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UNIVERSALITY IN THE PARTIALLY ANISOTROPICTHREE-DIMENSIONAL ISING LATTICEM. A. Yurishhev *Institute of Problems of Chemial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow Region, RussiaSubmitted 16 Marh 2004Using transfer-matrix extended phenomenologial renormalization-group methods, we study the ritial prop-erties of the spin-1=2 Ising model on a simple-ubi lattie with partly anisotropi oupling strengths~J = (J 0; J 0; J). The universality of both fundamental ritial exponents yt and yh is on�rmed. It is shownthat the ritial �nite-size saling amplitude ratios U = A�(4)A�=A2�, Y1 = A�00=A�, and Y2 = A�(4)=A�(4)are independent of the lattie anisotropy parameter � = J 0=J . For the Y2 invariant of the three-dimensionalIsing universality lass, we give the �rst quantitative estimate Y2 � 2:013 (shape L�L�1, periodi boundaryonditions in both transverse diretions).PACS: 05.50.+q, 05.70.Jk, 64.60.Fr, 75.10.Hk1. INTRODUCTIONThe phenomenologial renormalization-group (RG)method in whih the transfer-matrix tehnique and�nite-size saling (FSS) ideas are ombined is a power-ful tool for investigation of ritial properties in di�er-ent two-dimensional systems [1, 2℄. Unfortunately, itsappliation in three and more dimensions is sharplyretarded due to huge sizes of the transfer matriesarising in approximations of d-dimensional latties byLd�1 �1 subsystems.Indeed, even in the simplest ase of systems withonly two states of a site (the spin-1=2 Ising model), thesize of the transfer matrix in three dimensions (d = 3)inreases as 2L2 (instead of the essentially more sparinglaw 2L in two dimensions). Hene, for the 3 � 3 �1luster, the eigenproblem of the 512� 512 transfer ma-trix must be solved; for the 4� 4�1 subsystem, theproblem is for the 65 536� 65 536 matrix; and for the5� 5�1 luster, it is required to �nd the eigenvaluesand eigenvetors of dense matries with huge sizes of33 554 432 by 33 554 432.One an solve the full eigenproblem for the transfermatries of Ising parallelepipeds L � L �1 with theside length L � 4. Our aim in this paper is to use suhsolutions with the maximum e�et and extrat as muh*E-mail: yur�itp.a.ru, yur�ip.a.ru

aurate information about physial properties of thebulk system as possible.The ordinary phenomenologial RG is based on theFSS equations for orrelation lengths [1, 2℄. However,it is known [3�5℄ that the phenomenologial RG anbe built up using other quantities with a power diver-gene at the phase transition point. It is remarkablethat suh modi�ed renormalizations an provide morepreise results with the same sizes of subsystems [6℄.In this paper, we alulate the values of di�erentinvariants of the 3D Ising universality lass and disusstheir universal and extrauniversal properties.2. BASIC EQUATIONSWe start from the ordinary FSS equations [1, 2℄ forthe inverse orrelation length �L(t; h) and the singularpart of the dimensionless free-energy density fsL(t; h),but we write them for the derivatives with respet tothe redued temperature t = (T � T)=T and the ex-ternal �eld h,�(m;n)L (t; h) = bmyt+nyh�1�(m;n)L=b (t0; h0) (1)and fs (m;n)L (t; h) = bmyt+nyh�dfs (m;n)L=b (t0; h0): (2)619



