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SPECTRUM OF QUANTIZED BLACK HOLE, CORRESPONDENCEPRINCIPLE, AND HOLOGRAPHIC BOUNDI. B. Khriplovih *Budker Institute of Nulear Physis630090, Novosibirsk, Russia,Novosibirsk University 630090, Novosibirsk, RussiaSubmitted 19 April 2004An equidistant spetrum of the horizon area of a quantized blak hole does not follow from the orrespondenepriniple or from general statistial arguments. On the other hand, suh a spetrum obtained in loop quantumgravity (LQG) either does not omply with the holographi bound or requires a speial hoie of the Barbero�Immirzi parameter for the horizon surfae, distint from its value for other quantized surfaes. The problem ofdistinguishability of edges in LQG is disussed, with the following onlusion. Only under the assumption ofpartial distinguishability of the edges, the miroanonial entropy of a blak hole an be made both proportionalto the horizon area and satisfying the holographi bound.PACS: 04.60.-m, 04.70.-s, 04.70.Dy1. The idea of quantizing the horizon area of blakholes was put forward many years ago by Bekenstein inthe pioneering artile [1℄. It was based on the intriguingobservation, made by Christodoulou and Ru�ni [2, 3℄:the horizon area of a nonextremal blak hole behaves ina sense as an adiabati invariant. Of ourse, the quan-tization of an adiabati invariant is perfetly natural,in aordane with the orrespondene priniple.One more onjeture made in [1℄ is that the spe-trum of a quantized horizon area is equidistant. Theargument therein was that a periodi system is quan-tized by equating its adiabati invariant to 2�~n,n = 0; 1; 2; : : : .Later, it was pointed out by Bekenstein [4℄ that thelassial adiabati invariane does not by itself guaran-tee the equidistane of the spetrum, at least beauseany funtion of an adiabati invariant is itself an adia-bati invariant. But up to now, artiles on the subjetabound in assertions that the formA = � l2pn; n = 1; 2; : : : ; (1)*E-mail: khriplovih�inp.nsk.su

for the horizon area spetrum1) is ditated by the re-spetable orrespondene priniple. The list of thesereferenes is too long to be presented here.We onsider an instrutive example of the situationwhere a nonequidistant spetrum arises in spite of thelassial adiabati invariane. We start with a lassialspherial top of an angular momentum J. Of ourse,the z-projetion Jz of J is an adiabati invariant. If thez axis is hosen along J, the value of Jz is maximum,J , or ~j in the quantum ase. The lassial angularmomentum squared J2 is also an adiabati invariant,with the eigenvalues ~2j(j + 1) when quantized. Wenow try to use the operator Ĵ2 for the area quantiza-tion in quite natural units of l2p. For the horizon areaA to be �nite in the lassial limit, the power of thequantum number j in the result for j � 1 should bethe same as that of ~ in l2p [5℄. With l2p � ~, we thusarrive at A � l2ppj(j + 1):Beause pj(j + 1)! j + 1=2 for j � 1;1) Here and below, l2p = ~k=3 is the Plank length squared,lp = 1:6 � 10�33 m, k is the Newton gravitational onstant; � ishere some numerial fator.527



I. B. Khriplovih ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004we have returned to the equidistant spetrum in thelassial limit. However, the equidistant spetrum anbe avoided as follows. We assume that the horizon areaonsists of sites with area of the order of l2p, and toeah site i asribe its own quantum number ji and theontribution pji(ji + 1) to the area. Then the aboveformula hanges toA � l2pXi pji(ji + 1) (2)(in fat, this formula for a quantized area arises as aspeial ase in loop quantum gravity, see below). Ofourse, to retain a �nite lassial limit for A, we shouldrequire that Xi pji(ji + 1)� 1:But any of the ji an be well omparable with unity.Therefore, in spite of the adiabati invariane of A, itsquantum spetrum (2) is not equidistant, although ofourse disrete.One more quite popular argument in favor ofequidistant spetrum (1) is as follows [4, 6, 7℄. On theone hand, the entropy S of a horizon is related to itsarea A by the Bekenstein�Hawking formulaA = 4l2pS: (3)On the other hand, the entropy is nothing but ln g(n),where the statistial weight g(n) of any quantum staten is an integer. In [4, 6, 7℄, the requirement of integerg(n) is taken literally, and results after simple reason-ing not only in equidistant spetrum (1), but also inthe following allowed values for the numerial fator �in this spetrum:� = 4 ln k; k = 2; 3; : : : :We an imagine, however, that with some modelfor S, g(n) is given by a noninteger K + Æ, 0 < Æ < 1,instead of an integer value K. Then the entropy isS = ln(K + Æ) = lnK + Æ=K:Now, the typial value of the blak hole entropyS = lnK = A4l2pis huge, roughly 1076. Therefore, the orretion Æ=K isabsolutely negligible ompared to S = lnK. Moreover,it is far below any oneivable auray of a desriptionof entropy, and an therefore be safely omitted and for-gotten. As usual for marosopi objets, the fat that

