КИНЕТИЧЕСКИЕ ПРОЦЕССЫ В НЕИДЕАЛЬНОЙ РИДБЕРГОВСКОЙ МАТЕРИИ

Б. Б. Зеленер^а^{*}, Б. В. Зеленер^а, Э. А. Маныкин^b

^а Объединенный институт высоких температур Российской академии наук 125412, Москва, Россия

> ^b Российский научный центр «Курчатовский институт» 123182, Москва, Россия

> > Поступила в редакцию 18 июня 2004 г.

Для описания ультрахолодной неидеальной ридберговской плазмы предложена кинетическая модель, на основании которой последовательно прослеживаются все стадии возникновения и распада ультрахолодной ридберговской плазмы. Рассмотрение кинетики плазмы проведено на основе имеющихся экспериментальных данных, соответствующих параметру неидеальности $\gamma \sim 1$. Получено хорошее согласие между теоретическими и экспериментальными данными. Расчет показал сильное замедление рекомбинации и, как следствие, возможность установления метастабильной структуры в такой плазме. Получены зависимости количества возбужденных атомов для $N_e = N_i = 7 \cdot 10^5$ и $E_e = 9$ К. Объяснено поведение этих зависимостей и плотности частиц от времени и от главного квантового числа. Выдвинуто предположение о наличие максимума в распределении возбужденных атомов при k = 25 при этих параметрах.

PACS: 32.80.Rm, 52.25.-b, 52.25.Dg

1. ВВЕДЕНИЕ

В работах двух американских групп [1–4] была получена ультрахолодная ридберговская плазма при электронных температурах $T_e = 1-1000$ К и плотностях зарядов $n = 2n_e = 10^8 - 10^{10}$ см⁻³. Параметр неидеальности

$$\gamma = \frac{e^2 n^{1/3}}{kT}$$

(e-заряд электрона, k- постоянная Больцмана) достигал 50, а параметр вырождения

$$n_e \lambda_e^3 \ll 1$$
,

где

$$\lambda_e = \frac{\hbar}{(m_e kT)^{1/2}}$$

 $(\hbar$ — постоянная Планка, m_e — масса электрона).

В работах [1–3] плазма создавалась путем полной ионизации холодных атомов Хе ($T_a \sim 10^{-4}$ K) лазерным излучением. В работе [4] была получена плазма щелочных металлов Rb и Cs путем возбуждения газа холодных атомов ($T_a \sim 10^{-4}$ K) на ридберговский

уровень энергии (уровень n = 36-40) и добавлением 1 % возбужденных атомов при $T \sim 300$ К.

В экспериментах [1–3] было установлено, что рекомбинация полученной плазмы при $\gamma \geq 1$ сильно замедлена по сравнению с плазмой, для которой $\gamma \ll 1$, а время рекомбинации $\tau_{rec} \sim 10^{-4}$ с.

Анализ экспериментальных данных, приведенных в работах [1–3], ставит целый ряд вопросов, требующих дополнительного изучения:

1) низкая заселенность возбужденных уровней;

2) немонотонность убывания заселенностей в зависимости от времени;

3) несоответствие поведения заселенностей n_k в зависимости от главного квантового числа обычному режиму рекомбинации;

4) аномальное поведение заселенностей при меньших n_k в зависимости от времени;

5) уменьшение, а затем рост общего числа возбужденных атомов в зависимости от времени;

6) резкое уменьшение плотности плазмы в зависимости от времени.

В работах [5–11] обсуждались все эти проблемы и были предложены различные кинетические модели

^{*}E-mail: bobozel@mail. ru

описания полученных в [3] результатов. Эти результаты можно разделить на две группы. Первая группа: авторы работ [5–7] основываются на том, что рекомбинация, протекающая в плазме сразу после ее образования, приводит к увеличению кинетической энергии электронов. Тем самым она приводит к росту T_e и увеличению кинетической энергии ионов.

Вторая группа: авторы работ [10,11] предполагают, что в плазме в момент ее образования кулоновское отталкивание между ионами приводит к большой положительной потенциальной энергии электронов. При расширении плазмы потенциальная энергия частиц превращается в кинетическую.

В дальнейшем мы подробнее остановимся на предположениях, высказанных в работах [5–11].

Кинетические процессы в плазме, созданной авторами работ [1-4], для лучшего понимания удобно рассматривать, изучая различные стадии существования ридберговской плазмы от ее возникновения до ее распада.

2. СОЗДАНИЕ ПЛАЗМЫ И УСТАНОВЛЕНИЕ ЭЛЕКТРОННОЙ ТЕМПЕРАТУРЫ

Согласно работам [1–3], ридберговская плазма создается за время $t \sim 10^{-9}$ с. Электроны, полученные в результате многофотонной ионизации атомов лазером, получают дополнительно кинетическую энергию $E_e = 1-1000$ K, а ионы остаются при температуре $T_i = T_a = 10^{-4}$ K. Точность определения E_e связана с нижним пределом для лазера с полушириной, равной 0.07 см⁻³. Созданная плазма является существенно неравновесной: отсутствует равновесная электронная температура T_e , а все электроны находятся в непрерывном спектре.

Наиболее быстрым процессом при установлении равновесия в плазме является процесс установления электронной температуры. Для слабонеидеальной плазмы ($\gamma \ll 1$) время установления T_e определяется следующим выражением [12]:

$$\tau_{ee} \approx \frac{(T_e)^{3/2} m^{1/2}}{8n_e e^4 L_e} \,, \tag{1}$$

где L_e — кулоновский логарифм, для которого в этих условиях справедливо следующее выражение:

$$L_{e} = \ln \frac{1}{2\sqrt{\pi} \gamma_{e}^{3/2}},$$

$$\gamma_{e} = e^{2} n_{e}^{1/3} / k T_{e}.$$
(2)

При $\gamma_e^3 \ge 1/4\pi$ выражения (1) и (2) теряют смысл, так как $L_e = 0$ при $\gamma_e^3 = 1/4\pi$, а при больших γ_e значение L_e становится отрицательным.