M. A. Yurishhev ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004Here, �(m;n)L (t; h) = �m+n�L�tm�hnand similarly for fs (m;n)L ; yt and yh are the thermaland magneti ritial exponents of the system, respe-tively; and b = L=L0 is the resaling fator. In derivingEqs. (1) and (2), we used a linearized form of the RGequations t0 � bytt and h0 � byhh.In the traditional phenomenologial RG theory [1,2℄, Eq. (1) with m = n = 0 is onsidered as an RGmapping (t; h)! (t0; h0) for a luster pair (L;L0). Theritial temperature T is then estimated from the equa-tion L�L(T) = L0�L0(T): (3)The phenomenologial renormalization (t; h) !! (t0; h0) an also be realized by using any of rela-tions (1) and (2) or their ombination. It has beenshown by the author [6℄ that some of suh extendedrenormalizations lead to more rapid onvergene in Lthan the standard phenomenologial RG transforma-tion. In partiular, test examples on the fully isotropisystems [6℄ have shown that the relations�00LLd�1�L ����T = �00L0(L0)d�1�L0 ����T ; (4)�(4)LLd�2L �����T = �(4)L0(L0)d�2L0 �����T (5)loate T more aurately in omparison with the or-dinary RG equation (3). In relations (4) and (5),the derivative �00L = �2�L=�h2, the zero-�eld susep-tibility �L = fs (0;2)L , and the nonlinear suseptibility�(4)L = fs (0;4)L an be evaluated by standard formulasvia the eigenvalues and eigenvetors of transfer matri-es (see, e.g., [7�9℄).To �nd the thermal ritial exponent yt, we appliedtwo approahes. First, we again used the standard�nite-size expressionyt = ln[L _�L=(L0 _�L0)℄ln(L=L0) ; (6)whih follows from Eq. (1) with m = 1, n = 0;_�L = ��L=�t. Seond, we took the formulayt = �L0 _�L � �L _�L0(�L�L0 _�L _�L0)1=2 ln(L=L0) : (7)This expression is a diret onsequene of the well-known Roomany�Wyld approximant to the Callan�Symanzik �-funtion [2℄.

To alulate the magneti ritial exponent yh, wealso used two ways,yh = d2 + ln(�L=�L0)2 ln(L=L0) (8)and yh = 12 + ln(�00L=�00L0)2 ln(L=L0) (9)(these �nite-size relations follow from Eqs. (1) and (2)).In addition, we alulated the universal ratios ofthe ritial FSS amplitudes. Ratios of this type an beidenti�ed from the Privman�Fisher funtional expres-sions [10℄. For the disussed anisotropi systems, theyare given by [8℄�L(t; h) = L�1G0K(C1tLyt ; C2hLyh); (10)fsL(t; h) = L�dG0F(C1tLyt ; C2hLyh): (11)The saling funtions K(x1; x2) and F(x1; x2) are thesame within the limits of a given universality lass,but they may depend on the boundary onditions andthe subsystem shape (a ube, in�nitely long paral-lelepipeds, et.). Thus, all nonuniversality, inludingthe lattie anisotropy parameter �, is absorbed in thegeometry prefator G0 and metri oe�ients C1 andC2. The ritial amplitude ratios from whih the pa-rameters G0, C1, and C2 drop out should be extrauni-versal. In partiular, the amplitude ombinationsU = A�(4)A�A2� = �L�(4)LLd�1�2L (12)(a Binder-like ratio for the spatially anisotropi sys-tems), Y1 = A�00A� = �00LLd�1�L ; (13)Y2 = A�(4)A�(4) = �(4)LLd�1�(4)L (14)are expeted to be independent of the lattie anisotropyparameter � = J 0=J .3. RESULTS AND DISCUSSIONWe have arried out alulations for the subsystemsL � L �1 with L = 3, 4. To avoid undesirable sur-fae e�ets, the periodi boundary onditions were im-posed in both transverse diretions of parallelepipedsL � L � 1. Thus, the transfer matries for whih620



ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004 Universality in the partially anisotropi : : :the eigenproblem was solved were dense matries ofsizes up to 65 536� 65 536. To solve the eigenproblem,we took the internal and lattie symmetries of subsys-tems into aount and used the blok-diagonalizationmethod (see, e.g., [7; 9℄). Calulations were performedon an 800 MHz Pentium III PC running the FreeBSDoperating system.3.1. Critial temperatureThe ritial temperature estimates oming from so-lutions of transendental equations (4) and (5) are ol-leted in Table 1.In the purely isotropi ase (J 0 = J), there arehigh-preision numerial estimates for the ritial pointof the three-dimensional Ising model. The most pre-ise values for it have been obtained by Monte Carlosimulations [11, 12℄: K = 0:221 654 59(10), i.e.,kBT=J = 1=K = 4:511 5240(21).Inspeting Table 1, one an see that the estimatesfor J 0 = J that follow from Eq. (4) and (5) arethe lower and upper bounds respetively. Therefore,their mean value has the auray of 0.01%. Wealso note that our mean estimate is better than thevalue kBT=J = 4:533 71 obtained in Ref. [13℄ (seealso [14℄) for the fully isotropi lattie using the or-dinary phenomenologial renormalization of the barswith L = 4; 5.We now disuss the anisotropi ase. Here, there isthe well-known exat asymptoti formula for the riti-al temperature [15℄,�kBTJ �asym = 2ln(J=2J 0)� ln ln(J=2J 0)+O(1) (15)Table 1. Lower and upper bounds on the riti-al temperature and their mean values (improved es-timates of kBT=J) in the three-dimensional simple-ubi spin-1/2 Ising lattie vs � = J 0=J . Calulationswith a luster pair (3; 4)� Eq. (4) Eq. (5) mean1.0 4.47965814 4.54424309 4.511950620.5 2.91008665 2.94295713 2.926521890.1 1.33649605 1.34570054 1.341098290.05 1.03544938 1.04144927 1.038449330.01 0.65054054 0.65323146 0.651886000.005 0.55440490 0.55643112 0.555418010.001 0.40743000 0.40859011 0.40801006

