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THERMAL CORRECTION TO RESISTIVITY IN DILUTE Si-MOSFETTWO-DIMENSIONAL SYSTEMSM. V. Cheremisin *Io�e Institute for Physis and Tehnology194021, St. Petersburg, RussiaSubmitted 15 April 2003,after revision 24 April 2004Negleting eletron�eletron interations and quantum interferene e�ets, we alulate the lassial resistivityof a two-dimensional eletron (hole) gas taking the degeneray and the thermal orretion due to the ombinedPeltier and Seebek e�ets into aount. The resistivity is found to be a universal funtion of the temperature,expressed in the units of (h=e2)(kF l)�1. Analysis of the ompressibility and thermopower points to the thermo-dynami nature of the metal�insulator transition in two-dimensional systems. We reprodue the beating patternof Shubnikov � de Haas osillations in both the rossed �eld on�guration and Si-MOSFET valley splitting ases.The onsequenes of the integer quantum Hall e�et in a dilute Si-MOSFET two-dimensional eletron gas aredisussed. The giant parallel magnetoresistivity is argued to result from the magneti-�eld-driven disorder.PACS: 73.40.Qv, 71.30.+h, 73.20.Fz1. INTRODUCTIONReently, muh interest has been foused on theanomalous transport behavior of a variety of low-den-sity two-dimensional (2D) systems [1�5℄. It has beenfound that below some ritial density, the oolingauses an inrease in resistivity, whereas in the oppositehigh-density ase, the resistivity dereases. Anotherproperty of dilute 2D systems is their unusual responseto the parallel magneti �eld. At low temperatures,the magneti �eld was found to suppress the metallibehavior and result in inreasing the resistivity uponenhanement of the spin polarization degree [6; 7℄. Astrong perpendiular magneti �eld, if applied simulta-neously with the parallel one, results in suppression ofthe parallel magnetoresistivity [8℄. Although numeroustheories have been put forward to aount for these ef-fets, the origin of the above behavior is still the subjetof a heated debate.The ohmi measurements are known to be arriedout at a low urrent (I ! 0) in order to prevent Jouleheating. In ontrast to the Joule heat, the Peltier andThomson e�ets are linear in the urrent. As shownin Refs. [9�11℄, the Peltier e�et results in a orre-*E-mail: maksim.vip1�pop.io�e.rssi.ru

tion to the measured resistane. When the urrentis running, one of the sample ontats is heated, andthe other is ooled beause of the Peltier e�et. Theontat temperatures are di�erent. The voltage dropaross the iruit inludes thermoeletromotive fore,whih is linear in the urrent. There exists a thermalorretion �� to the ohmi resistivity � of the sam-ple. For low-density 2D eletron gas (2DEG), the or-retion may be omparable to the resistivity beause��=� � (kT=�)2, where � is the Fermi energy. In thepresent paper, we report on a study of low-T transportin 2D systems, taking both the arrier degeneray andthe Peltier-e�et-indued orretion to resistivity intoaount. 2. GENERAL FORMALISMFor larity, we onsider the (100) Si-MOSFET2DEG system. Within the strong inversion regime,we further neglet a depletion layer harge in thesemiondutor bulk. At a �xed gate voltage, thequasi-Fermi level � in the semiondutor is shifted withrespet to that in the metal gate. The number of o-upied states below the quasi-Fermi level determinesthe density of eletrons assumed to oupy the �rst674
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Fig. 1. The experimental setupquantum-well subband with the isotropi energy spe-trum "(k) = ~2k2=2m.We onsider a sample onneted to the urrentsoure by means of two idential leads (Fig. 1). Bothontats are ohmi. The voltage is measured betweenthe open ends  and d kept at the temperature of theexternal thermal reservoir. The sample is plaed in ahamber with the mean temperature T0. Aording toour basi assumption, the ontats a and b may havedi�erent respetive temperatures, Ta and Tb. Inlud-ing the temperature gradient term, the urrent densityj and the energy �ux density q are given byj = �(E� �rT ); q = (�T � �=e)j� �rT; (1)where E = r�=e is the eletri �eld, � = � � e' isthe eletrohemial potential, � is the thermopower,� = Ne�0 is the ondutivity, �0 = e�=m is the mo-bility, � is the momentum relaxation time, � = LT�is the thermal ondutivity, and L = �2k2=3e2 is theLorentz number.In general, one an solve Eq. (1) and then �nd thedi�erene of ontat temperatures, �T = Ta � Tb, foran arbitrary iruit ooling. But below approximately1 K, the eletron�phonon oupling is known to be weak[12℄. In the atual ase where I ! 0, we an then omitthe Joule heating. We therefore onsider a simple aseof adiabati ooling, with the 2DEG thermally insu-lated from the environment. We emphasize that underthe above onditions, the sample is not heated. In-deed, at small urrents, we have Ta � Tb � T0. Hene,the amount of the Peltier heat Qa = I��T0 evolvedat ontat a and that absorbed at ontat b are equal.Here, �� is the di�erene of the 2DEG and metal on-dutor thermopowers. We reall that the energy �ux isontinuous at eah ontat,��rT ja;b = j��Ta;b;and therefore the temperature gradient is onstantdownstream the urrent. The di�erene of the ontattemperatures is then given by [9, 10℄�T = ��l0L�w I;

