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NON-MARKOVIAN STOCHASTIC LIOUVILLE EQUATION ANDANOMALOUS QUANTUM RELAXATION KINETICSA. I. Shushin *Institute of Chemial Physis, Russian Aademy of Sienes117977, Mosow, RussiaSubmitted 25 January 2005The kinetis of phase and population relaxation in quantum systems indued by noise with the anomalouslyslowly deaying orrelation funtion P (t) / (wt)��, where 0 < � < 1, is analyzed within the ontinuous-timerandom walk approah. The relaxation kinetis is shown to be anomalously slow. Moreover, for � < 1, in thelimit of short harateristi time of �utuations w�1, the kinetis is independent of w. As � ! 1, the relax-ation regime hanges from the stati limit to �utuation narrowing. Simple analytial expressions are obtaineddesribing the spei� features of the kinetis.PACS: 05.40.Fb, 02.50.-r, 76.20.+q1. INTRODUCTIONThe noise-indued relaxation in quantum systemsis a very important proess observed in magnetiresonane [1℄, quantum optis and nonlinear spe-trosopy [2℄, et. These proesses are often analyzed as-suming onventional stohasti properties of the noise:fast deay of orrelation funtions and a short orre-lation time � [1℄. In the absene of memory, the re-laxation is desribed by very popular Bloh-type equa-tions. The memory e�ets are also disussed (withinthe Zwanzig projetion operator approah [3℄), but ei-ther in the lowest orders in the �utuating interationV that indues the relaxation or by approximate sum-mation of terms of di�erent orders in V [4℄.Reently, muh attention was drawn to the pro-esses governed by noises with anomalously slowly de-aying orrelation funtions P (t) / t�� with � < 1.They are disussed in relation to spetrosopi studiesof quantum dots (see [5, 6℄ and the referenes therein).Similar problems are analyzed in the theory of stohas-ti resonanes [7℄.Suh anomalous proesses annot be properly de-sribed by methods based on expansion in powers ofV . The goal of this paper is to analyze the orrespond-ing anomalous relaxation within the ontinuous-timerandom walk approah (CTRWA) [8℄ with the use of*E-mail: shushin�hph.ras.ru

the reently derived non-Markovian stohasti Liouvilleequation (SLE) [9℄, whih enables one to desribe re-laxation kinetis without the above-mentioned approx-imations (expansions in V ), although assumes the las-sial nature of the noise. In some physially reasonablemodels, it allows desribing the phase and populationrelaxation kinetis in the analytial form even for mul-tilevel systems. In partiular, the kinetis is shown tobe strongly nonexponential.2. GENERAL FORMULATIONWe onsider noise-indued relaxation in the quan-tum system whose dynamial evolution is governed bythe Hamiltonian H(t) = Hs + V (t); (1)where Hs is the term independent of time and V (t) isthe �utuating interation, whih models e�ets of thenoise. The evolution is desribed by the density matrix�(t) satisfying the Liouville equation (~ = 1)_� = �iĤ(t)�;Ĥ� = [H; �℄ = [H�� �H ℄: (2)V (t)-�utuations are assumed to be symmetri(hV i = 0) and to result from stohasti jumps betweenthe states jx�i in the (disrete or ontinuum) spae675



A. I. Shushin ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005fx�g � fxg with di�erent V = V� and H = H� (i.e.,di�erent V̂ = V̂� � [V� ; : : : ℄ and Ĥ = Ĥ�):V̂ =X� jx�iV̂�hx� j;Ĥ =X� jx�iĤ�hx� j: (3)We use the bra�ket notation jki and jkk0i � jkihk0jfor eigenstates of H (in the original spae) and Ĥ (inthe Liouville spae), respetively, and the notation jxifor states in the fxg-spae.The marosopi evolution of the system understudy is determined by the evolution operator R̂(t) inthe Liouville spae averaged over V (t)-�utuations,�(t) = R̂(t)�i;R̂(t) = Xx;xiĜ(x; xijt)Pe(xi); (4)where Ĝ(x; x0jt) is the averaged evolution operator andPe(x) is the equilibrium distribution in the fxg-spae.Non-Markovian V (t)-�utuations are desribedwith the use of the CTRWA (whih leads to thenon-Markovian SLE [9℄ for Ĝ(t)). It treats �utuationsas a sequene of sudden hanges of V̂ . The onset ofany partiular hange labeled by j is desribed by thematrix P̂j�1 (in the fxg-spae) of the probabilities notto have any hange during time t and its derivativeŴj�1(t) = �dP̂j�1(t)dt :These matries are diagonal and independent of j:P̂j�1(t) = P̂ (t); Ŵj�1(t) = Ŵ (t) = �dP̂ (t)dt ; j > 1;exeptP̂0(t) � P̂i(t); Ŵ0(t) � Ŵi(t) = �dP̂i(t)dtdepending on the problem onsidered. For nonstation-ary (n) and stationary (s) �utuations [8℄,Ŵi(t) = Ŵn(t) = Ŵ (t);Ŵi(t) = Ŵs(t) = t̂�1w 1Zt d� Ŵ (�);respetively, wherêtw = 1Z0 d� �Ŵ (�)

