
ÆÝÒÔ, 2005, òîì 127, âûï. 6, ñòð. 1223�1229  2005
RADIATION OF QUANTIZED BLACK HOLEI. B. Khriplovih *Budker Institute of Nulear Physis630090, Novosibirsk, RussiaNovosibirsk University630090, Novosibirsk, RussiaSubmitted 11 January 2005The maximum entropy of a quantized surfae is demonstrated to be proportional to the surfae area in thelassial limit. The general struture of the horizon spetrum and the value of the Barbero � Immirzi parameterare found. The disrete spetrum of thermal radiation of a blak hole naturally �ts the Wien pro�le. Thenatural widths of the lines are very small as ompared to the distanes between them. The total intensity ofthe thermal radiation is alulated.PACS: 04.60.Pp, 04.70.Dy1. INTRODUCTIONThe idea of quantizing the horizon area of blakholes was put forward many years ago by Bekenstein inthe pioneering artile [1℄. He pointed out that reversibletransformations of the horizon area of a nonextremalblak hole found by Christodoulou and Ru�ni [2, 3℄have an adiabati nature. Of ourse, the quantizationof an adiabati invariant is perfetly natural, in aor-dane with the orrespondene priniple.One this hypothesis is aepted, the general stru-ture of the quantization ondition for large quantumnumbers beomes obvious, up to an overall numerialonstant �. The quantization ondition for the horizonarea A should be A = � l2pN; (1)where N is some large quantum number [4℄. Indeed,the presene of the Plank length squaredl2p = k~3is only natural in this quantization rule. Then, for thehorizon area A to be �nite in the lassial limit, thepower of N must be the same as that of ~ in l2p. Thisargument an be heked by onsidering any expeta-tion value in quantum mehanis, nonvanishing in thelassial limit. It is worth mentioning that there are*E-mail: khriplovih�inp.nsk.su

no ompelling reasons to believe that N is an integer.Neither are there ompelling reasons to believe thatspetrum (1) is equidistant [5, 6℄.On the other hand, formula (1) an be interpretedas follows. The entire horizon area A is split into ele-ments of typial size � l2p, eah of them giving a ontri-bution to the large quantum number N . This shemearises, in partiular, in the framework of loop quantumgravity (LQG) [7�11℄.A quantized surfae in LQG looks as follows. Thesurfae is assigned a set of edges. Eah edge is suppliedwith an integer or half-integer �angular momentum� j:j = 1=2; 1; 3=2; : : : (2)The projetions m of these �angular momenta� rangeas usual from �j to j. The area of the surfae isA = 8� l2pXi pji(ji + 1) : (3)The numerial fator  in (3) annot be determinedwithout an additional physial input. This free (so-al-led Barbero � Immirzi) parameter [12, 13℄ orrespondsto a family of inequivalent quantum theories, all ofthem being viable without suh an input.We mention that although spetrum (3) is notequidistant, it is not far away from it. Indeed, evenfor the smallest quantum number j = 1=2, the quan-tity pj(j + 1) an be approximated by j + 1=2 withthe auray 13%. As j grows,pj(j + 1) � j + 1=21223



I. B. Khriplovih ÆÝÒÔ, òîì 127, âûï. 6, 2005beomes better and better, i.e., spetrum (3) ap-proahes an equidistant one. This feature of spe-trum (3) is of interest in onnetion with the obser-vation by Bekenstein: quantum e�ets result in the fol-lowing lower bound on the hange of the horizon area�A under an adiabati proess:(�A)min = �l2p ; (4)here, � is a numerial fator re�eting �the inherentfuzziness of the unertainty relation� [14℄. Of ourse,the right-hand side of formula (4) is proportional to ~,together with the Plank length squared l2p .Due to the unertainty of the numerial fator � it-self, one annot see any reason why � should not slightlyhange from one at of apture to another. Therefore,the disussed quasiequidistant spetrum (3) agrees withthe bound (4), pratially as well as the equidistantone. We return to relation (4) below.As regards the unknown parameter  in (3), the �rstattempts to �x its value, based on the analysis of theblak hole entropy, were made in [15, 16℄. However,these attempts did not lead to onrete quantitativeresults.Then it was argued in [17℄ that for the blak holehorizon, all quantum numbers j are equal to 1=2 (as isthe ase in the so-alled �it from bit� model formulatedearlier by Wheeler [18℄). With these quantum numbers,one arrives easily at the equidistant area spetrum andat the value  = ln 2�p3for the Barbero � Immirzi parameter. However, the re-sult in [17℄ was demonstrated in [5℄ to be ertainly in-orret1) beause it violates the so-alled holographibound formulated in [22�24℄. Aording to this bound,among the spherial surfaes of a given area, the surfaeof the blak hole horizon has the largest entropy.2. MICROCANONICAL ENTROPY OF BLACKHOLEOn the other hand, the requirement of maximumentropy allows one to �nd the orret struture of thehorizon area [25℄, whih in partiular is of ruial im-portane for the problem of radiation of a quantizedblak hole.We atually onsider the �miroanonial� entropyS of a quantized surfae de�ned as the logarithm of1) Later, the result in [17℄ was also ritiized in [19, 20℄. Thenan error made in [17℄ was aknowledged [21℄. We demonstratebelow that the result in [19, 20℄ is also inorret.