where l0 and w are respetively the sample length andwidth. For example, for a 2 � 2-mm sample, the typi-al urrent I = 1 nA, the 2D resistivity of the order ofh=e2, and � � k2T=e� � 0:01k=e, the ontat temper-ature di�erene is �T = 10 mK � T0, and thereforeour approah is well justi�ed. From Eq. (1), the voltagedrop between ends  and d is given byU = RI +���T;where R is the ohmi resistane of the iruit. Theseond term is the onventional Seebek thermoele-tromotive fore. Beause �T / I , we �nally obtainthe total 2DEG resistivity as�tot = �(1 + �2=L); (2)where we assume that �� � ��. We note that withinthe adiabati approah, Eq. (2) an also be applied forthe 2D hole gas and in the ase of four-point ontatmeasurements. In the Appendix, we disuss the ase of2DEG realisti ooling in more detail.3. RESULTS3.1. 2D density and thermopowerUsing Gibbs statistis, we �nd that the 2DEG den-sity N = �(�
=��)T is given byN = N0�F0(1=�); (3)where 
 = �kTXk ln �1 + exp��� "(k)kT ��is the thermodynami potential, � = kT=� = T=TF isthe dimensionless temperature, TF is the Fermi tem-perature, and Fn(z) is the Fermi integral. At the mo-ment, we disregard the valley splitting, reported to beof the order of 1 K in the (100) Si-MOSFET 2DEGsystem [13℄. Below we disuss the importane of anonzero valley splitting in the ontext of low-�eld Shub-nikov � de Haas osillations. Next, we introdue thedensity of states D = 2m=�~2, where m is the e�etivemass. For the density of strongly degenerate 2DEG,we have N0 = D�. In what follows, we onsider boththe lassial Boltzman (� < 0) and Fermi (� > 0)ases, and therefore use the dimensionless onentra-tion n = N= jN0j (Fig. 2a). In the lassial Boltzmanlimit (� < 0, j�j � 1), the 2D eletron density is ther-mally ativated: n = j�j exp(�1= j�j):675 11*
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Fig. 2. The zero-�eld 2DEG density (a) and ther-mopower (b) given by Eqs. (3) and (4) respetively vsthe dimensionless temperature �. Asymptotes shownby dotted lines orrespond to j�j � 1 and those shownby thin lines to j�j � 1. Insets: 2DEG density (a 0)and thermopower (b 0) for the spin polarization degreep = 0, 0:3, 0:6, 1For strongly degenerate eletrons (� � 1), we obtainn = 1 + � exp(�1=�):Then, at elevated temperatures (� � 1), the densityn = 1=2 + � ln 2beomes linear in the temperature. We note that ata �xed temperature, the 2DEG density always exeedsthe zero-temperature value, i. e., N > N0 (see Fig. 3, in-set). Experimentally, the onentration extrated fromthe period of the Shubnikov � de Haas quantum osil-lations [14, 15℄ determines the density of strongly de-generate 2DEG, i. e., NSdH = N0. In ontrast, thelassial low-�eld Hall measurements [4, 14℄ allow �nd-ing the total arrier density NHall = N , whih o-inides with the density of strongly degenerate ele-trons for � � 1. We argue that in dilute 2D systems,
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Fig. 3. Temperature dependene of the thermopowergiven by Eq. (4) for TF [K℄ = 2 � 0:25 (step 0:25),0:2 � 0:05 (the step 0:05), 0:01, 0 (bold line), �0:1,�0:2. Inset: density vs Fermi energy at the �xed tem-perature T [K℄ = 0 (pieewise bold line), 0:15, 0:25 inSi-MOSFET systemthe auray provided by both methods beomes ques-tionable, whih seems to be the reason for the sampleand temperature-dependent deviation NHall � NSdHobserved in Si-MOSFETs [14℄.Following the onventional Boltzman equation for-malism, the expliit formula for the 2DEG ther-mopower an be written as� = �ke �2F1(1=�)F0(1=�) � 1� � : (4)For simpliity, we assume that the eletron satteringis haraterized by the energy-independent momentumrelaxation time. In the lassial limit (� < 0, j�j � 1),the thermopower is given by the onventional formula� = �ke �2� 1�� :For strongly degenerate 2DEG (� � 1), we obtain the676