5 ЖЭТФ, вып.6(12)

Кулоновский логарифм L_e [12] возникает при расчете транспортного сечения взаимодействия двух зарядов, в нашем случае двух электронов:

$$L_e = \int_{\rho_{min}}^{\rho_{max}} \frac{d\rho}{\rho},\tag{3}$$

где ρ — прицельное расстояние в единицах $\beta e^2 = e^2/kT$. Логарифмическая расходимость выражения (3) обусловливает выбор конечных пределов интегрирования. Для слабонеидеальной плазмы [12] имеем $\rho_{max} = \frac{r_D}{\beta e^2}, \quad \rho_{min} = 1,$

где

$$r_D = (4\pi n_e \beta e^2)^{-1/2}.$$

При выбранных таким образом пределах интегрирования для L_e получается выражение (2).

В то же время такой выбор пределов интегрирования в (3) теряет свой смысл уже в случае $\gamma_e = 1/4\pi = 0.08$. При этом значении γ_e радиус Дебая становится равным среднему расстоянию между частицами:

$$r_D = r_{av} = n_e^{-1/3}.$$
 (4)

Хотя плазма еще слабонеидеальная, но использовать выражение

$$\rho_{max} = r_D / \beta e^2$$

уже нельзя.

В [13] при расчетах термодинамики и корреляционных функций плазмы было показано, что корреляция частиц при $\gamma \ge 0.1$ становится несущественной уже на среднем расстоянии. Поэтому в качестве верхнего предела в (3) в этом случае правильнее использовать значение $r_{av}/\beta e^2 = \gamma^{-1}$.

В качестве же нижнего предела можно использовать значение

$$r_D / \beta e^2 = \frac{1}{2\pi^{1/2} \gamma^{3/2}}.$$

С одной стороны, эта величина зависит от n и T, а с другой, она равна единице только при $\gamma = (1/4\pi)^{-1/3} = 0.43$, т. е. интегрирование в области $\gamma = 0.08$ –0.43 осуществляется от углов порядка, но меньше единицы.

Кулоновский логарифм L_e в случае выбора этих пределов интегрирования записывается в следующем виде:

$$L_e = \ln\left(2\sqrt{\pi}\,\gamma_e^{1/2}\right).\tag{5}$$

Рис.1. Зависимости $L_e(\gamma_e)$: I — соотношение (2), II — соотношение (5)

Выражение (5), в отличие от (2), в области $\gamma_e > 0.08$ положительно, и L_e растет логарифмически с ростом γ_e . При этом область применимости (5) соответствует $\gamma_e \leq 1$. Однако экстраполяция этого выражения в область $\gamma_e > 1$ не приводит к абсурду и имеет правильную тенденцию, т.е. с увеличением γ_e релаксация идет быстрее.

На рис. 1 приведены зависимости $L_e(\gamma_e)$, соответствующие выражениям (2) и (5).

Оценка τ_{ee} в области $\gamma_e \leq 1$ по формулам (1), (5) для параметров ультрахолодной плазмы [1–4] показывает, что $\tau_{ee} \sim 10^{-11} - 10^{-10}$ с.

Таким образом, можно утверждать, что после создания плазмы за время $t \sim 10^{-9}$ с [1–3] температура электронов установится за время $t \sim 10^{-11}$ – 10^{-10} с и составит $T_e = (2/3)E_e$. Температура ионов, как мы отмечали выше, равна температуре атомов, так как доля кинетической энергии, приходящаяся на тяжелые частицы при ионизации и возбуждении атомов, незначительна. Плазма становится двухтемпературной, но остается плазмой с неравновесной ионизацией [14], поскольку в ней несправедливы распределения Саха и Больцмана.

3. НЕРАВНОВЕСНАЯ ДВУХТЕМПЕРАТУРНАЯ РИДБЕРГОВСКАЯ ПЛАЗМА И УСТАНОВЛЕНИЕ ТЕРМИЧЕСКОГО РАВНОВЕСИЯ

После установления температуры T_e электроны начинают заселять уровни дискретного спектра, т.е. начинают идти процессы рекомбинации. Посколь-

Рис.2. Схема, поясняющая характерные распределения атомов по возбужденным состояниям: 1 — равновесный случай (прямая $\ln(n_k/g_k)$, проведенная через точки E_1, E_2, \ldots , соответствующие реальным энергетическим уровням атома, позволяет найти электронную температуру), 2 — режим рекомбинации: штрихи — распределение населенностей при значительной роли радиационных процессов. I — группа состояний, находящаяся в равновесии с континуумом, II — группа неравновесных состояний. E_R характеризует границу влияния радиационных процессовных переходов [14]

ку вначале все электроны находятся в непрерывном спектре [1–3], рекомбинация начинается с границы дискретного и непрерывного спектров. При этом основным механизмом являются электронные столкновения [14]. Интенсивность радиационных переходов в этой области энергий мала. При увеличении энергии связи роль радиационных процессов возрастает. В работе [14] приведено значение энергии E_R ,

$$E_R = \left(\frac{n_e}{4.5 \cdot 10^{13}}\right)^{1/4} T_e^{-1/8},\tag{6}$$

где T_e выражено в эВ, а n_e — в см⁻³. Это значение энергии делит энергетический спектр на две области:

1) область $E < E_R$, где доминируют ударные процессы;

2) область $E > E_R$, где возмущение осуществляется ударными процессами, а тушение — радиационными.

В случае ультрахолодной ридберговской плазмы [1-3] $E_R \sim 0.1$ -1.1 эВ для начальных состояний плазмы до начала разлета, что соответствует уровням возбуждения k = 4-11 (главное квантовое число). При разлете плазмы E_R смещается в сторону непрерывного спектра, поскольку зависимость от n_e сильнее, чем от T_e .