as J 0=J ! 0. It is a diret onsequene of themoleular-�eld approximation in whih the linear Isinghain is taken as a luster.Unfortunately, simple formula (15) yields onsider-able errors in the region 10�3 � J 0=J � 1. Its modi�-ations in the spirit of Ref. [16℄,kBTJ � 2ln(J=J 0)� ln ln(J=J 0) ;lead to a loss of monotoni onvergene as J 0=J variesfrom unity to zero.We hoose in�nitely long lusters L � L � 1strethed in a lattie diretion with the dominant in-teration J . Suh a luster geometry re�ets the phys-ial situation in the system. We may therefore ex-pet more preise results for the ritial temperatureas the anisotropy of the quasi-one-dimensional lattieinreases. We may also expet a monotoni onver-gene for the estimates in Eq. (4) and (5) beause theremust be physial reasons (�nite length of lusters in thelongitudinal diretion, et.) for a nonmonotoni or os-illatory harater of behavior; they are absent in ourapproximations. That is, if Eq. (4) yields the lowerbound in the most unfavorable ase J 0 = J , then itshould preserve suh behavior for all J 0 < J . Similararguments are valid for the estimates following fromEq. (5); these estimates are upper.We note that the mean values in Table 1 are notonly better than the estimates of kBT=J alulatedwith the (3; 4) luster pair by the standard phenomeno-logial RG method, but also better than their improve-ments found by means of three-point extrapolationsfrom the sizes L = 2, 3, 4 to the bulk limit [17℄.In the range 10�2 � J 0=J � 1, there are also thedata for the ritial temperature of a simple-ubi Isinglattie that were extrated from the Padé-approximantanalysis of the high-temperature series [18℄. For J 0 = J ,aording to these data, kBT=J = 4:5106, whih islower by 0.014% in omparison with the results inRef. [12℄. For J 0=J = 0:1, the authors of Ref. [18℄found the value kBT=J = 1:343. This quantity some-what overestimates the mean value in Table 1. Fi-nally, for J 0=J = 0:01, the series method [18℄ yieldskBT=J = 0:65, whih goes out of our lower bound.This is not surprising beause the alulations basedon the high-temperature series rapidly deteriorate ow-ing to the very limited number (� 11) of terms availablein suh series for the anisotropi latties.Therefore, we may treat the values found fromEqs. (4) and (5) as lower and upper bounds on the realritial temperature. Their mean value for eah J 0=Jyields the best estimate that we ahieve in this paper621