ÆÝÒÔ, òîì 127, âûï. 3, 2005 Thermal orretion to resistivity : : :temperature dependene of the thermopower (Fig. 2b)as � = �ke ��2�3 � (1 + 3�) exp��1��� :At elevated temperatures (� > 1), the thermopower�rst grows with the temperature and then approahesthe universal value�s = �ke 2F1(0)F0(0) = �ke �26 ln 2 :The above behavior is on�rmed by low-temperaturethermopower measurement data [16℄, found to divergeat a ertain value near 0:6k=e, whih is of the order of�s (see the bold line in Fig. 3).3.2. Zero-�eld resistivityWe now alulate the total 2DEG resistivity givenby Eq. (2). Figure 4 represents the T -dependent resis-tivity at �xed Fermi temperatures that orrespond toa ertain 2DEG density range (see Fig. 3, inset). For a�xed disorder strength, we represent the data found atdi�erent densities (or TF ) in a single plot (Fig. 4). Inreal units, inreasing the disorder results in the upshiftof resistivity urves. The temperature dependene ofthe resistivity (see, e.g., the urve at TF = 0:25 K inFig. 4) exhibits the metalli behavior (i. e. d�=dT > 0)for T � TF and then beomes insulating (d�=dT < 0)at T � TF . Within the low-temperature metalli re-gion, the 2DEG resistivity an be approximated (seethe dotted line in Fig. 4) by�tot = �0(1 + �2�2=3);where �0 = 1N0e�0 = h2e2 1kF lis the resistivity at T ! 0, kF = p2m�=~ is the Fermivetor, and l = ~kF �=m is the mean free path. For thehigh-temperature insulating region, we then obtain theasymptote �tot = �0 1 + �2s=L� ln 2 / 1T ;depited in Fig. 4 by the thin line. The metalli-to-insulating behavior rossover ours at T � 0:8TF .In fat, the low-temperature metalli resistivity is ex-plained within our model in terms of the thermal or-retion given by Eq. (2), while the high-temperatureinsulating behavior results from a derease of the 2Ddegeneray. It is to be speially noted that in the Boltz-man limit (see urves at � < 0 in Fig. 4), the resistivityan be saled in units of the disorder parameter kF l,where the substitution �! j�j must be made.
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M. V. Cheremisin ÆÝÒÔ, òîì 127, âûï. 3, 2005were argued to rule out the eletron�eletron intera-tions [4℄, the shape of the potential well [18℄, spin�orbite�ets, and quantum interferene e�ets [19; 20℄ as pos-sible origins of the metalli behavior mehanism. In ad-dition, our onept of the high-temperature insulatingbehavior is qualitatively on�rmed by the experimentaldata [21; 22℄ within the insulating side of the metal�insulator transition exhibiting the nonhopping 1=T de-pendene. As an example, for the p-GaAs/AlGaAstwo-dimensional hole gas [22℄ with the peak mobility�0 = 2 � 105 m2=V � s, we obtain the linear dependene(see the thin-line asymptote in Fig. 4, inset a) of the in-verse resistivity, �tot[e2=h℄ = 1=�tot = 1:4T [K℄, whihis onsistent with the experimental value 3:3T [K℄. It isto be noted that the onventional theory [23; 24℄ usedto explain the 2D metalli behavior [7; 21; 25℄ fails toaount for both T ! 0 and T � TF ases.We emphasize that Eq. (2) provides the atuallymeasured e�etive 2D mobility and yields�eff = �01 + �2=L:Experimentally, at a �xed temperature, the mobil-ity data an be unambiguously extrated using inde-pendent measurements of the 2D resistivity and thelow-�eld Hall density NHall � N . With the help ofEq. (3), we plot the density dependene of �eff in Fig. 5.Upon depletion of 2DEG, the dependene �eff (N) fallsdown at low densities near 109 m�2 as � ! 0. Inthe high-density ase, we predit �eff � �0. We ar-gue that in real experiment, the above behavior anbe masked by impurity-assisted (Si�SiO2 roughness-assoiated) suppression of the momentum satteringtime in the respetive ases of low (high) densities [26℄.3.3. 2DEG magnetoresistivityIn ontrast to the onventional Shubnikov � de Haasformalism extensively used to reprodue low-�eld data,we use the alternative approah [27℄ that seems tobe aimed at resolving the magnetotransport problemwithin both Shubnikov � de Haas and integer-quantum-Hall-e�et regimes.The Si-MOSFET energy spetrum modi�ed withrespet to the valley and spin splitting is given by"n = ~!�nL + 12�� �s2 � �v2 ; (5)where nL = 0; 1; : : : is the Landau level number,! = eB?=m is the ylotron frequeny, �s = g��BBis the Zeeman splitting, g� is the e�etive g-fator, andB = qB2? +B2k is the total magneti �eld. Next,
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Fig. 5. The dimensionless e�etive mobility spei�ed inthe text vs the 2D density for the Si-MOSFET systemat T = 0:15 K and T = 0:25 K�v [K℄= �0v +0:6B?[T℄ is the density-independent [28℄valley splitting. In ontrast to the valley splitting, thespin suseptibility � = g�m=2m0 (where m0 is the freeeletron mass) is known to exhibit strong enhanementupon 2D arrier depletion. This result is on�rmed in-dependently by magnetotransport measurements in atilted magneti �eld [6; 29℄, the perpendiular �eld [30℄,and by the beating pattern of the Shubnikov � de Haasosillations [31℄ in rossed �elds.We reall that in strong magneti �elds(~! � kT; ~=�), the eletrons an be onsidereddissipationless, and therefore �xx; �xx � 0. Underurrent arrying onditions, the only reason for a�nite longitudinal resistivity seems to be the thermalorretion mehanism disussed earlier [27℄. FollowingRef. [27℄, we obtain � = �yx�2=L; (6)where � is the thermopower, ��1yx = Ne=B? is the Hallresistivity, N = �(�
=��)T is the 2D density,
 = �kT�Xn ln �1 + exp��� "nkT ��is the thermodynami potential modi�ed with re-spet to the energy spetrum mentioned above, and678