Таким образом, в рассматриваемых нами условиях в большей части дискретного спектра в рекомбинацию вносят вклад в основном электронные столкновения. В работе [14] изложены методы расчета неравновесных распределений заселенностей. На рис. 2 приведена схема, поясняющая распределение атомов по уровням при неравновесности рекомбинационного типа. Проанализируем этот рисунок, следуя подходу [14]. Зависимость

$$\ln n_k/g_k = f(E_k),$$

проведенная через точки, соответствующие реальным уровням атома, в случае равновесия является прямой, наклон которой однозначно связан с температурой. Необходимо отметить, что для температур T = 1-10 К эта линия проходит вблизи оси энергии. Кривая (2) схематически отображает поведение неравновесной заселенности рекомбинационного типа.

Можно разделить условно заселенности на две группы. Первая — группа верхних возбужденных состояний, находящихся в равновесии с континуумом. Вторая — группа остальных возбужденных состояний, находящихся в существенно неравновесных условиях. Место перехода от одной группы к другой называют «узким местом». Положение узкого места при $E_R > (3/2)T_e$ определяется столкновительными процессами и в нашем случае ему соответствует значение

$$E_m = \frac{3}{2}T_e.$$
 (7)

Номер ридберговского состояния, например для $T_e=6~{\rm K}=5.2\cdot 10^{-4}$
эВ определяющий узкое место, равен

$$k_m = \sqrt{\frac{\mathrm{Ry}}{E_m}} = 132,$$

где Ry = 13.6 эB.

Методы расчета неравновесных распределений заселенностей [14] основаны на использовании условия квазистационарности возбужденных состояний. Для оценки времени релаксации τ_k *k*-го возбужденного состояния воспользуемся следующей формулой [14]:

$$\tau_k^{-1} = 2n_e \frac{4\sqrt{2\pi} e^4 E_{k-1} \Lambda_k}{(E_k - E_{k+1})(E_{k-1} - E_{k+1})\sqrt{mT_e}} \times \exp\left(\frac{E_k - E_{k+1}}{T_e}\right), \quad (8)$$

Рис. 3. Зависимость Λ_k от $T_e/\Delta E_k$ [14]

где Λ_k — кулоновский логарифм взаимодействия свободного электрона со слабосвязанным, а $\Delta E_k = |E_k - E_{k-1}|$. Предполагается, что вероятности радиационных переходов не вносят вклада в τ_k^{-1} . Выражение (8), строго говоря, справедливо для слабонеидеальной плазмы. Однако оно позволяет оценить величину τ_k и проследить качественные закономерности его изменения.

Для ридберговских состояний выражение (8) можно преобразовать к следующему виду:

$$\tau_k^{-1} = \frac{\sqrt{2\pi} n_e e^4 \Lambda_k}{\text{Ry} \sqrt{mT_e}} k^4 \exp\left(\frac{\text{Ry}}{T_e} \frac{2}{k^3}\right).$$
(9)

На рис. З приведена полуэмпирическая универсальная зависимость $\Lambda_k = f(T_e/\Delta E_k)$ [14]. Видно, что Λ_k меняется на несколько порядков в зависимости от $T_e/\Delta E_k$, что может существенно повлиять на установление квазистационарности низких уровней при малых T_e . Для $10^{-2} < T_e/\Delta E_k < 1$ с достаточной степенью точности Λ_k можно представить в виде

$$\Lambda_k \approx 0.1 \frac{T_e}{\Delta E_k} \,. \tag{10}$$

Вместе с тем, хотелось бы отметить, что в области $T_e/\Delta E_k \ll 1$ точность определения Λ_k невелика.

Одновременно с рекомбинационными процессами в плазме идет процесс установления термического равновесия между электронами и ионами. Для оценки времени установления термического равновесия воспользуемся формулой для τ_{ei} в случае слабонеидеальной плазмы [12]:

$$\tau_{ei} = \frac{(T_e)^{3/2} M_i}{8n_i z^2 e^4 L_e (2\pi m_e)^{1/2}},$$
(11)

где n_i, M_i, z — соответственно концентрация, масса и заряд ионов.

Так же, как и в случае оценки τ_{ee} , проведенной ранее, для дебаевской плазмы мы используем значение L_e , вычисленное по формуле (2), а в случае недебаевской плазмы — значение L_e , определяемое выражением (5).

При $\gamma \sim 1$ значение τ_{ei} составляет несколько микросекунд. Это означает, что за $t \approx 10^{-6}$ с в ридберговской ультрахолодной плазме [1–3] температура ионов становится равной температуре электронов. С увеличением γ , согласно нашим оценкам, это время уменьшается.

Используя (9) и (11), определим, какие уровни будут квазистационарными в течение времени τ_{ei} ,

$$\tau_{ei} = \tau_k. \tag{12}$$

В результате простых преобразований, учитывая условие квазинейтральности $n_e = n_i$ и выражение (10), получим для квазистационарного уровня с наименьшим k следующую приближенную зависимость:

$$\exp\left(\frac{2\operatorname{Ry}}{T_e}\frac{1}{k^3}\right) \approx \frac{8m_e}{M_i}\frac{\operatorname{Ry}}{T_e}\frac{L_e}{\Lambda_k k^7}.$$
 (13)

Расчеты по формуле (13) для $\gamma \sim 1$ показывают, что наинизший квазистационарный уровень соответствует $k_{qs} = 24$ при $T_e = 1$ К.