is the matrix of average times of waiting for thehange [8℄.In what follows, we mainly operate with the Laplaetransforms denoted aseZ(�) = 1Z0 dtZ(t)e��tfor any funtion Z(t). In partiular, noteworthy is therelation êP j(�) = 1� f̂W j(�)�and suitable representationsf̂W (�) = [1 + �̂(�)℄�1;êP (�) = [�+ �=�̂(�)℄�1 (5)in terms of a diagonal matrix �̂(�) with�̂(�) �!0� (�=ŵ)�;where ŵ is a onstant matrix and � � 1 (see below).Evolution in the fxg-spae is governed by the jumpoperator L̂ = 1� P̂ ;where P̂ is the nondiagonal matrix of jump probabili-ties. This evolution results in relaxation to the equilib-rium state jexi, satisfying the equationL̂ŵ�jexi = 0and represented asjexi =Xx Pe(x)jxi;hexj =Xx hxj(see [9℄). We note that (see Eq. (4))R̂(t) = hexjĜjexi � hĜi: (6)The CTRWA leads to the non-Markovian SLE forĜ(x; xijt) [9℄. Solving this SLE yields [9℄êG = êP i(
̂) + 
̂�1�̂(
̂)[�̂(
̂) + L̂℄�1P̂f̂W i(
̂); (7)where L̂ = 1� P̂ ;
̂ = �+ iĤ: (8)676



ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005 Non-Markovian stohasti Liouville equation : : :In partiular, in the ase of n-�utuations (Ŵi = Ŵ ),êG = êGn = 
̂�1�̂(�̂ + L̂)�1: (9)For s-�utuations (Ŵi = Ŵs),êG = 
̂�1 � êGnL̂(
̂t̂w)�1:Hereafter, for brevity, we omit the argument 
̂ of allLaplae transforms if this does not result in onfusion.3. USEFUL MODELS AND APPROACHES3.1. Sudden relaxation modelThe sudden relaxation model (SRM) [9℄ assumessudden equilibration in the fxg-spae desribed by theoperator L̂ = (1� je0ihe0j)Q̂�1;Q̂ = 1�Xx P0(x)jxihxj; (10)where je0i =Xx P0(x)jxi; he0j =Xx hxj:For this L̂, jexi = q̂je0i;q̂ = Q̂ŵ��he0jQ̂ŵ��je0i (11)and hexj = he0j:In model (10), one obtainsêRi = h êPQii+ hq̂�1 ePQi[1� hq̂�1f̂WQi℄�1hf̂WQii (12)for any f̂W i, whereêPQi = 1� f̂WQi
̂ ; f̂WQ = (1 + �̂Q̂)�1 (13)and f̂WQi = f̂W i(f̂WQ=f̂W ):3.2. Short orrelation time limitIn pratial appliations, of speial importane isthe short orrelation time limit (SCTL) for V (t)-�u-tuations, in whih Eq. (12) an be markedly simpli�ed.