ÆÝÒÔ, òîì 127, âûï. 3, 2005 Thermal orretion to resistivity : : :� = eB?=h is the zero-width of the Landau-leveldensity of states. In strong magneti �elds, the 2Dthermopower is a universal quantity [32℄, proportionalto the entropy per eletron, � = �S=eN , whereS = �(�
=�T )� is the entropy. Both S and N ,and hene � and � are universal funtions of � andthe dimensionless magneti �eld ~!=� = 4=�, where� = N0=� is the onventional �lling fator.Using the Lifshitz �Kosevih formalism, we aneasily derive asymptoti formulas for N and S, andhene for �yx and �, valid at low temperatures � < 1and weak magneti �elds ��1 < 1:N = N0�F0 �1��++ 2��N0 1Xb=1 (�1)b sin(�b�=2)sh rb R(�); (7)S = S0 � 2�2�kN0 1Xb=1(�1)b�(rb) os��b�2 �R(�);where S0 = kN0 dd� ��2F1�1���is the entropy at B? = 0, Fn(z) is the Fermi integral,�(z) = 1� z th zz sh z ;and rb = �2��b=2 is the dimensionless parameter.Then R(�) = os(�bs) os(�bv) is the form fator,s = �s=~! = �B=B? is the dimensionless Zeemanspin splitting, and v = �v=~! = �0v�=4�+0:12 is thedimensionless valley splitting.We �rst onsider the zero-Bk ase, where the Zee-man spin splitting is redued to a �eld-independentonstant, i. e., s = �. In the low-T;B? limit, thevalley splitting �0v is then known to be resolved [13℄,and therefore leads to beating of the Shubnikov � deHaas osillations. In the atual �rst-harmoni ase(i. e., b = 1), the beating nodes an be observed whenos(�v) = 0, or �vi = 4�(i=2� 0:12)�0v ;where i = 1; 3; : : : is the beating node index. For 2DEGparameters reported in Ref. [13℄ (Fig. 6), we estimate�v1 = 101, and therefore �0v = 0:92 K. The seond nodeis expeted to appear at �v3 = 368. However, the Shub-nikov � de Haas osillations are in fat resolved when� � 1=� = 203, and therefore the seond beating nodewas not observed in experiment [13℄. Moreover, the
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�eld valley splitting in the atual high-density ase(N > 9 � 1011 m�2). At a �xed parallel magneti �eld,the dimensionless Zeeman splitting is given bys = �q1 + �2=�2k ;where we introdue the auxiliary ��lling fator��k = hN0=eBk assoiated with the parallel �eld. Inthe low-B? limit, the spin splitting indued by theparallel �eld also results in the beating of the Shub-nikov � de Haas osillations. We an easily derive theondition for the Shubnikov � de Haas beating nodes asos(�s) = 0 or�sj = �kp(j=2�)2 � 1; j = 1; 3; : : :The sequene of the beating nodes observed in Ref. [31℄allowed the authors to dedue the density dependeneof the spin suseptibility. As an example, in Fig. 8, wereprodue the magnetoresistivity implied by Eqs. (6)and (7) for 2DEG parameters [31℄. The phase of theShubnikov � de Haas osillations remains the same be-tween the adjaent beating nodes and hanges by �through the node in agreement with experiments.We now onsider the 2DEG magnetotransport in atilted on�guration with the sample rotated in a on-stant magneti �eld [6; 7; 29℄. In this ase, the Shub-nikov � de Haas beating pattern is known to dependon the spin polarization degree p = �s=2� = 2�=�tot,where we introdue the auxiliary ��lling fator��tot = hN0=eB assoiated with the total magneti�eld. Conventionally, the spin polarization degree isrelated to the parallel �eld B required for the om-plete spin polarization, and therefore p = B=B. Per-forming a minor modi�ation in Eq. (6), namely thats = ��=�tot, in Fig. 9 we represent the magnetoresis-tivity as a funtion of the �lling fator for a 2DEGplane rotated with respet to the onstant magneti�eld B = 18 T [7℄. For simpliity, we omit the zero-�eldvalley splitting. Then, assuming that the Landau-levelbroadening is negleted within our simple approah,we use a somewhat higher temperature ompared tothat in experiment [7℄. For a spin-polarized system, theShubnikov � de Haas osillations (p = 1:01 in Fig. 9a)are aused by the only lowest valley-degenerate spin-up subband. At low temperatures, the valley split-ting at � = 3 is resolved. With the energy spe-trum spei�ed by Eq. (5), the high-�lling maxima o-ur at 4(N + 1=2)=(1 + p) � 2N+1 and therefore havethe period �� = 2. In ontrast, the partially polar-ized high-density 2DEG ase (p = 0:29) depited inFig. 9b demonstrates a rather ompliated beating pat-tern aused by both spin-up and spin-down subbands.680
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Fig. 8. The Shubnikov� de Haas beating pattern osil-lations at T = 0:35 K for a Si-MOSFET sample [31℄:N0 = 10:6�1011 m�2, the spin suseptibility � = 0:27,�0v = 0 and Bk = 0 (a), Bk = 4:5 T (b), �k = 9:25.The arrows depit the beating nodes at j = 3, 5, 7It an be easily demonstrated that high-�lling maximaour at 4(N + 1=2)=(1� p) (dots in Fig. 9b) and henedepend on the spin polarization degree. The ratio ofosillation frequenies for the two spin subbands isf#f" = 1� p1 + p ;onsistently with experiment [7℄. At the moment, how-ever, we annot explain the puzzling behavior of low-�lling magnetoresistivity data known to be insensitiveto the parallel �eld omponent [6; 33℄.We emphasize that the data represented inFigs. 6�9 di�er from those provided by the onven-tional formalism in the following aspets: i) thelow-�eld (!� � 1) quantum interferene and lassialnegative magnetoresistivity bakground is exludedwithin our approah and ii) in ontrast to the on-ventional Shubnikov � de Haas analysis, our approah