При интересующих нас T_e квазистационарными оказываются только те уровни, для которых основными являются вероятности перехода за счет электронных столкновений, а радиационные переходы несущественны. Более того, рекомбинационный поток при $k < k_{qs}$ отсутствует и значение заселенности n_k для этих k стремится к нулю. Время высвечивания τ_{rad} этих уровней значительно больше 10^{-6} с. Оно определяется выражением [14]

$$\tau_{rad} = A_k^{-1} = \frac{k^5}{1.6 \cdot 10^{10}} \,\,\mathrm{c},\tag{14}$$

где A_k — вероятность радиационного перехода с уровня k в основное состояние. Для k = 16 время высвечивания $\tau_{rad} = 6.55 \cdot 10^{-5}$ с. Для определения заселенности n_k выше k_{qs} рассмотрим в качестве простого приближения диффузионный подход [14]. Этот подход справедлив прежде всего в случае $\Delta E_k/T \leq 1$. Используя это приближение, можно получить для относительных заселенностей y_k следующее выражение:

$$y(E) = \frac{y_1 \chi(E/T_e) + y_e^2 \left[\chi(E_1/T_e) - \chi(E/T_e) \right]}{\chi(E_1/T_e)}, \quad (15)$$

где

$$\chi(x) = \frac{4}{3\sqrt{\pi}} \int_{0}^{x} t^{3/2} e^{-t} dt.$$
 (16)

Относительная заселенность y(E) — заселенность уровня энергии, отнесенная к равновесной заселенности. В качестве y_1 возьмем заселенность уровня ниже k_{qs} . Можно принять ее равной нулю. Тогда получим

$$y(E) = y_e^2 \left[1 - \frac{\chi(E/T_e)}{\chi(E_1/T_e)} \right].$$
 (17)

Учитывая, что $E_1/T_e \gg 1$ при $E_1 \ge E_{qs}$, а $\chi(x) = 1$ при $x \gg 1$, и переходя к абсолютным заселенностям, получим

$$n_{k} = n_{e}^{2} \frac{g_{k} \lambda^{3}}{2\Sigma_{i}} \exp(E_{k}/T_{e}) \left(1 - \chi(E_{k}/T_{e})\right), \qquad (18)$$

где

$$\lambda = \frac{h}{\sqrt{2\pi m_e T_e}},$$

 $g_k = 2k^2 -$ статвес уровня $k, \Sigma_i \approx 1 -$ статвес иона.

Формула (18) позволяет оценить суммарную заселенность всех дискретных уровней. Это можно сделать, проинтегрировав (18) по k от k_{qs} до значений k_n , реализация которых возможна при данных плотности и температуре.

Основной вклад в суммарную заселенность вносят уровни, для которых $E_k/T_e \ge 1$. В этом случае имеем

$$\chi(E_k/T_e) \approx 1 - (4/3\sqrt{\pi})(E_k/T_e)^{3/2} \times \exp(-E_k/T),$$
 (19)

a

$$\sum n_k \approx \frac{4}{3\sqrt{\pi}} n_e^2 \left(\frac{\text{Ry}}{T}\right)^{3/2} \lambda^3 \int_{k_{qs}}^{k_n} \frac{dk}{k}.$$
 (20)

Выражение (20) приближенно можно записать в виде

$$\sum n_k \approx \frac{4}{3\sqrt{\pi}} n_e^2 \left(\frac{\text{Ry}}{T}\right)^{3/2} \lambda^3 \ln k_{qs}.$$
 (21)

Значением первообразной в интеграле (20) на верхнем пределе k_n можно пренебречь. Для того

$$u = \frac{4}{3\sqrt{\pi}} \int_{k_{qs}}^{k_n} n_e^2 \left(\frac{\mathrm{Ry}}{T}\right)^{5/2} \lambda^3 \frac{dk}{k}.$$
 (22)

Приближенно (22) можно переписать в виде

$$u = \frac{4}{3\sqrt{\pi}} n_e^2 \left(\frac{\text{Ry}}{T}\right)^{5/2} \lambda^3 \frac{2}{2k_{qs}^2}.$$
 (23)

Проведенные нами оценки для экспериментальной точки с $n_e = 2 \cdot 10^9$ см⁻³ и $E_e = 9$ К [2,3], которой соответствует начальное значение $T_e = 6$ К, показывают, что при этом $\sum n_k = 7 \cdot 10^8$ см⁻³, а $u/2n_{e0} = 2.1$. Из этой оценки видно, что количество образованных возбужденных состояний составляет около 15 % от числа зарядов, а энергия на одну частицу, перешедшая из потенциальной энергии в результате рекомбинации в кинетическую, составляет около 2kT. Это значение энергии значительно меньше, чем предполагается в работах [5–9]. Поэтому вывод, сделанный в этих работах о разогреве плазмы, с нашей точки зрения является сомнительным.

Необходимо отметить, что оценка экспериментальной точки [3] на основе выражений (21)–(23) завышена и для $\sum n_k$ и для $u/2n_e$. Это связано прежде всего с тем, что выражения (21)–(23) справедливы для случая $\Delta E_k/T_e \leq 1$, а в нашем случае $k_{qs} = 25$ и $\Delta E_{25}/T_e \approx 3$.

Тенденция завышения сильно проявляется при переходе к более низким температурам $T_e \approx 1-3$ К. При этих температурах $\Delta E_k/T_e > 5$, а расчетная величина $\sum n_k$ превышает в десятки раз начальную концентрацию зарядов.

Наша попытка в рамках слабонеидеальной плазмы применить более точный модифицированный диффузионный подход (МДП) [14], основанный на решении уравнения Фоккера-Планка в конечных разностях, в котором сохраняется дискретность энергетического пространства, не увенчалась успехом. Это свидетельствует о том, что необходимо учитывать эффекты, связанные с неидеальностью, так как в нашем случае $\gamma \geq 1$.