the statistial weight is an integer has no onsequenesfor the entropy.Thus, ontrary to the popular belief, the equidis-tane of the spetrum for the horizon area does notfollow from the orrespondene priniple and/or fromgeneral statistial arguments.2. This does not mean, however, that any modelleading to an equidistant spetrum for the quantizedhorizon area should be automatially rejeted. Quitesimple and elegant version of suh a model, so-alled�it from bit�, was formulated for a Shwarzshild blakhole by Wheeler [8℄. The assumption is that the hori-zon surfae onsists of � pathes, eah of them suppliedwith an �angular momentum� quantum number j withtwo possible projetions �1=2. The total number K ofdegenerate quantum states of this system isK = 2� : (4)Then the entropy of the blak hole isS1=2 = lnK = � ln 2: (5)With Bekenstein�Hawking relation (3), one obtains thefollowing equidistant formula for the area spetrum:A1=2 = 4 ln 2 l2p �: (6)This model of a quantized Shwarzshild blak holelooks by itself �awless.This result was later derived in Ref. [9℄ in the frame-work of loop quantum gravity (LQG) [10�14℄. We dis-uss below whether the �it from bit� piture, if onsid-ered as a speial ase of the area quantization in LQG,an be reoniled with the holographi bound [15�17℄.More generally, a quantized surfae in LQG is de-sribed as follows. One asribes a set of puntures tothe surfae. Eah punture is supplied with two integeror half-integer �angular momenta� ju and jd,ju; jd = 1=2; 1; 3=2; : : : : (7)ju and jd are related to edges direted up and downthe normal to the surfae, respetively, and add up tothe angular momentum jud,jud = ju + jd; jju � jdj � jud � ju + jd: (8)The area of the surfae isA == �l2pXi q2jui (jui +1)+2jdi (jdi +1)�judi (judi +1): (9)528



ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004 Spetrum of quantized blak hole : : :The overall numerial fator � in (9) annot be de-termined without an additional physial input. Thisambiguity originates from a free (so-alled Barbero�Immirzi) parameter [18, 19℄ that orresponds to a fam-ily of inequivalent quantum theories, all of them beingviable without suh an input.The result (6) was obtained in [9℄ under the ad-ditional ondition that the gravitational �eld on thehorizon is desribed by the U(1) Chern�Simons theory.Formula (6) is a speial ase of general one (9) with alljd vanishing and all ju equal to 1=2 (or vie versa). Asregards the overall fator �, its value here is2)� = 8 ln 2p3 : (10)We now turn to the holographi bound [15�17℄. A-ording to it, the entropy S of any spherially sym-metri system on�ned inside a sphere of area A isbounded as S � A4l2p ; (11)with the equality attained only for a system that is ablak hole.A simple intuitive argument on�rming this boundis as follows [17℄. We onsider the disussed system ol-lapsing into a blak hole. During the ollapse, the en-tropy inreases from S to Sbh, and the resulting horizonarea Abh is ertainly smaller than the initial on�ningarea A. Now, with Bekenstein�Hawking relation (3)for a blak hole taken into aount, we arrive, throughthe obvious hain of (in)equalitiesS � Sbh = Abh4l2p � A4l2p ;at the disussed bound (11).The result (11) an be formulated di�erently.Among spherial surfaes of a given area, the surfaeof a blak hole horizon has the largest entropy.On the other hand, it is only natural that the en-tropy of an eternal blak hole in equilibrium is maxi-mum. This was used by Vaz and Witten [20℄ in a modelof the quantum blak hole originating from a dust ol-lapse. The idea was then employed by us [21, 22℄ inthe problem of quantizing the horizon of a blak holein LQG. In partiular, the oe�ient � was alulatedin Ref. [22℄ in the ase where the area of a blak holehorizon is given by the general formula (9) of LQG, as2) The ommon onvention for the numerial fator in for-mula (9) is 8��; with it, the parameter � is smaller than ours bythe fator 8�.