It orresponds to large harateristi rates w of thedependene �̂(
̂) � �̂(
̂=w):w � kV k:In this limit, the relaxation kinetis is desribed by the�rst terms of the expansion of �̂(
̂=w) in small 
̂=w,beause �̂(�) is an inreasing funtion of � with�̂(�) �!0�! 0:Some important general onlusions, however, an bemade independently of the form of �̂(
) (see below).3.3. Models for quantum evolution and�utuationsThe obtained general results are onveniently il-lustrated with the quantum two-level model and thestohasti two-state SRM for V (t)-�utuations.Quantum evolution of the two-level system is gov-erned by the Hamiltonian (assumed to be a real matrix)Hs = !s2 " 1 00 �1 # ;V = " Vd VnVn �Vd # j+ij�i : (14)The two-state SRM suggests that �utuations re-sult from jumps between two states (in the fxg-spae),for example, jx+i and jx�i, whose kinetis is desribedby L̂ = 2(1� jexihexj);jexi = 12 ��jx+i+ jx�i�: (15)Below, we onsider two examples of these models.1. Diagonal noise [10℄:!s = 0; Vn = 0;Vd = !0(jx+ihx+j � jx�ihx�j);and H�=� = �12 !0(j+ih+j � j�ih�j): (16)2. Nondiagonal noise:Vd = 0; Vn = v(jx+ihx+j � jx�ihx�j);and heneH�=� = Hs � v(j+ih�j + j�ih+j): (17)677



A. I. Shushin ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005The �rst model desribes dephasing and the seondis useful for studying population relaxation.In model (14), dephasing and population relaxationare haraterized by two funtions.1. The spetrum I(!), whih is taken in the formorresponding to Fourier transformed free-indution-deay (FTFID) experiments [11℄I(!) = 1� Rehsj êR(i!)jsi: (18)2. The di�erene of level populationsN(t) = hnjR̂(t)jni: (19)In these two funtions,jsi = 1p2 ��j+�i+ j�+i�;jni = 1p2 ��j++i � j��i�: (20)4. GENERAL RESULTS IN THE SCTLWithin the SCTL (kV k=w � 1), espeially simpleresults are obtained for kHsk=w � 1. In the lowestorder in k�̂(
̂=w)k � 1,êR � êRn � hq̂�1Q̂
̂�1�̂(
̂)ihq̂�1Q̂�̂(
̂)i = (21)= hŵ�
̂�1�̂(
̂)ihŵ��̂(
̂)i : (22)This formula holds for any initial matrix f̂W i and, inpartiular, for s-�utuations, ifkt̂wk � 1w � 1k
̂k :The more ompliated SCTL-asekHsk=w � 1an be analyzed by expanding êG in powers of the pa-rameter � = kV k=kHsk � 1:In partiular, within the general two-level model(Eq. (14)) with Vd = 0, in the seond order in �, the di-agonal and nondiagonal elements of �(t) are deoupledand the orresponding elements of R̂(t) are expressedin terms of the universal funtionRk(t) = 12�i i1Z�i1 d� ei�t�+ k�=h�̂(�)i ; (23)

h�jR̂(t)j�i = exp(�i!�t)Rk�(t);(� = n;+�; �+); (24)where !� = h�jĤsj�i; kn = 2Re(k+�);k+� = k��+ = 12!�2s hVnq̂�1[1� f̂WQ(2i!s)℄Vni: (25)5. ANOMALOUS FLUCTUATIONSThe simplest model for anomalous �utuations anbe written as [12℄�̂(�) = (�=ŵ)�; 0 < � < 1; (26)where ŵ is the matrix of �utuation rates, diagonal inthe jxi-basis. For simpliity, ŵ is assumed to be in-dependent of x, i.e., ŵ � w (this parameter an beassoiated with w mentioned above). Model (26) de-sribes the anomalously slow deay of the matrixŴ (t) / 1=t1+�(very long memory e�ets in the system [12℄), for whihonly the ase of n-�utuations is physially sensible.In SCTL (22), model (26) yields the expressionêRn(�) = h
̂��1(�)ih
̂�(�)i�1;
̂(�) = �+ iĤ; (27)whih shows that êRn(�) (and R̂n(t)) is independentof the harateristi rate w. For � = 0 and � = 1,Eq. (27) reprodues the stati and �utuation narrow-ing limits [1℄: êRn(�) = h
̂�1(�)iand êRn(�) = 1h
̂(�)i ;respetively.Of ertain interest is the limit as � ! 1, in whihformula (27) predits the Bloh-type exponential relax-ation̂eRn(�) � h�+ iĤs + (�� 1)h
̂ ln(
̂)i�!0i�1 ; (28)ontrolled by the relaxation rate matrixŴr = (� � 1)Reh
̂ ln(
̂)i�!0and aompanied by frequeny shifts represented byĥ = i(�� 1) Imh
̂ ln(
̂)i�!0:However, the matries Ŵr and ĥ (unlike those in theonventional Bloh equation) are independent of theharateristi rate w of V (t)-�utuations.678



ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005 Non-Markovian stohasti Liouville equation : : :5.1. Dephasing for diagonal noiseIn model (16), the spetrum I(!) an be obtainedin the general SRM (10),I(!) = n�  �� ��1+ +  ��1�  �+( ��)2 + ( �+)2 + 2 �� �+ os(��) ; (29)where  ��(!) = hj! � 2Vdj��[�(! � 2Vd)℄iwith �(z) being the Heaviside step-funtion andn� = sin(��)=�:In the two-state SRM (16),I(!) = n�2!0 �(y) y + y�1 + 2y� + y�� + 2 os(��) ; (30)where y = !0 + !!0 � !(see also Ref. [6℄). Aording to this formula, theanomalous dephasing (unlike the onventional one [1℄)leads to broadening of I(!) only in the region j!j < !0and singular behavior of I(!) at ! ! �!0:I(!) � 1(! � !0)1�� :For � > � � 0:59 (� satis�es the relation� = os(��=2)), the two-state-SRM formula also pre-dits the ourrene of the entral peak (at ! = 0) [6℄of the Lorenzian shape and widthwL � !0 os(��=2)p�2 � os2(��=2) ;I(!) � 12� tg(��=2)!�101 + (!=wL)2 ;whose intensity inreases with the inrease of � � �(Fig. 1). At � � 1, the parameters of this peak arereprodued by Eq. (28) in whihh
̂ ln 
̂i� = ��2!0:The origin of the peak indiates the transition fromstati broadening at � � 1 to narrowing at � � 1(see Eq. (27)). For systems with omplex spetra, thistransition an, of ourse, be strongly smoothed. Thebehavior of I(!) is illustrated in Fig. 1 for di�erentvalues of the parameters of the model.
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Fig. 1. The spetrum I(x) = I(!)!0, where x == !=!0, alulated in model (16) (using Eq. (29))for di�erent values of � = 5 (1 ), 7 (2 ), 8 (3 ), and9 (4 )5.2. Dephasing for nondiagonal noiseThe model in Eq. (17) allows revealing some addi-tional spei� features of dephasing. We restrit our-selves to the analysis of the ase where kHsk � !s & wand the most interesting part of the spetrum atj!j � !s. Equations (23) and (24) show that theelements h�jR(t)j�i; (� = +�; �+); whih desribephase relaxation, are then given byh�jR(t)j�i = exp(�i!�t)E�[�k�(wt)�℄; (31)where E�(�z) = (2�i)�1 i1Z�i1 dy eyy + zy1��is the Mittag � Le�er funtion [12℄. Therefore, forj!j � !s, I(!) = I0(!s + !) + I0(!s � !); (32)whereI0(!) = n0 sin�x(jxj1+�+jxj1��+2jxj os�x)�1 (33)with x = !jk+�j1=�w; n0 = (�jk+�j1=�w)�1;�x = ��2 ++ signx artg� sin(��=2)os(��=2) + 2���1!s=w� : (34)679