�
�
�

�
�
�

���
���
���
�������

a

∆ν = 2

∆s

20151050

2

4

ρ, 10−3 h/e2

ν

∆s

µ

b

µ

503020100

0.4

0.6

ν

ρ, 10−3 h/e2

0.2

40Fig. 9. The small-angle Shubnikov� de Haas osil-lations at T = 1:35 K for a Si-MOSFET sys-tem [7℄: a) spin polarized eletrons (p = 1:01)at N0 = 3:72 � 1011 m�2, the spin suseptibility� = 0:42 [31℄, the �e�etive �lling fator� �tot = 0:83,and b) the partially polarized ase (p = 0:29) atN0 = 9:28 �1011 m�2, the spin suseptibility � = 0:30[31℄, and �tot = 2:06. The positions of maxima arerepresented by empty dots. Insets: shemati band di-agrams at B = Bkdetermines (at !� � 1) the absolute value of mag-netoresistivity and, moreover, provides a ontinuoustransition from the Shubnikov � de Haas regime to thequantum Hall e�et (~! � kT ). A minor point isthat our approah predits a somewhat lower Shub-nikov � de Haas osillation amplitude ompared to thatin experiment. However, in the integer-quantum Halle�et regime, the magnetoresistivity magnitude is wellomparable with experimental values [27℄.3.4. Parallel-�eld magnetoresistivityOne of the most intriguing features of the Si-MOSFET 2D system is its enormous response to the681



