solid line), Æ = 0:1 (dashedline), and Æ = 0:2 (dotted line)
Figure 4 shows the �eld behavior of the e�e-tive juntion harge in the presene of the above-mentioned magnetoonentration e�et. As is learlyseen, Q(Æ(B); B) exhibits a ��shtail�-like anomaly typ-ial of the previously disussed [14℄ hemomagnetiza-tion in underdoped rystals with intragrain granularity(for symmetry and better visual e�et, we also plot-ted �Q(Æ(B); B) in the same �gure). This more om-plex struture of the e�etive harge appears when theapplied magneti �eld B mathes the intrinsi hemo-magneti �eld B�(Æ(B)) (whih now also depends on Bvia the magnetoonentration e�et). We note that a��shtail� struture of Q(Æ(B); B) manifests itself evenat zero values of the �eld-free de�ieny parameter Æ(0)(solid line in Fig. 4), thus on�rming a �eld-indued na-ture of intrinsi granularity [13; 17�20℄. Likewise, Fig. 5depits the evolution of the e�etive �ux apaitaneC(Æ(B); B) in the applied magneti �eld B=B0 in thepresene of a magnetoonentration e�et (f. Fig. 3).
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Fig. 4. A ��shtail�-like behavior of the e�etiveharge Q(Æ(B); B)=Q(Æ; 0) in the applied magneti�eld B=B0 in the presene of a magnetoonentra-tion e�et (with �eld-indued oxygen vaanies Æ(B))for three values of the �eld-free de�ieny parameter:Æ(0) � 0 (solid line), Æ(0) = 0:1 (dashed line), andÆ(0) = 0:2 (dotted line)5. DISCUSSIONThus, the present model predits the appearaneof two interrelated phenomena (dual to the previouslydisussed behavior of hemomagnetism [14℄), a hargeanalog of Meissner paramagnetism at low �elds and aharge analog of the ��shtail� anomaly at high �elds.To see whether these e�ets an be atually observedin a real material, we estimate the order of magnitudeof the main model parameters.Using the values �L(0) � 150 nm, d � 10 nm, andj � 1010 A/m2 typial [17, 19℄ for HTS single rys-tals, we estimate the harateristi �eld as B0 � 0:5 Tand the hemomagneti �eld as B�(Æ) � 0:5B0. There-fore, the predited harge analog of PME should beobservable for applied magneti �elds B < 0:25 T. Wenote that for the above set of parameters, the Joseph-son length is of the order of �J � 1 �m, whih meansthat the small-juntion approximation assumed in thispaper is valid and the �self-�eld� e�ets an be safelynegleted.1058
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Fig. 5. The behavior of the e�etive �ux apai-tane C(Æ(B); B)=C(Æ; 0) in the applied magneti�eld B=B0 in the presene of a magnetoonentratione�et for three values of the �eld-free de�ieny param-eter: Æ(0) � 0 (solid line), Æ(0) = 0:1 (dashed line),and Æ(0) = 0:2 (dotted line)Furthermore, the harateristi frequenies ! � ��1needed to probe the e�ets suggested here are re-lated to the proesses governed by tunneling relax-ation times � � ~=J0(Æ). Beause for the oxygenthe de�ieny parameter Æ = 0:1, the hemially in-dued zero-temperature Josephson energy in nonsto-ihiometri YBCO single rystals is of the order ofJ0(Æ) � kBTCÆ � 1 meV, we obtain the required fre-quenies ! � 1013 Hz and the estimates of the e�etivejuntion harge Q0 � e = 1:6 �10�19 C and �ux apai-tane C0 � 10�18 F. We note that the above estimatesfall into the range of parameters used in typial ex-periments for studying single-eletron tunneling e�etsboth in JJs and JJAs [1, 2, 12, 31℄, thus suggestingquite an optimisti possibility to observe the predited�eld-indued e�ets experimentally in nonstoihiomet-ri superondutors with pronouned networks of pla-nar defets or in arti�ially prepared JJAs. (It is worthmentioning that a somewhat similar behavior of themagneti-�eld-indued harge and related �ux apai-tane has been observed in 2D eletron systems [32℄.)

Finally, it an be easily veri�ed that in view ofEqs. (1)�(5), the �eld-indued Coulomb energy of theoxygen-depleted region within our model is given byEC(Æ; B) � * NXi;j qiqj2Cij+ = Q2(Æ; B)2C(Æ; B) (8)with Q(Æ; B) and C(Æ; B) de�ned by Eqs. (6) and (7).A thorough analysis of the above expression revealsthat in the PME state (when B � B�), the hemi-ally indued granular superondutor is always in theso-alled Coulomb blokade regime (with EC > J0),while in the ��shtail� state (for B � B�), the energybalane tips in favor of tunneling (with EC < J0). Inpartiular, EC(Æ; B = 0:1B�) = �2 J0(Æ)and EC(Æ; B = B�) = �8 J0(Æ):It would be also interesting to verify this phenomenonof �eld-indued weakening of the Coulomb blokade ex-perimentally. 6. CONCLUSIONIn onlusion, within a realisti model of two-di-mentional Josephson juntion arrays reated bytwo-dimentional network of twin boundary dislo-ations (with strain �elds ating as an insulatingbarrier between hole-rih domains in underdopedrystals), a few novel eletri polarization relatede�ets expeted to our in an intrinsially granularmaterial under applied magneti �elds were predited,inluding a phenomenon of hemomagnetoeletriity,an anomalous low-�eld magneti behavior of thee�etive juntion harge (and �ux apaitane) in theparamagneti Meissner phase, and a harge analog ofa ��shtail�-like anomaly at high magneti �elds aswell as �eld-dependent weakening of the hemiallyindued Coulomb blokade. The experimental on-ditions needed to observe the e�ets predited herein nonstoihiometri high-T superondutors weredisussed.This work was done during my stay at the Centerfor Physis of Fundamental Interations (Instituto Su-perior Ténio, Lisboa) and was partially funded bythe FCT. I thank Pedro Saramento and Vitor Vieirafor hospitality and interesting disussions on the sub-jet. I am also indebted to the referee for drawing1059 12*
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