В случае, когда $\gamma \sim 1$, можно в рамках МДП [14] учесть часть этих эффектов. В случае использования МДП выражение (18) имеет следующий вид:

$$n_{k} = \frac{n_{e}^{2}g_{k}\lambda^{3}}{2} \exp\left(\frac{\text{Ry}}{T_{e}k^{2}}\right) \times \\ \times \frac{\sum_{k_{1}=k_{qs}-2}^{k} \frac{2}{g_{k_{1}}\Lambda_{k_{1}}k_{1}^{4}} \exp\left(-\frac{\text{Ry}}{T_{e}(k_{1}+1)^{2}}\right)}{\sum_{k_{1}=k_{qs}-2}^{\infty} \frac{2}{g_{k_{1}}\Lambda_{k_{1}}k_{1}^{4}} \exp\left(-\frac{\text{Ry}}{T_{e}(k_{1}+1)^{2}}\right)}.$$
 (24)

Анализ суммы, стоящей в знаменателе (24), показывает, что основной вклад в нее вносят уровни с

$$k \ge k_m = \sqrt{\frac{\mathrm{Ry}}{E_m}}$$

Это соответствует утверждению [14] о наличии в энергетическом спектре узкого места при $E_m \approx 3kT_e/2$ в процессе рекомбинации (см. (7)). При этих значениях k имеем $\Lambda_k \sim 1$, $\exp(-\operatorname{Ry}/T_e(k+1)^2) \sim 1$, а сумма в знаменателе равна

$$\sum_{k_1=k_m=\sqrt{\operatorname{Ry}/E_m}}^{\infty} \frac{1}{k_1^6}$$

Эффекты неидеальности связаны прежде всего с нереализацией уровней, энергия которых сравнима и меньше T_e . С увеличением плотности при $T_e = \text{const}$ и $\gamma > 1$ не реализуются уровни, размер которых превышает $r_{av} = n^{-1/3}$ и, в первую очередь, уровни с большими орбитальными моментами. Можно предположить, что в этом случае $g_k/2 = 1$. Учет этих эффектов позволяет записать сумму в знаменателе как

$$\sum_{k_1=k_m}^\infty \frac{1}{k_1^4}.$$

Тогда выражение будет иметь вид

$$n_{k} = \frac{n_{e}^{2}g_{k}\lambda^{3}k_{m}^{3}}{6} \exp\left(\frac{\mathrm{Ry}}{T_{e}k^{2}}\right) \times \\ \times \sum_{k_{1}=k_{qs}-2}^{k} \frac{2}{g_{k_{1}}\Lambda_{k_{1}}k_{1}^{4}} \exp\left(-\frac{\mathrm{Ry}}{T_{e}(k_{1}+1)^{2}}\right). \quad (25)$$

При использовании (25) значения $\sum n_k$ при $T_e = 1-3$ К находятся в пределах одного процента от числа свободных зарядов и соответственно $u/2n_{e0} \approx kT$. Предложенный нами подход совпадает с результатами, полученными ранее в работе [11].

4. РАСШИРЕНИЕ ПЛАЗМЫ

В работе [15] нами были проведены расчеты свойств плазмы, в которой число электронов, находящихся в связанных состояниях, чрезвычайно мало. Была использована псевдопотенциальная модель и проведены расчеты методом Монте-Карло. Для внутренней энергии на одну частицу при γ ≥ 1 были получены значения, которые могут быть аппроксимированы следующим простым выражением:

$$\frac{E}{NkT} = A\gamma,\tag{26}$$

где A = 10, $\gamma = \beta e^2 (n_e + n_i)^{1/3}$. Внутренняя энергия на одну частицу при $\gamma \geq 1$ положительна, и этот факт необходимо учитывать при рассмотрении расширения плазмы.

С увеличением температуры ионов в процессе взаимодействия с электронами усиливается процесс расширения плазмы. При этом запас положительной потенциальной энергии, которая переходит в процессе расширения в кинетическую, приводит к увеличению этой скорости во много раз. Этот факт подтверждается экспериментальными данными.

В работах [2,3] скорость расширения плазмы определяется из равенства

$$E_{kin} = \frac{3}{2}M_i V_0^2, \qquad (27)$$

где V_0 — скорость, входящая в используемое в работах [2,3] выражение для плотности расширяющегося газа:

$$\overline{n} = \frac{N}{\left[4\pi(\sigma_0^2 + V_0^2 t^2)\right]^{3/2}}$$
(28)

 $(N - число ионов, \sigma_0 = 180$ мкм — среднеквадратичный радиус плазменного облака в момент образования).

В работе [3] для V_0 при $E_e > 70$ К предположена следующая зависимость:

$$V_0 = \sqrt{\frac{E_e}{\alpha M_i}}, \qquad (29)$$

где E_e — кинетическая энергия электронов, $\alpha = 1.7$ — подгоночный параметр, определяемый по экспериментальным точкам.

Выражение (29) с подгоночным параметром α можно получить теоретически, исходя из следующих соображений. В задаче разлета газового шара в пустоту, как известно [16], средняя радиальная скорость газовой массы асимптотически стремится к постоянному предельному значению

$$V_{\infty} = \sqrt{\frac{2E_{kin}}{M}} = \frac{V_{max}}{B},$$

где V_{max} — скорость границы, B = const.

Из рассмотрения этой задачи ясно, что скорость, которая определяется из выражения (29), связана

не с предельной V_{∞} , как полагают авторы [3], а со скоростью границы V_{max} (при этом $V_{max} = \sqrt{3} V_0$). Коэффициент $B = \sqrt{5/3}$ в случае автомодельного режима разлета газового шара [16] при условии, что показатель адиабаты $\gamma_p = 5/3$ и постоянства плотности по всему объему (это условие следует из (28)). В результате получим

$$V_0 = \sqrt{\frac{10E_{kin}}{9M_i}} \,. \tag{30}$$

При установлении термического равновесия, $T_e = T_i$, кинетическая энергия ионов $E_{kin} = E_e/2$, тогда

$$V_0 = \sqrt{\frac{E_e}{1.8M_i}} \,. \tag{31}$$

Выражения (29) и (31) совпадают с хорошей степенью точности. В случае $\gamma \geq 1$ или $E_e > 70$ К для определения V_0 мы воспользуемся формулой (26). После установления термического равновесия и перехода всей потенциальной энергии в кинетическую, кинетическая энергия ионов становится равной

$$E_{kin} = E_i + E_e/2,$$

где

$$E_i = E/N = Ae^2 (n_e + n_i)^{1/3}, \quad T_e = T_i,$$

 $n_e = n_i, \quad A = 10.$

Тогда можно записать следующее равенство:

$$V_0 = B_1 \sqrt{\frac{2(E_i + E_e/2)}{3M_i}} .$$
 (32)