well as under some more speial assumptions on the val-ues of ju, jd, and jud. Moreover, it was demonstratedin Ref. [22℄ for a rather general lass of the horizonquantization shemes that the maximum entropy of aquantized surfae is proportional to its area.We sketh the proof of this result (for more tehni-al details, see [22℄). Here and below, we onsider themiroanonial entropy S of a surfae (although with�xed area instead of �xed energy). It is de�ned as thelogarithm of the number of states of this surfae witha �xed area A, i.e., with a �xed sumN =Xi q2jui (jui +1)+2jdi (jdi +1)�judi (judi +1): (12)Let �im be the number of puntures with a given set ofmomenta jui , jdi , judi , and a given projetion m of judi .The total number of puntures is� =Xi;m �im:We assume that the edges with the same set of thequantum numbers i;m (i.e., with the same jui , jdi , judi ,and m) are indistinguishable, and therefore interhang-ing them does not result in new states. All other per-mutations, those among the edges with di�ering i;m,do reate new states, and hene suh edges, with dif-fering i;m, are distinguishable,We note that the �it from bit� values (4) and (5)for the number of states and entropy also follow fromthis assumption. Indeed, let � be the total numberof pathes with j = 1=2 and let �+ and �� = � � �+pathes have the respetive projetions+1=2 and�1=2.Then the number of the orresponding states is obvi-ously given by �!�+! (� � �+)! ;and the total number of states isK = �X�+=0 �!�+! (� � �+)! = 2� ;in agreement with (4).Thus, the entropy isS = ln24� !Yi;m 1�im !35 : (13)The struture of expressions (9) and (13) is so di�erentthat the entropy ertainly annot be proportional tothe area in the general ase. However, this is the asefor the maximum entropy in the lassial limit.2 ÆÝÒÔ, âûï. 3 (9) 529



I. B. Khriplovih ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004By ombinatorial reasons, it is natural to expetthat the absolute maximum of entropy is reahed whenall values of quantum numbers ju;d;udi are present. Wealso assume that in the lassial limit, the typial val-ues of punture numbers �im are large. Then, with theStirling formula for fatorials, expression (13) beomesS = 0�Xi;m �im1A ln0�Xi0;m0 �i0m01A��Xi;m (�im ln �im) : (14)We seek the extremum of expression (14) under theondition N =Xi �im ri = onst; (15)where eah partial ontributionri =q2jui (jui + 1) + 2jdi (jdi + 1)� judi (judi + 1)is independent of m. The problem redues to the solu-tion of the system of equationsln0�Xi 0;m 0 �i 0m 01A� ln �im = �ri ; (16)or �im = e��ri Xi 0;m 0 �i 0m 0 = � e��ri : (17)Here, � is the Lagrange multiplier for onstraint (15).Summing expressions (17) over i and m, we arrive atthe equation for �,Xi;m e��ri =Xi gi e��ri = 1; (18)the statistial weightgi = 2judi + 1of a punture arises here beause ri are independent ofm. On the other hand, multiplying Eq. (16) by �im andsumming over i and m, with onstraint (15), we arriveat the following result for the maximum entropy for agiven value of the sum N , or the blak hole area A:S max = �N = ��l2p A: (19)One more urious feature of the obtained piture isworth noting: it gives a sort of the Boltzmann distri-bution for the oupation numbers (see (17)). In this