M. A. Yurishhev ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004Table 2. Estimates of the thermal and magneti ritial exponents for di�erent values of � = J 0=J . Calulations witha luster pair (3; 4)yt yh� kBT=J Eq. (6) Eq. (7) Eq. (8) Eq. (9)1.0 4.51195062 1.5760695 1.7246286 2.5971647 2.58861280.5 2.92652189 1.5256373 1.6636718 2.5902006 2.58194620.1 1.34109829 1.4700811 1.5972576 2.5843305 2.57665110.05 1.03844933 1.4533899 1.5791439 2.5836720 2.57611010.01 0.65188600 1.4236178 1.5480583 2.5832982 2.57580280.005 0.55541801 1.4141719 1.5383503 2.5832029 2.57578880.001 0.40801006 1.3984754 1.5222765 2.5834573 2.57579531.47{6} 1.60{7} 2.586{5} 2.579{5}for the redued ritial temperature kBT=J (the lastolumn in Table 1). Hene, its absolute error is notlarger in any ase than half the di�erene of the orre-sponding upper and lower bounds. Using the data inTable 1, we establish that the relative errors for kBT=Jmonotonially derease from 0.72% to 0.14% as J 0=Jgoes from 1 to 10�3.3.2. Invariants of the three-dimensional Isinguniversality lassWith the improved estimates for the ritial tem-perature of an anisotropi simple-ubi lattie, we nowalulate some invariants of the three-dimensional Isingmodel universality lass.3.2.1. Critial exponentsAording to the RG theory, ritial exponents aredetermined entirely by a �xed point and do not dependon the lattie anisotropy. For a three-dimensional Isingmodel, the universality of ritial exponents has beenon�rmed for � 2 [0:2; 5℄ by the high-temperature se-ries alulations [19℄.At present, the most preise estimates of ritialexponents are provided by the high-temperature ex-pansions for ordinary models [20℄ and for models withimproved potentials haraterized by suppressed lead-ing saling orretions [21℄. For the three-dimensional(fully isotropi) Ising lattie, these methods yield � == 0:63012(16) and  = 1:2373(2). Hene, yt = 1=� == 1:5870(4) and yh = (d+ =�)=2 = 2:48180(18).In Table 2, we report our estimates for the riti-al exponents yt and yh. It follows from those datathat as the lattie anisotropy parameter � varies by

three orders (from unity to 10�3), the estimates of rit-ial exponents are hanged only by a few per ent orless. In partiular, alulations via Eqs. (6) and (7)with the luster pair (3; 4) yield yt = 1:47f6g andyt = 1:60f7g respetively. (Here and below, the num-bers in urly brakets are dispersions of averages overthe lattie anisotropy parameter �.) Their variationsare in the range 4�4.4%. Similar alulations of themagneti ritial exponent performed with Eqs. (8)and (9), also with the pair (3; 4), lead to yh = 2:586f5gand yh = 2:579f5g, orrespondingly. Relative disper-sions of these estimates are about 0.2%.Thus, our alulations on�rm the universality ofboth ritial exponents in an essentially wider range of� than in earlier investigations. Systemati errors ofthe ahieved estimates arise due to small sizes L of thesubsystems used.3.2.2. Critial FSS amplitude ratiosCritial amplitudes are determined by saling fun-tions. As a result, their �universal ratios� likeA�(4)A�(4) = K(0;4)(0; 0)F (0;4)(0; 0)depend, generally speaking, on the lattie anisotropybeause it an hange the shape of subsystems. But inthe ase of parallelepipeds Ld�1 �1 with unhanged(between themselves) transverse oupling onstants,the shape of a sample (all its aspet ratios) is inde-pendent of the interation in the longitudinal diretion.Suh a kind of universality is studied here.Table 3 ontains results of our alulations forthe ritial FSS amplitude ratios U = A�(4)A�=A2�,622



ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004 Universality in the partially anisotropi : : :Table 3. Estimates of the universal ritial FSS amplitude ratios U = A�(4)A�=A2�, Y1 = A�(2)=A�, andY2 = A�(4)=A�(4) for the Ising system with the ylindrial geometry L � L � 1 and periodi boundary onditions.Data for L = 4� kBT=J U Y1 Y21.0 4.51195062 4.8956599 1.7550004 2.01464430.5 2.92652189 4.8967625 1.7572512 2.01365190.1 1.34109829 4.9011909 1.7596003 2.01298290.05 1.03844933 4.9014406 1.7597697 2.01292850.01 0.65188600 4.9015375 1.7598563 2.01289770.005 0.55541801 4.9015529 1.7598646 2.01289530.001 0.40801006 4.9015782 1.7598732 2.01289384.900{3} 1.759{2} 2.0133{6}Y1 = A�00=A�, and Y2 = A�(4)=A�(4) . Calulationshave been performed for � 2 [10�3; 1℄ using a yliluster 4� 4�1.In aordane with the data in Table 3, the averageratio U = 4:900f3g. Hene, as the anisotropy parame-ter � varies by three orders, this quantity hanges onlyby 0.06%. With suh auray, we may onsider thegiven ratio a onstant. In the ase of a fully isotropilattie, A� = 1:26(5) and A�(4)=A2� = 3:9(2) [8℄, andtherefore A�(4)A�=A2� = 4:9(5). Our values of U inTable 3 are in good agreement with this estimate.It follows from Table 3 that Y1 = A�00=A� = 1:759(2).Hene, the onstany of this universal amplitude ratiois estimated at least as a few times 10�3. Our averagevalue for Y1 agrees well with the estimate for theisotropi lattie, A�00=A� = 1:749(6) [8℄.Aording to the data in Table 3, the amplituderatio Y2 = A�(4)=A�(4) = 2:0133f6g. This quantity istherefore most stable of all the invariants of the three-dimensional Ising universality lass that were investi-gated in this paper. We note that we are not aware ofany quantitative estimates for A�(4)=A�(4) .4. CONCLUSIONSIn this paper, the large-sale transfer-matrix om-putations have been performed. Appliation of theextended phenomenologial RG shemes has allowed�nding tight bounds on the ritial temperature in theanisotropi simple-ubi Ising lattie and improving theavailable estimates for it.We alulated the thermal and magneti ritial ex-ponents. Our results on�rm the universality of yt