Коэффициент B_1 определяется через показатель адиабаты Пуассона γ_p . Можно показать [16], используя результаты [15], что когда параметр неидеальности порядка единицы, $\gamma_p = 4/3$. Тогда $B_1 = \sqrt{4/3}$ и формула (32) окончательно примет вид

$$V_0 = \sqrt{\frac{8\left(Ae^2(2n_e)^{1/3} + E_e/2\right)}{9M_i}} \,. \tag{33}$$

На рис. 4, взятом из работы [3], приведены значения V_0 , рассчитанные для $n_e = 2 \cdot 10^9$ см⁻³ и $n_e = 2 \cdot 10^8$ см⁻³ для случая $\gamma \ge 1$, в зависимости от E_e . Зависимость V_0 от E_e при $\gamma \sim 1$ существенно отличается от случая $\gamma \ll 1$. Во-первых, V_0 в несколько раз больше, чем следует из расчетов по формулам для $\gamma \ll 1$, что и наблюдается в эксперименте [3]. Во-вторых, как и в работе [11], полученное выражение для скорости слабо зависит от концентрации зарядов ($\propto n_e^{1/6}$).

Рис. 4. Скорость расширения плазмы V_0 в зависимости от начальной кинетической энергии электронов. Начальная средняя плотность \overline{n}_0 меняется от $6\cdot 10^6$ см⁻³ до $2.5\cdot 10^9$ см⁻³. Точки (• – $10^9 \leq \overline{n}_0$, • – $2\cdot 10^8 \leq \overline{n}_0 < 10^9$, • – $\overline{n}_0 \leq 2\cdot 10^8$) и прямая линия $V_0 = \sqrt{E_e/1.7M_i}$ – данные из работы [2]. Расчетные линии по формуле (33) I – $n_e = 2\cdot 10^9$ см⁻³, II – $n_e = 2\cdot 10^8$ см⁻³

В наших расчетах возможен плавный переход от $E_e < 70$ К к $E_e \ge 70$ К. Это связано с тем, что внутренняя энергия E_i на один ион рассчитана в работе [15] во всей области γ . Учтем зависимость от γ , представив коэффициент A из выражения (26) как $A(\gamma)$. В случае малых γ имеем

$$A = -\sqrt{\pi} \gamma^{1/2},$$

тогда справедливо выражение (31), а в случае $\gamma > 0.5$ имеем A > 0 и надо пользоваться (33).

Вообще говоря, необходимо отметить, что использовать скорость V_0 в качестве критерия при сравнении теоретических и экспериментальных результатов не вполне корректно, поскольку, как было показано выше, эта величина сама является неопределенной. Более удачным параметром является $\Delta E_e/(E_e/\alpha)$ [3].

Выражение для $\Delta E/(E_e/\alpha)$ при $\gamma \ge 1$ можно записать в следующем виде:

$$\frac{\Delta E}{E_e/\alpha} = \frac{E - E_e/\alpha}{E_e/\alpha} = \frac{2E_i}{E_e} = \frac{2A\gamma}{3/2} = \frac{4}{3 \cdot 1.28} A\Gamma_e = 1.08A\Gamma_e, \quad (34)$$

где

$$\Gamma_e = \frac{\beta e^2}{(4\pi n_e/3)^{-1/3}}$$

Рис.5. Зависимость $\Delta E/(E_e/\alpha)$ от Γ_e . Точки $(E_e/k_B = 28 \ (\bullet), 9.2 \ (\Box), 3.9 \ (\blacksquare), 1.5 \ (\triangle) \ K)$ — данные из работы [2], сплошная линия — расчетная зависимость по формуле (34)

— параметр неидеальности, используемый в [2,3]. На рис. 5 приведена полученная зависимость (34). В области $\Gamma_e > 1$ имеет место хорошее совпадение результатов, в области $0.1 < \Gamma_e < 0.5$ величина E_i уже не соответствует зависимости (26), коэффициент эффективно уменьшается, а в области $\Gamma_e < 1$ значения $\Delta E/(E_e/\alpha)$ приближаются к экспериментальным.

Оценим также время перехода потенциальной энергии тяжелых частиц в кинетическую. Если предположить, что движение частиц является равноускоренным, то время перехода равно

$$\tau_{tr} = \frac{2L}{V_{st} + V_f},\tag{35}$$

где $V_{st} = \sqrt{4E_e/9M_i}$ — начальная, $V_f = V_0$ (33) — конечная скорость, а L — расстояние, на котором это происходит, которое определяется из условия

$$\frac{L}{\beta e^2} = \frac{1}{\gamma_1} - \frac{1}{\gamma_0}, \qquad (36)$$

где $\gamma_0 \sim n_0^{1/3}$ — начальное значение параметра взаимодействия, а $\gamma_1 \sim n_1^{1/3}$ — параметр взаимодействия, при котором $E_i = 0$. Подставив (36) в (35), получим

$$\tau_{tr} = \frac{2(\gamma_0 - \gamma_1)\beta e^2}{\gamma_1 \gamma_0 \left(\sqrt{4E_e/9M_i} + V_0\right)}.$$
 (37)

Для $n = 2 \cdot 10^9 \text{ см}^{-3}$ и $E_e = 9 \text{ K}$ имеем $\tau_{tr} \approx 2 \cdot 10^{-7}$ с. Полученные результаты говорят о том, что переход потенциальной энергии в кинетическую после установления равенства $T_e = T_i$ происходит значительно быстрее, чем сам процесс выравнивания температур.