the number of states of this surfae for a �xed area A(instead of a �xed energy in ommon problems). Obvi-ously, this number of states K depends on the assump-tions onerning the distinguishability of edges.To analyze the problem, it is onvenient to rewriteformula (3) asA = 8� l2pXjm pj(j + 1) �jm; (5)where �jm is the number of edges with given j andm. It an be demonstrated [5, 6℄ that the only rea-sonable assumption on the distinguishability of edgesthat may result in aeptable physial preditions (i.e.,may omply both with the Bekenstein �Hawking rela-tion and with the holographi bound) is as follows:nonequal j, any m �! distinguishable;equal j, nonequal m �! distinguishable;equal j, equal m �! indistinguishable.Under this assumption, the number of states of thehorizon surfae for a given number �jm of edges withmomenta j and their projetions jz = m, is obviouslygiven by K = � ! Yjm 1�jm ! ; (6)where � =Xj �j ; �j =Xm �jm ;and the orresponding entropy equalsS = lnK = ln(� !) �Xjm ln(�jm !) : (7)The strutures of the last expression and of formula (5)are so di�erent that the entropy ertainly annot beproportional to the area in the general ase. However,this is the ase for the maximum entropy in the lassiallimit.In this limit, with all the e�etive �oupation num-bers� large, �jm � 1, we use the Stirling approxima-tion, and hene the entropy isS = � ln � �Xjm �jm ln �jm : (8)We alulate its maximum for a �xed area A, i.e., fora �xed sumN = 1Xjm pj(j + 1) �jm = onst : (9)1224



ÆÝÒÔ, òîì 127, âûï. 6, 2005 Radiation of quantized blak holeThe problem redues to the solution of the systemof equations ln � � ln �jm = �pj(j + 1) ; (10)where � is the Lagrange multiplier for onstraint (9).These equations an be rewritten as�jm = � exp���pj(j + 1)� ; (11)or �j = (2j + 1) exp���pj(j + 1)� �: (12)We now sum expressions (12) over j, and withXj �j = �;arrive at the equation for �:1Xj=1=2(2j + 1) exp���pj(j + 1)� = 1: (13)Its solution is � = 1:722: (14)Stritly speaking, the summation in formula (14)extends not to in�nity but to some jmax. Its valuefollows from the obvious ondition: none of the �jmshould be less than unity. Then, for � � 1, Eq. (11)gives jmax = ln �� : (15)It is well-known that the Stirling approximation for n!has reasonably good numerial auray even for n = 1.Therefore, formula (15) for jmax is not just an estimatebut has reasonably good numerial auray. The rela-tive magnitude of the orresponding orretion to (14)an be easily estimated as � ln �=�.We now return to Eq. (10). Multiplying it by �jmand summing over jm, we arrive, with onstraint (9),at the following result for the maximum entropy for agiven value of N : Smax = 1:722N: (16)Therefore, with the Bekenstein �Hawking relation andformula (5), we �nd the value of the Barbero � Immirziparameter  = 0:274: (17)