distribution, the partial ontributions ri to the areaare analogues of energies and the Lagrange multiplier� orresponds (up to a fator) to the inverse tempera-ture.It should be emphasized that relation (19) is truenot only in LQG, but applies to a more general lassof approahes to quantization of surfaes. The follow-ing assumption is neessary here: the surfae shouldonsist of pathes of di�erent sorts, suh that thereare �im pathes of eah sort i;m, with a generalizede�etive quantum number ri and a statistial weightgi. Equally neessary is the above assumption on thedistinguishability of the pathes.Thus, the maximum entropy of a surfae is propor-tional to its area in the lassial limit. This proportio-nality ertainly ours for a lassial blak hole. Thisis one more strong argument in favor of the assumptionthat the blak hole entropy is maximum.We now return to the result in Ref. [9℄. If we as-sume that the value (10) of the parameter � is univer-sal (i.e., is not speial to blak holes, but refers to anyquantized spherial surfae), then the value in (5) isnot the maximum one in LQG for a surfae of area (6).This looks quite natural: with the transition from theunique hoie made in Ref. [9℄,ju(d) = 1=2; jd(u) = 0;to a more extended and rih one, the number of de-generate quantum states should, generally speaking,inrease. Together with this number, its logarithm,whih is the entropy of a quantized surfae, inreasesas well.We start the proof of the above statement withrewriting formula (5) asS1=2 = ln 2r43 N = 0:80N; N =r34 � : (20)From now on, we onsider this value of N �xed.We start with a relatively simple example wherejd(u) = 0;and hene the general formula (9) for a surfae arearedues toA = � l2pXi pji(ji + 1) == � l2p 1Xj=1=2pj(j + 1) �j ; j = ju(d) (21)530



ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004 Spetrum of quantized blak hole : : :(and oinides with our naive model (2)). We �ndthe maximum entropy of suh a surfae for the �xedvalue of N = 1Xj=1=2pj(j + 1) �j ; (22)whih should be equal to the �it from bit� one, �p3=4.Here, the statistial weight of a punture with the quan-tum number j is gj = 2j + 1;and Eq. (18) an be rewritten as1Xp=1(p+ 1) zpp(p+2) = 1; p = 2j; z = e��=2: (23)Its solution is � = �2 ln z = 1:722(see Ref. [22℄) and the maximum entropySmax;1 = 1:72N (24)then exeeds the result in (20).As expeted, in the general ase, with N given byformula (12) with all the values of jui , jdi , judi allowedand gi = 2judi + 1;the maximum entropy is even larger [22℄,Smax = 3:12N: (25)Thus, the on�it is obvious between the holo-graphi bound and the result (20) found within theLQG approah in [9℄.One might try to avoid the on�it by assumingthat value (10) of the Barbero�Immirzi parameter � isspeial for blak holes only, while for other quantizedsurfaes, � is smaller. However, suh a way out wouldbe unattrative and unnatural.3. We now return to the essential assumption madein the previous setion: the edges with the same setof the quantum numbers i;m are idential, the edgeswith di�ering i;m are distinguishable. In priniple, onemight try to modify this assumption of partial distin-guishability of edges in two opposite ways.One possibility, whih might look quite appealing, isthat of omplete indistinguishability of edges. It meansthat no permutation of any edges results in new states.To simplify the disussion, we on�ne ourself to ex-pression (21) for the horizon area, instead of the most

general one (9). Then, the total number of angularmomentum states reated by�j =Xm �jmindistinguishable edges of a given j with all 2j+1 pro-jetions allowed, from �j to j, is3)Kj = (�j + 2j)!�j ! (2j)! : (26)Those partial ontributionssj = lnKjto the blak hole entropyS =Xj sjthat an potentially dominate the numerially largeentropy may orrespond to the three ases: j � �j ,j � �j , and j � �j � 1. These ontributions are asfollows: j � �j ; sj � 2j ln �j ;j � �j ; sj � �j ln j;j � �j � 1; sj � 4j ln 2:In all the three ases, the partial ontributions tothe entropy S are muh smaller parametrially than theorresponding ontributionsaj � j�jto the area A =Xj aj :Therefore, S � A in all these ases, and hene withindistinguishable edges of the same j, one annot makethe entropy of a blak hole proportional to its area.This was pointed out earlier in Refs. [23, 24℄.We now onsider the last oneivable option, thatof ompletely distinguishable edges. In this ase, thetotal number of states is just K = � !, instead of (13),with the miroanonial entropyS = � ln �:In priniple, this entropy an be made proportional tothe blak hole area A. The model (whih does not3) Perhaps, the simplest derivation of this formula is as follows.E�etively, we here seek the number of ways of distributing �jidential balls into 2j + 1 boxes. Then the line of reasoningpresented in [27, � 54℄ results in formula (26). I am grateful toV. F. Dmitriev for bringing to my attention that formula (26)an be derived in this simple way.531 2*
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