5. РЕКОМБИНАЦИЯ В РАСШИРЯЮЩЕЙСЯ ПЛАЗМЕ

Увеличение кинетической энергии частиц за счет положительной потенциальной энергии ведет к следующим эффектам.

1) Происходит частичная ионизация имеющихся к этому моменту высоковозбужденных состояний за счет увеличения температуры T_e и уменьшения суммарного числа этих состояний. Это иллюстрирует рис. 6 (экспериментальные точки). До t = 25 мкс происходит уменьшение заселенности возбужденных атомов и общего их количества (вставка на рис. 6). После t = 25 мкс начинается рост заселенностей и общего числа возбужденных атомов, прекращается рост температуры электронов, она начинает уменьшаться и начинается процесс рекомбинации.

Рис. 6. Распределения ридберговских атомов в зависимости от времени после фотоионизации для $E_e = 9 \text{ K}$ и $N_i = 7 \cdot 10^5$. Точки $(t = 12 \ (\bullet), 22 \ (\bullet), 50 \ (\bullet), 125 \ (\bullet) \text{ мкс})$ и сплошная тонкая линия (равновесное распределение по Саха для t = 12 мкс, $T_e = 8.5 \text{ K}$) — данные из работы [3]. Распределение числа возбужденных атомов, рассчитанное по формуле (18): I - t = 25 мкс, $T_{e,25} = 2 \text{ K}$, II - t = 125 мкс, $T_{e,125} = 0.22 \text{ K}$. На вставке: зависимости от времени полного числа возбужденных атомов (точки) и плотности тяжелых частиц (сплошная линия) [3]

2) После t = 25 мкс процесс рекомбинации идет медленно, что связано с большой скоростью разлета. Наблюдается эффект «закалки». Этот эффект (см., например, [14, 16]) обусловлен тем обстоятельством, что расширение плазмы происходит быстрее, чем ее охлаждение.

Было показано [14,16], что если для коэффициента рекомбинации α имеет место соотношение

$$\alpha = aT_e^{-9/2},\tag{38}$$

то для степени и
онизации $x = n_e/n$, будет справедлива следующая формула:

$$x = x_1 \left[1 + 2a_1 x_1^2 \int_{t_1}^t \frac{n^2(t) dt}{T_e^{-9/2}(t)} \right]^{-1/2}.$$
 (39)

Из формулы (39) следует [16], что если $T_e \sim t^{l_1}$, где $l_1 \geq 10/9$, то x = const. Параметр l_1 связан с показателем адиабаты таким образом, что неравенству $l_1 \geq 10/9$ соответствует $\gamma_p < 4/3$. Как было сказано выше, в случае, когда параметр неидеальности порядка единицы, параметр $\gamma_p = 4/3 < 1.37$. Это означает, что в этом случае наблюдается замедление рекомбинации плазмы.

Из рис. 6 видно, что распределение заселенностей возбужденных атомов с k = 55-100 слабо меняется со временем. Поэтому можно считать это распределение квазистационарным в каждый момент времени. В таком случае, воспользовавшись выражением (18), мы можем определить температуру по распределению заселенностей.

Проведенный согласно формуле (18) расчет заселенностей для t = 25 и t = 125 мкс показал, что (см. рис. 6) этим моментам времени соответствуют значения температуры $T_{e,25} = 2$ К и $T_{e,125} = 0.22$ К. При этом температура слабо зависит от концентрации возбужденных атомов N_a даже при изменении N_a в 2 раза (точность измерения соответствует работе [3]). Видно, что при t = 25 мкс температура электронов близка к температуре электронов в начале разлета, а с увеличением времени она уменьшается. Кроме того, как видно из рисунка, результаты теоретических расчетов распределения заселенностей находятся в соответствии с экспериментальными точками.

Анализ распределения ридберговских атомов на рис. 6 позволяет предположить, что при k = 25 существует максимум. Однако это требует экспериментального подтверждения.

6. ЗАКЛЮЧЕНИЕ

В настоящей работе мы проследили последовательно все стадии возникновения и распада ультрахолодной ридберговской плазмы. Результаты расчета термодинамических свойств ультрахолодной плазмы [15] позволили построить модель кинетики и сделать следующие выводы.

В области параметров [1-3] температура электронов устанавливается за время $\tau_{ee} < 10^{-10}$ с, а температура ионов T_i становится равной температуре электронов T_e за $\tau_{ei} \leq 10^{-6}$ с. Это позволяет рассматривать плазму в неполном термодинамическом равновесии, т.е. когда $T_e = T_i$, но отсутствует равновесная заселенность возбужденных атомов по энергиям. Наши расчеты [15] для условий [1-3] показывают, что в такой системе заряженных частиц, где не образуются связанные состояния, существует сильное отталкивание, увеличивающееся с ростом γ (см. (26)). При расширении плазмы это отталкивание приводит к большей скорости разлета плазмы, к ионизации некоторого количества возбужденных атомов, имеющихся на момент установления термического равновесия, а также к установлению режима «закалки» рекомбинации.

Идея существования сильного отталкивания в такой плазме (правда только между ионами) была высказана в работах [10, 11]. Однако, с одной стороны, это было сделано на уровне оценок, а с другой стороны, осталась непонятной роль электронов, которых в системе столько же, сколько и ионов.

Анализ радиационных и столкновительных процессов в области температур T = 1-5 К и концентраций $n_e = 10^8 - 10^{13}$ см⁻³ показывает, что за время создания плазмы до установления термического равновесия $\tau_{ei} \leq 10^{-6}$ с квазистационарность рекомбинационного потока существует только до уровня k > 25, а радиационные переходы становятся существенными только при k < 10. Основными являются столкновительные процессы. Время высвечивания уровня $k \sim 10$ составляет примерно 10^{-5} с, что значительно больше времени установления термического равновесия. Это также свидетельствует о том, что за $t \sim 10^{-6}$ с энергия из плазмы не уходит, а кинетическая энергия, освобождающаяся при акте рекомбинации, расходуется на ионизацию возбужденного атома (процесс, обратный рекомбинации), а также на нагрев ионов и электронов.