Quite reently, this alulation with the same re-sult, although with somewhat di�erent motivation, wasreprodued in [26℄.We emphasize that the above alulation is not spe-ial for LQG only, but applies (with obvious modi�a-tions) to a more general lass of approahes to the quan-tization of surfaes. The following assumption is atu-ally neessary here: the surfae should onsist of sites ofdi�erent sorts, suh that there are �i sites of eah sort i,with a generalized e�etive quantum number ri (here,pj(j + 1)) and a statistial weight gi (here, 2j + 1).Then in the lassial limit, with given funtions ri andgi, the maximum entropy of a surfae an be found, atleast numerially, and is ertainly proportional to thearea of the surfae.As regards the previous attempts to alulate ,one should indiate an apparent error in state ount-ing made in [19, 20℄. It an be easily heked that thetransition from formula (25) to formulas (29) and (36)in [19℄ performed therein and then used in [20℄, is er-tainly valid under the assumption that only two max-imum projetions �j are allowed for eah quantumnumber j. But it annot then hold for the orretnumber 2j + 1 of the projetions. Therefore, it is notsurprising that the equation for the Barbero � Immirziparameter in [20℄ is2 1Xj=1=2 exp���pj(j + 1)� = 1 ; (18)instead of ours in (13) (see also the disussion of (18)in [26℄).The onlusion is obvious. Any restrition on thenumber of admissible states for the horizon, as om-pared to a generi quantized surfae, be it the restri-tion to j = 1=2 ; m = �1=2 ;made in [17℄, or the restrition toany j ; m = �j ;made in [19, 20℄, results in a on�it with the holo-graphi bound.3. QUANTIZATION OF ROTATING BLACKHOLEIn disussing the radiation spetrum of quantizedblak holes, one should take the angular momentum se-letion rules into aount. Obviously, radiation of anypartile with a non-vanishing spin is impossible if both1225



I. B. Khriplovih ÆÝÒÔ, òîì 127, âûï. 6, 2005initial and �nal states of the blak hole are spheriallysymmetri. Therefore, to �nd the radiation spetrum,the quantization rule for the mass of a Shwarzshildblak hole must be generalized to that of a rotatingKerr blak hole.To derive the quantization rule for a Kerr blakhole, we return to the thought experiment analyzedin [2, 3℄. Therein, under adiabati apture of a partilewith an angular momentum j, the angular momentumJ of a rotating blak hole hanges by a �nite amount j,but the horizon area A does not hange. Of ourse, un-der some other variation of parameters, it is the angularmomentum J that remains onstant. In other words,we have here two independent adiabati invariants, Aand J , for a Kerr blak hole with mass M .Suh a situation is quite ommon in ordinary me-hanis. For example, the energy of a partile withmass m bound in the Coulomb �eldU(r) = ��ris E = � m�22 (Ir + I�)2 ; (19)where Ir and I� are the respetive adiabati invariantsfor the radial and angular degree of freedom. Of ourse,the energy E is in a sense also an adiabati invariant,but it is invariant only under those variations of pa-rameters that preserve both Ir and I�. In quantummehanis, formula (19) beomesE = � m�22 ~2 (nr + 1 + l)2 ; (20)where nr and l are the radial and orbital quantum num-bers, respetively.This example prompts the solution of the quantiza-tion problem for a Kerr blak hole. It is onvenientlyformulated in terms of the so-alled irreduible massMir of a blak hole, related by de�nition to its horizonradius rh and area A asrh = 2kMir ; A = 16�k2M2ir : (21)Together with the horizon area A, the irreduible massis an adiabati invariant. In aordane with (3)and (9), it is quantized asM2ir = 12 m2pN ; (22)where m2p = ~=k

is the Plank mass squared.For a Shwarzshild blak hole, Mir oinides withits ordinary mass M . But for a Kerr blak hole, thesituation is more interesting. Here,M2 = M2ir + J2r2h =M2ir + J24k2M2ir ; (23)where J is the internal angular momentum of a rotatingblak hole.Now, taking (22) into aount, we arrive at the fol-lowing quantization rule for the mass squared M2 of arotating blak hole:M2 = 12 m2p �N + J(J + 1)N � : (24)Obviously, as long as the blak hole is far from an ex-tremal one, i.e., while N � J , we an neglet thedependene of M2 on J , and the angular momentumseletion rules have pratially no e�et on the blakhole radiation spetrum.As regards the mass and irreduible mass of aharged blak hole, they are related byM = Mir + q22rh ; (25)where q is the blak hole harge. This formula has asimple physial interpretation: the total mass (or to-tal energy) M of a harged blak hole onsists of itsirreduible mass Mir and of the energy q2=2rh of itseletri �eld in the outer spae r > rh.With rh = 2kMir, relation (25) an be rewritten asM2 = M2ir + q416k2M2ir + q22k : (26)Thus, for a harged blak hole, M2 is quantized asM2 = 12 m2p �N + q44N + q2� : (27)In fat, relations of this type (even in a more generalform, for Kerr �Newman blak holes, both harged androtating) were already presented in the pioneering arti-le [1℄, although with the equidistant quantization rulefor M2ir, i.e., for the horizon area (see also [14℄). Morereently, the onlusion that the mass of a quantizedblak hole must be expressed via its quantized area andangular momentum, was made in the approah basedon the notion of the so-alled isolated horizons [27, 28℄.Here, we do not mention the attempts to quantizerotating and harged blak holes that resulted in weirdquantization rules for Ĵ2 and e2=~.1226