M. V. Cheremisin ÆÝÒÔ, òîì 127, âûï. 3, 2005magneti �eld applied in the plane of the eletrons.At a �xed temperature, the parallel-�eld resistivity isknown to exhibit a dramati inrease at both sides ofthe zero-�eld metal�insulator transition. On the metal-li side, the resistivity inreases by more than an orderof magnitude and then saturates above a ertain valueof the parallel magneti �eld. The saturation �eld or-responds to the omplete spin polarization [6℄, whenp = 1. On the insulating metal�insulator transitionside, the saturation of the magnetoresistivity is not ob-served [6℄. We now give a qualitative argument in favorof the magneti-�eld-driven disorder origin of the ob-served magnetoresistivity data.At a �xed parallel magneti �eld, behavior of theT -dependent resistivity is reported [17℄ to be similarto that in the zero-�eld ase (see Fig. 4). Moreover,the same data plotted as a funtion of density also ex-hibit a well-pronouned transition point as in the aseof the zero-�eld metal�insulator transition (see Fig. 4,inset b). Both the ritial resistivity �B and the den-sity nB depend on the magneti �eld strength. Sur-prisingly, the ritial diagram �B vs nB was found [17℄to oinide with that obtained in the ase of the zero-�eld metal�insulator transition for di�erent mobility Si-MOSFET samples. Assuming that the thermal orre-tion mehanism is also valid in the presene of the par-allel �eld, we attribute the observed magnetoresistivitybehavior to the �eld-driven disorder enhanement, i. e.,�(p) < �(0). Indeed, with the energy spetrum spe-i�ed by Eq. (5), the expliit formulas for the 2DEGdensity and thermopower areN = N0�2 Xi F0 �1� "i� � ;� = �ke �� 2664Pi �2F1�1� "i� �+ "i� F0�1� "i� ��Pi F0�1� "i� � � 1�3775 ; (8)
where "i = �p is the dimensionless energy de�it be-tween the bottom of spin subbands and that of theground state. For simpliity, we here neglet the zero-�eld valley splitting. Both the 2D density and ther-mopower exhibit (see Fig. 2, insets a 0 and b 0) onlya minor perturbation upon parallel �eld enhanementwithin 0 < p < 1. We therefore onlude that the�eld-driven disorder enhanement an be responsiblefor the observed magnetoresistivity behavior. The de-tailed analysis of the prevailing �(p) mehanism (see,e.g., Ref. [34℄) is beyond the sope of the present paper.

3.5. 2D ompressibilityHereafter, we refer the reader to the experimentaldata mostly obtained for the n-GaAs/AlGaAs 2DEGsystem, and therefore we should substitute D ! D=2in what follows. In general, of partiular interest is the2DEG ompressibilityK = dNd� = �d2
d�2 ;known to be a fundamental quantity, generally moreamenable to theoretial and experimental analy-sis [15; 35℄. For noninterating eletrons, Eq. (3)yields K(�) = DF 00(1=�);where F 0n(z) = dFn(z)=dz is the derivative of the Fermiintegral. Figure 10 represents the dependene of the a-tually measured inverse ompressibility d(�) = "=Ke2.For strongly degenerate eletrons (� � 1), we obtaina onstant value d0 = "=De2, onsistent with the on-ventional apaitane measurements [36℄. But as the2DEG degeneray dereases, the AC eletri �eld pen-etration data [15; 35℄ demonstrates diminution and, fur-thermore, the negative inverse ompressibility also de-reases ompared to d0.Conventionally, this behavior is explained [15℄ interms of a Hartree � Fok exhange, whih is omittedin our simple approah. In ontrast, for extremelydepleted 2DEG, the inverse ompressibility data al-ways exhibit an abrupt upturn, whih annot be ex-plained within the Hartree � Fok senario [35℄. We as-sume that the above feature has a natural explanationwithin our model (see the dotted line in Fig. 10) be-ause d = d0 exp(�1= j�j) at � < 0, j�j � 1, and henethe inverse ompressibility exhibits the T -ativated be-havior. For example, upon depletion, the inverse om-pressibility [15℄ strongly inreases at TF = 0:63 K(N = 2 � 109 m�2), being of the order of the bathtemperature T = 0:3 K.In the general ase of 2DEG plaed in the perpen-diular magneti �eld, the ompressibility isK = ���
���T = D�� Xn h�2�"n � �2kT � ;orK � D "F 00�1��+�2��Xb (�1)bb os(�b�=2)sh rb # ; (9)where we use the thermodynami potential modi�edwith respet to the single-valley spin-unresolved Lan-dau level energy spetrum. Aording to Eq. (9), at the682
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temperature, expressed in units (h=e2)(kF l)�1. Wehave demonstrated the relevane of the approahsuggested in Ref. [27℄ to the low-�eld beating pat-tern of the Shubnikov � de Haas osillations in bothrossed and tilted magneti �eld on�gurations.The features onerning the integer quantum Halle�et in dilute Si-MOSFET systems are disussed.The strong inrease of the parallel magnetiresistiv-ity was argued to result from spin-dependent disorder.This work was supported by the RFBR (grant� 03-02-17588) and LSF (HPRI-CT-2001-00114, Weiz-mann Institute). APPENDIXReal ooling of the 2D systemWe onsider the more realisti situation of eletronooling aused by a �nite strength of the eletron�phonon oupling. The phonon-to-mixing-hamberooling ould then predominately our over the samplesurfae. The power balane equations linearized withrespet to small temperature perturbations arediv(�rT ) + j2� � jTr�� �(T � Tp) = 0;div(�prTp)� (Tp � T )� �(Tp � T0) = 0; (10)where �p is the phonon thermal ondutivity, Tp is theloal phonon temperature, and � and  are the respe-tive eletron�phonon and sample-to-mixing-hamberooling strengths. With the phonon di�usion assumedweak in the sample bulk, the phonon temperatureTp = T + �T0 + �oinides with the eletron (bath) temperature uponpredominant ooling. In general, T0 < Tp < T . Theeletron�phonon oupling term in Eq. (??), rewrittenin terms of the bath temperature, is��(T � T0) = � + � (T � T0);whih depends on both oupling onstants. As ex-peted, a weak heat path hannel provides thermalooling of the 2DEG system.With T �0 = T0 + j2=��� being the Joule heat en-haned temperature, Eq. (??) yields��2 � ur�2 � 2(�� 1) = 0; (11)where � = T=T �0 is the dimensionless eletron tem-perature, � = x=� is the dimensionless oordinate,683