Как было показано выше, при $T_e = 6$ К преимущественным является первый процесс, что дает повод считать, что разогрев плазмы за счет рекомбинационного нагрева, как предполагается в [5–9], не наблюдается. Низкая температура электронов приводит к смещению «узкого места» (наибольшего сопротивления рекомбинационному потоку) почти к границе дискретного и непрерывного спектров. При этом выше «узкого места» отсутствуют уровни с $E_k \leq kT$ при $\gamma < 1$, а с увеличением γ не реализуются уровни с $r_{av} = n^{-1/3}$ и, в первую очередь, уровни с высокими орбитальными моментами. Все это уменьшает рекомбинационный поток, так что имеется незначительное количество возбужденных атомов с $k > k_{qs}$, которое существенно меньше числа свободных электронов и ионов. Этот факт подтверждает те предположения, которые были положены в основу модели, использованной для расчета термодинамических свойств [15].

В настоящей работе рассмотрение кинетики плазмы проведено на основе имеющихся экспериментальных данных (см. рис. 4, 5, 6), соответствующих параметру неидеальности $\gamma \sim 1$. Теоретические и экспериментальные данные для скорости разлета плазмы V_0 и $\Delta E_e/(E_e/\alpha)$ находятся в хорошем согласии, хотя, как показано выше, величина V₀ в силу своей неопределенности не очень удобна для сравнения результатов. Получены зависимости количества возбужденных атомов для $N_e = N_i = 7 \cdot 10^5$ и *E_e* = 9 К и объяснено поведение этих зависимостей и плотности частиц для различных значений времени и главного квантового числа. Возможно также предположить наличие максимума в распределении возбужденных атомов при k = 25 при этих параметpax.

С увеличением γ появляются следующие дополнительные обстоятельства, которые необходимо учитывать:

1) замедление рекомбинации в неидеальной плазме (см., например, [17,18]), связанное с учетом эффектов сильного кулоновского взаимодействия в плотности состояний и коэффициента диффузии электронов;

2) отсутствие возбужденных уровней, размер которых превышает среднее расстояние, ниже уровня k_m , что приведет к увеличению сопротивления рекомбинационному потоку;

3) появление дальнего порядка и большая положительная внутренняя энергия частиц, обнаруженные в работе [15].

Все эти причины (а особенно третья, если бы удалось стабилизировать состояние плазмы при больших γ , например, за счет внешних электромагнитных полей) приводят к увеличению времени рекомбинации плазмы, а в случае ее стабилизации — к полному отсутствию рекомбинации. Расчеты в работе [15] были проведены для плазмы, в которой не учитывались связанные состояния между электронами и ионами с k < 100. В работе [19] были проведены расчеты для экспериментальных условий, когда k принимает различные значения (например, k > 36, см. [4]). Для этих случаев также рассчитывалась энергия на одну частицу, E/NkT, причем ее зависимость от γ может кардинально отличаться от выражения (26). Анализ кинетических процессов в этих случаях является предметом дальнейших исследований.

Авторы благодарят А. А. Белевцева и А. Г. Лесскиса за полезные обсуждения. Работа выполнена при частичной финансовой поддержке РФФИ (проект № 04-02-17474а).

ЛИТЕРАТУРА

- T. C. Killian, S. Kulin, S. D. Bergeson et al., Phys. Rev. Lett. 83, 4776 (1999).
- S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, Phys. Rev. Lett. 85, 318 (2000).
- T. C. Killian, M. J. Lim, S. Kulin et al., Phys. Rev. Lett. 86, 3759 (2001).
- M. P. Robinson, B. L. Tolra, M. W. Noel et al., Phys. Rev. Lett. 85, 4466 (2000).
- F. Robicheaux and J. D. Hanson, Phys. Rev. Lett. 88, 5 (2002).
- T. Pohl, T. Pattard, and J. M. Rost, Phys. Rev. A 68, 010703(R) (2003).

- S. G. Kuzmin and T. M. O'Nail, Phys. Rev. Lett. 88, 065003 (2002).
- 8. M. S. Murillo, Phys. Rev. Lett. 87, 11 (2001).
- 9. А. Н. Ткачев, С. И. Яковленко, КЭ 30, 1077 (2000).
- 10. Y. Hahn, Phys. Lett. A 293, 266 (2002).
- 11. Y. Hahn, Phys. Lett. E 64, 046409 (2001).
- Е. М. Лифшиц, Л. П. Питаевский, Физическая кинетика, Наука, Москва (1979), стр. 207.
- 13. Б. В. Зеленер, Г. Э. Норман, В. С. Филинов, Теория возмущений и псевдопотенциал в статистической термодинамике, Наука, Москва (1981).
- 14. Л. М. Биберман, В. С. Воробьев, И. Т. Якубов, Кинетика неравновесной низкотемпературной плазмы, Наука, Москва (1982).
- М. Бониц, Б. Б. Зеленер, Б. В. Зеленер, Э. А. Маныкин, В. С. Филинов, В. Е. Фортов, ЖЭТФ 125, 821 (2004).
- 16. Я. Б. Зельдович, Ю. П. Райзер, Физика ударных волн и высокотемпературных гидродинамических явлений, Наука, Москва (1966).
- **17**. Л. М. Биберман, В. С. Воробьев, И. Т. Якубов, ДАН СССР **296**, 576 (1987).
- 18. И. Т. Якубов, ТВТ 30, 862 (1992).
- 19. V. S. Filinov, V. E. Fortov, E. A. Manykin, B. B. Zelener, and B. V. Zelener, submitted to Phys. Lett. A.