A. I. Shushin ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005Formula (32) predits singular behavior of I(!) at! � �!s: I(!) � 1j! � !sj1�� ;and slow derease of I(!) with the inrease of j!�!sj:I(!) � 1j! � !sj1+� :In the limit !s=w � 1, we have�x � ���(x)and hene I0(!) � �(!):This implies that for !s=w � 1, the spetrum I(!) isloalized in the region j!j < !s and looks similar toI(!) for diagonal dephasing at � < �. For !s=w & 1,however, I(!) is nonzero outside this region; moreover,in the limit !s=w � 1, the spetrum I0(!) beomessymmetri, I0(!) = I0(�!), similarly to the onven-tional spetra.It is worth noting that for !s=w � 1, the fun-tions h�jR(t)j�i and I(!) are independent of w (inagreement with Eq. (22)) beause k� / (!s=w)� andk�(wt)� / (!st)�. In the opposite limit, however,k� � w0, and therefore the harateristi relaxationtime behaves as w�1.5.3. Population relaxationSpei� features of the anomalous population relax-ation an be analyzed with the model of nondiagonalnoise (17).In partiular, in the respetive limits kHsk � !s && w and 1 � � � 1, Eqs. (23), (24), and (28) implythatN(t) = E�[�kn(wt)�℄; N(t) = exp(�w�t); (35)where E�(�x) is the Mittag � Le�er funtion de�nedabove and w� � kn(�! 1)w � 1� �:The �rst of these formulas predits a very slow popu-lation relaxation att > �r = w�1(kn=w)1=�;namely, N(t) / 1=t�:Similarly to I(!), the funtion N(t) is in fat indepen-dent of w in the limit !s=w � 1 beause kn / (!s=w)�
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0 5 10 15 20 1 10 100Fig. 2. Population relaxation kinetis N(�), where� = E0t, alulated with Eq. (36) (a) for large � anddi�erent r = 2v=!s: � = 0:95, r = 1:0 (1 ); � = 0:95,r = 2:0 (2 ); � = 0:88, r = 1:0 (3 ); � = 0:88, r = 2:0(4 ); and (b) for small � = 0:3 (solid line) and � = 0:5(dashed line) (r = 0:7). Straight lines in �gures a and brepresent exponential (Eq. (35)) and t�� dependenes,respetively (in a, they are shown by dashed lines)in this ase. In the opposite limit !s=w > 1, the har-ateristi time population relaxation behaves as w�1beause kn is independent of w (as in the ase of phaserelaxation).In the limit kHsk; kV k � w, we obtainN(t) = 12�i i1Z�i1d� e�t !2s���1 + 4v2
��1(�)!2s�� + 4v2
�(�) ; (36)where 
�(�) = [(�+ 2iE0)� + (�� 2iE0)� ℄=2 (37)and E0 =pv2 + !2s=4:Naturally, in the orresponding limits, expression (36)reprodues formulas (35) withkn � 2��1 os(��=2)(E0=w)�and w� � �(1� �)v2=E0(see Fig. 2). Outside these limits, N(t) an be evalu-ated numerially (some results are shown in Fig. 2). Ingeneral, N(t) is the osillating funtion (of frequeny� E0) with slowly dereasing average value and osil-lation amplitude: for E0t� 1680



ÆÝÒÔ, òîì 128, âûï. 4 (10), 2005 Non-Markovian stohasti Liouville equation : : :N(t) � 1=t�(exept in the limit as �! 1).6. CONCLUDING REMARKSThe presented analysis of relaxation kinetis inquantum systems indued by anomalous noise demon-strates a number of peuliarities of this kinetis. Thepeuliarities are analyzed with the use of the two-level quantum model, as an example, although the ob-served anomalous e�ets an manifest themselves inmore ompliated multi-level quantum systems. Theproposed theoretial method is quite suitable for theanalysis of these systems. This work is urrently inprogress.Noteworthy is that in some limits, the developedtheory predits relaxation kinetis desribed by theMittag � Le�er funtion E�[�(wt)�℄. Following a num-ber of reent works (for review, see Ref. [12℄) this ki-netis an be onsidered as a result of the anomalousBloh equation with a frational time derivative. Forbrevity, we have not disussed the orresponding rep-resentations.It is also interesting to note that with the inrease of�, the e�ets of anomaly of �utuations derease butstill persist. To larify them, we brie�y onsider themodel �(�) = (�=w) + �(�=w)1+�;in whih 0 < � < 1, and w and � are onstants with� � 1 (a small value of � ensures that W (t) > 0).Possible e�ets an be analyzed within the SCTL withthe use of Eqs. (22)�(24). For example, in the limitkHk=w� 1, we obtain the formulaeR � [�+ iĤs + �w��h(iĤ)1+� � (iĤs)1+�i℄�1;prediting the Bloh-type relaxation of both phase andpopulation, but with the rateŴr = �w�� Reh(iĤ)1+� � (iĤs)1+�ithat depends on w as w�� and is therefore slower thanin the onventional Bloh equation (Ŵr � 1=w, [1℄).Analysis also shows that in the expression for eR, the
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