M. V. Cheremisin ÆÝÒÔ, òîì 127, âûï. 3, 2005� = (L�T �0 =��)1=2 is the thermal di�usion length sale,and u(�) = (�j=L�)d�=dT is the dimensionless pa-rameter. Beause T � T0, the 2D thermopower anbe onsidered onstant, and we therefore omit the se-ond term in Eq. (10). Then the energy �ux onti-nuity at both ends of the sample provides symmet-ri boundary onditions with the temperature gradi-ents r�ja;b = �j���=L�T �0 . Under these onditions,solving Eq. (10) is straightforward [10℄. The tempera-ture pro�le downstream the sample is governed by thesample-to-thermal di�usion length ratio l0=�. Our ap-proah of the adiabati ooling is justi�ed when l0 � �.In the opposite ase of strong ooling (l0 � �), the ele-tron temperature exhibits sharp deviation with respetto T �0 near the ontats and then oinides with T �0 inthe sample bulk.Considering that the use of interior potential probesgives uniform resistivity data, Prus et al. [37℄ suggestedthese data as a preursor of strong ooling in real Si-MOSFETs. With the T -dependent resistivity of 2DEGused as a thermometer, the eletron�phonon ouplingonstant was extrated [37℄ from the simpli�ed energybalane ondition T = T �0 valid in the sample bulkwhen l0 � �. We stress that the above proedure isonly justi�ed when the eletron�phonon oupling, andhene the thermal di�usion length are known a pri-ori. Indeed, the weak oupling, if present, provides aonstant temperature gradient, and hene a uniform re-sistivity as well. Nevertheless, the simple balane on-dition used in [37℄ beomes useless beause T 6= T �0throughout the sample. It turns out that the weakeletron�phonon oupling onstant annot be extratedin the onventional manner. One an estimate the rit-ial eletron�phonon oupling at whih our adiabatiapproah is valid, i. e., l0 < � or �� < L�T �0 =l20. Forl0 = 3 mm, � � e2=h, and T0 = 100 mK, we obtain�� < 1:1 � 10�10 W/K� m2.It is to be noted that the Peltier e�et orre-tion to resistivity beomes strongly damped at higherfrequenies beause of the thermal inertial e�ets [9℄.Our d approah is valid below some ritial frequenyfr � ~=ml20 = 0:3 kHz, and therefore the spetral de-pendene of the 2D resistivity an be used to estimatethe thermal orretion.REFERENCES1. S. V. Kravhenko, G. V. Kravhenko, J. E. Furneauxet al., Phys. Rev. B 50, 8039 (1994).2. D. Popovi, A. B. Fowler, and S. Washburn, Phys. Rev.Lett. 79, 1543 (1997).
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