ÆÝÒÔ, òîì 127, âûï. 6, 2005 Radiation of quantized blak hole4. RADIATION SPECTRUM OF QUANTIZEDBLACK HOLEIt follows from expression (24) that for a rotatingblak hole, the radiation frequeny !, whih oinideswith the loss �M of the blak hole mass, is! = �M = T��N + 14kM 2J + 1N �J; (28)where �N and �J are the respetive losses of the areaquantum number N and the angular momentum J .Here, in line with (24), we have used the identityT = �M�S = 18�kM �M2�M2ir (29)for the Hawking temperature T as well as formula (23).In the same way, for a harged blak hole, with for-mula (27), we obtain the radiation frequeny! = �M = T��N + 14kM �2 + q2N � q�q ; (30)where �q is the loss of the harge.We are mainly interested in the �rst, temperatureterms in (28) and (30), dominating everywhere exeptthe viinity of the extremal regime, where J ! N ,or q2 ! 2N , and T ! 0. The natural assumption isthat the thermal radiation ours when an edge with agiven value of j disappears, whih means that�Nj = rj ; !j = T� rj : (31)Thus we arrive at the disrete spetrum with a �nitenumber of lines. Their frequenies start at!min = T�p3=2and terminate at !max = T ln �:We reall that j � jmax = ln �=�;and hene the number of lines is not very large, � 102,if the blak hole mass is omparable to the mass of theSun. But beause of the exponential derease of the ra-diation intensity with ! or j (see below), the existeneof !max and a �nite number of lines are not of greatimportane.To substantiate the assumption made, we return tothe lower bound (4) on the hange of the horizon areaunder an adiabati apture of a partile. The preseneof the gap (4) in this proess means that this threshold

apture e�etively onsists in the inrease by unity ofthe oupation number �jm with the smallest j, equalto 1=2. If the apture were aompanied by a reshuf-�e of few oupation numbers, the hange of the areaould be easily made arbitrarily small. For instane,one ould delete two edges with quantum numbers j1and j2, and add an edge with the quantum numberj1 + j2. Obviously, with j1;2 � 1, the area inreaseould be made arbitrarily small.It is only natural to assume that in the radiationproess as well, hanging several oupation numbersinstead of one is at least strongly suppressed. We thusarrive at Eqs. (31).Our next assumption, at least as natural as thisone, is that the probability of radiation of a quantumwith the frequeny !j is proportional to the oupationnumber �j . Correspondingly, the radiation intensity Ijat this frequeny !j is proportional to �j !j :Ij � �j!j � �(2j + 1)!j exp(�!j=T ) : (32)We ompare this expression with the intensity ofthe blak-body radiation in the Wien limit !=T � 1,I(!) = A !34�2 exp(�!=T ) d! ; (33)where A is the area of a spherial blak body. First ofall, our relation (32) for Ij diretly reprodues the expo-nential fator of the Wien spetrum. Next, d! in (33)goes over into (1=2)�T beause the limit !=T � 1 or-responds in our problem to pj(j + 1)� 1, i.e., topj(j + 1) � j + 1=2;and the minimum inrement of j is 1/2. Now, to re-produe the Wien pro�le, we supplement relation (32)with the following fators: some �osillator strength�proportional to !j , obvious powers of �T , the Newtononstant k (neessary to transform � into A), and obvi-ous numerial ones. We thus arrive at the �nal formulafor the disrete radiation spetrum of a blak hole:Ij = AT 4 �48�2 j �j + 12� (j + 1)�� exp���pj(j + 1)� : (34)Of ourse, beause Wien spetrum (33) orrespondsto j � 1, we annot guarantee the exat struture ofthe j-dependene in formula (34), espeially in the pre-exponential fator. For instane, it would perhaps beequally legitimate to writej3=2(j + 1)3=2instead of1227