within 4�4.4% and of yh within 0.2% over a remarkablywider range of � (10�3 � � � 1) than in Ref. [19℄.Finally, the presented results give lear ev-idene that the ritial FSS amplitude ratiosU = A�(4)A�=A2�, Y1 = A�00=A�, and Y2 = A�(4)=A�(4)are independent of the lattie anisotropy parameter� = J 0=J with auraies at least 0.1%. Probably forthe �rst time in the literature, we give an estimate forthe universal quantity Y2.This work was supported by the RFBR (grants�� 03-02-16909 and 04-03-32528).REFERENCES1. P. Nightingale, J. Appl. Phys. 53, 7927 (1982).2. M. N. Barber, in Phase Transitions and Critial Phe-nomena, ed. by C. Domb and J. L. Lebowitz, Aa-demi, New York (1983), Vol. 8.3. R. R. dos Santos and L. Sneddon, Phys. Rev. B 23,3541 (1981).4. J. A. Plasak, W. Figueiredo, and B. C. S. Grandi,Brazilian J. Phys. 29, 579 (1999).5. A. Pelissetto and E. Viari, Phys. Rep. 368, 549(2002); E-print arhives, ond-mat/0012164.6. M. A. Yurishhev, Nul. Phys. B (Pro. Suppl.) 83�84,727 (2000); Zh. Eksp. Teor. Fiz. 118, 380 (2000).7. M. A. Yurishhev, Phys. Rev. B 50, 13533 (1994).8. M. A. Yurishhev, Phys. Rev. E 55, 3915 (1997).623



M. A. Yurishhev ÆÝÒÔ, òîì 126, âûï. 3 (9), 20049. M. A. Yurishhev, Zh. Eksp. Teor. Fiz. 125, 1349(2004).10. V. Privman and M. E. Fisher, Phys. Rev. B 30, 322(1984).11. M. Hasenbush, K. Pinn, and S. Vinti, Phys. Rev.B 59, 11471 (1999).12. H. W. J. Blöte, L. N. Shhur, and A. L. Talapov, Int.J. Mod. Phys. C 10, 1137 (1999).13. M. A. Novotny, Nul. Phys. B (Pro. Suppl.) 20, 122(1991).14. C. F. Baillie, R. Gupta, K. A. Hawik, and G. S. Paw-ley, Phys. Rev. B 45, 10438 (1992).

15. C.-Y. Weng, R. B. Gri�ths, and M. E. Fisher, Phys.Rev. 162, 475 (1967); M. E. Fisher, Phys. Rev. 162,480 (1967).16. T. Graim and D. P. Landau, Phys. Rev. B 24, 5156(1981).17. M. A. Yurishhev and A. M. Sterlin, J. Phys.: Con-dens. Matter 3, 2373 (1991).18. R. Navarro and L. J. de Jongh, Physia B 94, 67(1978).19. G. Paul and H. E. Stanley, Phys. Rev. B 5, 2578 (1972).20. P. Butera and M. Comi, Phys. Rev. B 62, 14837 (2000);65, 144431 (2002).21. M. Campostrini, A. Pelissetto, P. Rossi, and E. Viari,Phys. Rev. E 60, 3526 (1999); 65, 066127 (2002).

624