I. B. Khriplovih ÆÝÒÔ, òîì 127, âûï. 6, 2005j(j + 1=2)(j + 1)there. However, this ambiguity is not very essential, atleast numerially.We note that beause the blak hole temperature Tis less than the minimum allowed frequeny !min, thisspetrum has no Rayleigh � Jeans region at all.Now, the emission probability for a quantum of fre-queny !j = T� rj , i.e., the width of the orrespondingline, is�j = Ij!j = AT 3 �38�2 (j + 1=2)pj(j + 1)�� exp���pj(j + 1)� : (35)The ratio of this natural line width to the distane�!j = !j+1 � !j � 12 �Tbetween the lines is very small numerially:�j�!j � �216�3 (j + 1=2)pj(j + 1)�� exp���pj(j + 1)� . 10�3: (36)Thus, the radiation spetrum of an isolated blak holeis really disrete.Finally, the total radiation intensity of a blak holeis I =Xj Ij = 0:150AT 4: (37)The numerial oe�ient in this expression is lose tothat in the total intensity of the ommon thermal ra-diation, i.e., to the Stefan �Boltzmann onstant�2=60 = 0:164:The point is that the Rayleigh � Jeans ontribution tothe total intensity, whih is ompletely absent in thepresent spetrum, would be small anyway.Formulas (34) and (37) desribe not only the ther-mal radiation of bosons, photons, and gravitons, butalso the thermal radiation of fermions, massless neu-trinos. However, in the last ase, a proper aount forthe number of polarization states is neessary: for atwo-omponent Dira neutrino, the numerial fatorsin formulas (34) and (37) are two times smaller.In fat, it was argued long ago [29℄ that the dis-rete thermal radiation spetrum of a blak hole, withthe equidistant quantization rule for the horizon area,should �t the Wien pro�le.

On the other hand, our onlusion of the disreteradiation spetrum of a blak hole in LQG di�ers dras-tially from that of [30℄ aording to whih the blakhole spetrum in LQG is dense.As regards the nonthermal radiation of extremalblak holes, desribed by the terms with �J and �q inEqs. (28) and (30), these e�ets are due to tunneling(see a relatively reent disussion of the subjet anda detailed list of relevant referenes in [31; 32℄). Theloss of harge by a harged blak hole is in fat ausedby the Coulomb repulsion between the blak hole andthe emitted partiles with the same sign of harge. Fora rotating blak hole, the reason is the interation ofangular momenta: partiles (mainly massless) whosetotal angular momentum is parallel to that of the blakhole are repelled from it.I appreiate numerous useful disussions withO. P. Sushkov. I am also grateful to J. Bekenstein forthe orrespondene; in partiular, he has attrated myattention to the limit (4). An essential part of this workwas done during my visit to the Shool of Physis, Uni-versity of New South Wales, Sydney; I wish to thankUNSW for the kind hospitality. The investigation wassupported in part by the Russian Foundation for BasiResearh (grant � 03-02-17612).REFERENCES1. J. D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974).2. D. Christodoulu, Phys. Rev. Lett. 25, 1596 (1970).3. D. Christodoulu and R. Ru�ni, Phys. Rev. D 4, 3552(1971).4. I. B. Khriplovih, Phys. Lett. B 431, 19 (1998); E-printarhives gr-q/9804004.5. I. B. Khriplovih, Zh. Eksp. Teor. Fiz. 126, 527 (2004);E-print arhives gr-q/0404083.6. I. B. Khriplovih, E-print arhives gr-q/0409031.7. C. Rovelli and L. Smolin, Nul. Phys. B 442, 593(1995); erratum, ibid. B 456, 753 (1995); E-printarhives gr-q/9411005.8. A. Ashtekar and J. Lewandowski, Class. QuantumGrav. 14, 55 (1997); E-print arhives gr-q/9602046.9. R. Loll, Phys. Rev. Lett. 75, 3048 (1995); E-printarhives gr-q/9506014; R. Loll, Nul. Phys. B 460,143 (1996); E-print arhives gr-q/9511030.10. R. De Pietri and C. Rovelli, Phys. Rev. D 54, 2664(1996); E-print arhives gr-q/9602023.1228
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